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1.1

1. Introduccié a I¢

En aquest capitol es presenten, d’una banda, els fonaments de la criptografia i, d’altra banda, es
realitza un repas historic de la criptografia premoderna.

Pel que fa als fonaments de la criptografia, descriurem els conceptes clau d’aquesta ciéncia, que
farem servir al llarg del llibre per anar presentant les diferents técniques que es fan servir en
criptografia.

En relacié amb el repas historic, veurem com va sorgir la criptografia i quines técniques es
feien servir des dels seus origens fins a I’inici de la criptografia moderna. La resta del llibre se
centrara precisament en descriure diversos aspectes de la criptografia moderna que, com veurem,
ha evolucionat molt des de les seves arrels.

Conceptes basics

La criptografia €s la ciéncia que estudia I’escriptura de secrets, amb I’objectiu
d’ocultar el missatge que s’escriu.

Etimologicament, la paraula prové del grec i sorgeix de la unié de dos conceptes: kryptds, que vol
dir secret i graphein, que vol dir escriptura. Els origens de 1’escriptura secreta es remunten a fa
més de 4000 anys, perd en aquells moments la criptografia es trobava lluny de considerar-se una
cieéncia. A mig cami entre art i joc d’enigmes, civilitzacions com I’antic Egipte van desenvolupar
els primers escrits on es transformava el missatge original. Es considera pero que la criptografia
com a ciéncia no va comengar a desenvolupar-se fins a mitjans del segle XX, amb les contribucions
realitzades per Claude E. Shannon.

https://www.criptografia.cat v0.2.1 04/02/2026
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La criptoanalisi és la ciéncia que se centra en trencar les técniques que desenvolupa
la criptografia, ja sigui per a descobrir el text amagat darrere un text xifrat o bé per
a demostrar les febleses d’un determinat esquema criptografic.

Aix{ doncs, la criptoanalisi és indispensable per a I’avenc de la criptografia, ja que s’encarrega
d’avaluar la seguretat dels criptosistemes que aquesta desenvolupa. Tot i que el mot criptoanalisi és
bastant recent, tenim constancia d’una criptoanalisis realitzada al segle IX per un matematic arab,
Al-Kindi.

El terme general criptologia es fa servir per englobar tant criptografia com cripto-
analisi.

En aquest llibre, ens centrarem en descriure les técniques i algorismes que es fan servir per ocultar
informacid, és a dir, en la criptografia. Tot i aixi, en aquest capitol farem una petita introduccio a la
criptoanalisi, per tal d’oferir unes nocions basiques dels models amb els quals s’avalua habitualment
la seguretat dels esquemes criptografics.

Tradicionalment, la criptografia es basava tinicament en protegir la confidencialitat dels missatges.

La confidencialitat és una propietat que garanteix que la informaci6 no es fa
publica a persones no autoritzades.

Els sistemes criptografics han evolucionat molt des dels seus origens, i actualment poden oferir
altres garanties, més enlla de la confidencialitat. Sovint, I’ds de la criptografia ens permet també
garantir la integritat dels missatges o fins i tot el no-repudi.

La integritat és la propietat que garanteix que la informacié no ha estat modificada.

Els sistemes que ofereixen integritat permeten detectar si hi ha hagut una modificacié de la
informacio.

El no-repudi és la propietat que garanteix que I’autor d’una determinada accié no
pugui negar haver-la realitzat.

Per tal de simplificar les explicacions, en criptografia es fan servir uns personatges ficticis, que
acostumen a interpretar sempre els mateixos papers. Aquests personatges van ser creats per Ron
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Rivest, Adi Shamir i Leonard Adleman, i el seu seu s es troba molt extés.! L’ Alice (A) i en Bob
(B) son els dos personatges més populars i acostumen a ser dos usuaris que volen intercanviar algun
missatge. L’Eve (E) és un atacant passiu, que pot escoltar les comunicacions entre 1’ Alice i en Bob,
perd no modificar-les. Mallory (M) és un atacant actiu, que pot escoltar les comunicacions entre
I’Alice i en Bob, i també modificar el contingut de la transmissio.

Anem doncs a descriure 1’escenari tradicional en que s’aplica la criptografia fent servir els personat-
ges que acabem de presentar. En 1’escenari basic, 1’ Alice vol enviar un missatge a en Bob a través
d’un canal insegur. Com que el canal és insegur, I’Eve pot escoltar la comunicacié entre 1’ Alice i
en Bob. Amb aquest plantejament, 1’ Alice desitja enviar un missatge, m, a en Bob garantint-ne la
confidencialitat. Per fer-ho 1’ Alice aplica un algorisme de xifrat, E, al text que vol enviar (anomenat
text en clar) fent servir una determinada clau, k. El resultat d’aplicar I’algorisme de xifrat sobre
el text en clar és el text xifrat, c, que és el que s’enviara a través del canal insegur. En Bob, quan
rebi el missatge xifrat, ¢, procedira a aplicar un algorisme de desxifrat, D, al text xifrat fent servir
la mateixa clau, k, obtenint el text en clar original, m. Per tal que I’esquema pugui aplicar-se,
sera necessari doncs que I’ Alice i en Bob disposin d’una clau compartida, k, que hauran hagut de
comunicar-se anteriorment a través d’algun canal segur (potser fins i tot trobant-se fisicament).
L’Eve podra recuperar el text xifrat de la comunicaci6 ¢, perd al no conéixer el valor de la clau, no
sera capac de recuperar-ne el text en clar corresponent.

Fuve
m—w F —»cQ T Die— [ |—=im
Alice S Bob

Figura 1.1: Escenari basic d’aplicaci6 de la criptografia en les comunicacions entre dos usuaris.

Més formalment, direm que un criposistema queda definit per cinc parametres:

* El conjunt de possibles textos en clar, MM

* El conjunt de possibles textos xifrats, €

* El conjunt de possibles claus, &

» E, una funcio de xifrat, que detalla per a cada possible clau k € K i missatge m € 9, quin és
el corresponent text xifrat ¢ € €.

* D, una funcié de desxifrat, que realitza el procés invers de la funcié de xifrat, és a dir, una
funci6 tal que Dy (Ex(m)) =m,peratotm € Mik € R.

A partir d’aquest escenari basic, els escenaris en els quals s’aplica la criptografia avui en dia
s6n molt diversos i variats, alguns dels quals no s’assemblen gens a 1’escenari tradicional. Aix{,
per exemple, la criptografia ens permet crear sistemes de credencials andnimes, que serviran per
autenticar-se de manera anOnima; sistemes de comparticid de secrets, on caldra la col-laboracié d’n
parts d’un conjunt d’m per recuperar el secret; criptomonedes, que oferiran metodes de pagament

IRivest, Shamir i Adleman van crear els personatges de I’ Alice i en Bob a I'article “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”, publicat I’any 1978.
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totalment descentralitzats i segurs; i protocols de computacié multipart, on diverses entitats podran
col-laborar per calcular funcions sobre dades confidencials.

Introduccié a la criptoanailisi

La criptoanalisi se centra en analitzar els criptosistemes, amb 1’objectiu d’avaluar-ne la seva
seguretat. Depenent de si ’analisi es focalitza en 1’algorisme, la implementacié o el sistema
complet que I’integra, distingim diferents atacs que el criptoanalista pot intentar realitzar contra un
esquema criptografic.

Els atacs classics intenten recuperar un text en clar a partir d’un text xifrat o bé
recuperar una clau.

Existeixen diferents escenaris o models en els quals avaluar els criptosistemes, en funcié de la
informacié de la qual disposa el criptoanalista per trencar els esquemes:

* En el model de només text xifrat (o COA, de I’angles, ciphertext-only attack) 1’atacant
només disposa d’un conjunt de textos xifrats.

* En el model de text en clar conegut (o KPA, de I’angles, known-plaintext attack), I’ atacant
disposa d’un conjunt de textos en clar i els seus corresponents textos xifrats.

* En el model de text en clar escollit (o0 CPA, de I’angles, chosen-plaintext attack), el criptoa-
nalista pot obtenir els textos xifrats corresponents a un conjunt de textos en clar seleccionats
per ell mateix.

* En el model de text xifrat escollit (0 CCA, de I’angles, chosen-ciphertext attack), el criptoa-
nalista pot obtenir els textos en clar corresponents a un conjunt de textos xifrats seleccionats
per ell mateix.

Els models de text en clar i text xifrat escollit assumeixen normalment que el criptoanalista tria
una unica vegada el conjunt de textos en clar (respectivament, textos xifrats) i pot demanar-ne els
corresponents textos xifrats (respectivament, en clar). Una variant d’aquests models, coneguda
com a model adaptatiu de text en clar/xifrat escollit (respectivament, CPA2 i CCA2), permet al
criptoanalista anar demanant els corresponents textos xifrats/en clar successivament, modificant els
textos que demana en funcié de les respostes que ha rebut fins al moment.

Avui en dia gairebé tots els criptografs assumeixen el principi de Kerckhoffs:

El principi de Kerckhoffs afirma que, per a que un criptosistema pugui considerar-
se segur, aquest ho ha de ser encara que ’atacant conegui tots els detalls del
criptosistema, exceptuant-ne la clau.

Es a dir, s’assumeix que 1’atacant o el criptoanalista disposa de I’especificacié completa de 1’algo-
risme a trencar. Auguste Kerchoffs va formular aquest principi al segle XIX, i actualment, la versié
més extesa del seu principi afirma que la seguretat d’un criptosistema ha de dependre inicament de
la clau.

Tot i aix0, en productes criptografics comercials sovint es fa cas omis d’aquest principi i s’opta
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per ’alternativa, la seguretat per ofuscacié (en angles, security through obscurity). En aquest
paradigma, la seguretat dels sistemes es basa en amagar els detalls sobre I’algorisme de xifrat, amb
I’objectiu de dificultar-ne, suposadament, la criptoanalisi. A la practica, pero, normalment aquests
detalls s’acaben fent publics igualment, de manera que amagar 1’algorisme és contraproduent ja
que Unicament en dificulta I’avaluaci6 de la seva seguretat. Alguns exemples de 1’adopcié d’aquest
paradigma son en els algorismes xifrat de telefonia mobil GSM, que es van intentar mantenir ocults
sense &xit, o en el sistema de DRM dels DVDs, on calia pagar una lliceéncia i signar un acord de no
revel-laci6 per tal de tenir accés als detalls de 1’algorisme.

Més enlla dels atacs classics, que consideren tinicament I’algorisme utilitzat, existeixen també atacs
de canal lateral i atacs d’enginyeria social.

Els atacs de canal lateral (en angles, side-channel attacks) es basen en atacar un
criptosistema a través d’informacié extreta d’'una implementacio fisica.

Hi ha diferents classes d’atacs de canal lateral, depenent de la informacié que s’extreu de la
implementacié per a realitzar I’atac. Aixi, els atacs de sincronitzacié (en angles, timing attacks)
analitzen el temps que es tarda en realitzar diferents calculs; els atacs de monitoreig d’energia
estudien el consum energetic que té el dispositiu durant 1’operacio; el atacs electromagnetics
mesuren les fugues de radiacid electromagnetica; els atacs acustics tenen en compte el so que es
produeix al realitzar els calculs, etc.”

Més enlla dels atacs als algorismes i a les implementacions dels criptosistemes, els sistemes
d’informacié en general s6n susceptibles també de patir atacs d’enginyeria social.

Els atacs d’enginyeria social es basen en manipular als usuaris d’un sistema per
tal d’obtenir informacié que ens permeti trencar-ne la seguretat.

Aixi, els atacs d’enginyeria social es realitzen interactuant amb els usuaris, i sovint inclouen
I’engany d’aquests per tal d’obtenir dades confidencials. Per exemple, un atacant pot intentar trucar
a un usuari, fent-se passar per un teécnic informatic i sol-licitant la clau de xifratge per tal de realitzar,
suposadament, alguna comprovacid. Evidentment, la criptografia poc té a fer amb aquests tipus
d’atacs 1, per aquest motiu, sén dels més estesos i dels més perillosos.

Una mica d’historia

Es diu que la historia de la criptologia® comenca I’any 1900 abans de Crist, amb uns escrits realitzats
a la tomba de Khnumhotep II, un monarca de I’ Alt Egipte. Als escrits trobats a la tomba s’hi troben
alguns jeroglifics inusuals, que 1’escriba va escriure enlloc d’altres més comuns, suposadament amb
I’objectiu de dignificar el text. Tot i que en aquest cas no hi havia intencié d’ocultar el missatge, els
escrits suposen el primer cas en la historia on hi havia una tranformacié deliverada del text que

ZPer a un exemple concret d’atac de monitoreig d’energia al criptosistema RSA podeu consultar el Capitol 7 del llibre
Understanding cryptography, de C. Paar i J. Pelzl.
3Una lectura recomanada per aprofundir en la historia de la criptologia és el llibre The codebreakers, de David Khan.
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s’escrivia.

També a I’ Antic Egipte apareixen els primers escrits amb la intencid, ara si, d’ocultar el missatge
escrit. Es creu que I’objectiu era dotar el textos de cert aire de misteri i magia, de manera que
cridessin ’atenci6 del lector i que aquest s’entretingués desxifrant-los, com si fos un joc o un
puzzle.

Uns quants segles després, 1’ts de la criptografia va prendre un altre rumb i va comencar-se a fer
servir per ocultar missages amb contingut critic en temps de guerra. Els espartans, poténcia militar
de I’antiga Grecia, van comengar a fer servir, d’una banda, sistemes esteganografics i, d’altra banda,
van inventar la primera Xifra de transposicié coneguda, 1’escitala.

Pel que fa a ’esteganografia,* els primers usos que se’n coneixen daten de 1’any 440 a.C.: Histiaeus
va rapar el cap d’un dels seus servents per tatuar-hi un missatge, deixant que el cabell del servent
tornés a créixer abans d’enviar-lo a Aristagoras, el receptor del misatge. Aixi, si I’esclau era capturat
per ’enemic durant el viatge, el fet que I’esclau transportava un missatge romandria ocult. També
en aquella eépoca, Demaratus va enviar un missatge escrit en un parell de tabletes de cera, marcant
el missatge a la fusta que quedava sota la cera i cobrint les tauletes de nou de cera. Aixi, si les
tauletes eren interceptades, una revisio superficial de les mateixes no revel-laria que incorporaven
un missatge ocult.

Pel que fa a la criptografia, els espartans sén coneguts també per la utilitzacié del primer sistema de
criptografia militar, I’escitala, que descriurem posteriorment en 1’apartat de xifres de transposicio.
Es creu que ’escitala va ser el primer aparell utilitzat per la criptografia. Thucydides, un historiador
grec, recull I'ds d’aquest aparell per a xifrar un missatge dels efors (uns magistrats de I’antiga
Grecia) al general esparta Pausanius.

El primer ds conegut d’un criptosistema de substitucio és atribuit als romans i, en concret, a Juli
Cesar, que el feia servir per escriure a Cicer6 1 d’altres amics. En els segiients apartats descriurem
també en detall aquesta xifra, aixi com les seves febleses.

Els primers textos on es parla de criptoanalisi sén atribuits als arabs. Al-Kindi, filosof i matematic
arab del segle IX d.C., va descriure com utilitzar el fet que la freqiieéncia d’aparicié de les lletres de
I’alfabet en un idioma determinat no és uniforme per trencar criptosistemes.

Ja al segle XIV, I'italia Leon Battista Alberti, va ser el primer occidental en documentar técniques
de criptoanalisi i va crear el primer xifrat de substitucié polialfabetic, la xifra d’ Alberti.

Uns quants segles després, al 1883, Auguste Kerckhoffs, criptograf d’origen holandés, va publicar
un llibre sobre criptografia militar, on donava consells practics per al disseny de criptosistemes.
Un d’aquests consells afirmava que un criptosistema havia de ser segur encara que I’atacant en
conegués tots els detalls, a excepcid de la clau feta servir per a xifrar. Aquest consell va rebre
una amplia acceptacid i va acabant-se convertint en el principi Kerckhoffs, principi el qual la gran
majoria de criptografs actuals respecten i segueixen.

L’any 1948 el matematic nordamerica Claude Elwood Shannon va crear els fonaments de la teoria
de la informaci6. L’any segiient, al 1949, ell mateix va publicar I’article Communication Theory of
Secrecy Systems, que assentava les bases de la criptografia com a ciéncia i inaugurava la criptografia
moderna. Entre moltes altres contribucions, Shannon va definir els conceptes de secret perfecte, va
demostrar que la xifra de Vernam podia oferir aquest tipus de secret i va introduir el concepte de

4L esteganografia és la prictica que amaga un missatge dins d’un altre missatge, amb la intencié d’ocultar el primer.
Aixi, per exemple, hom pot intentar amagar un missatge de text en una imatge, fent servir els bits menys significatius de
cada pixel per tal de modificar al minim la visualitzacié de la imatge.
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redundancia.

CRIPTOLOGIA

Fites clau en la historia de la criptologia

Demaratus
(Esparta)
Primers textos V a'c' O
esteganografics. Tauletes
de cera i missatges en Thucydides
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transposicio, l'escitala
. Origen de la
Juli Cesar criptografia militar
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Vernam
(EUA)
Re-invencio del OTP, 1917 (@)

l'unica xifra que ofereix
secret perfecte. Primeres
xifres de flux.

Claude Shannon
(EUA)

O 1 949 Naixement de la

criptografia moderna

Figura 1.2: Linia de temps amb le fites clau de la criptologia pre-moderna.

A continuaci6 descriurem els dos tipus de criptosistemes utilitzats en la criptografia historia, les
xifres de transposicié i les xifres de substitucid, i en presentarem alguns exemples concrets.

1.2.1 Xifres de transposicio

Les xifres de transposicié es basen en canviar 1’ordre dels caracters del text en
clar d’entrada per tal de generar el text xifrat.

Es a dir, les xifres de transposici6 reordenen el text d’entrada, de manera que el text en clar és una
permutaci6 dels caracters del text xifrat.
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Escitala

Els espartans (al segle V a.C.) feien servir un criptosistema de transposicié conegut pel nom
d’escitala. La clau de xifrat era un pal o bast6 d’un determinat gruix.

Per a xifrar, s’enrotllava una tira de papir al voltant del basté i s’escrivia el missatge en sentit
longitudinal, és a dir, seguint la direccié del propi basté. Després, es desenrotllava la tira de papir,
obtenint el missatge xifrat que podia ser enviat al receptor. Per tant, el gruix del basté representava
la clau compartida.

Al rebre la tira de papir, el receptor, que també disposava d’un basté del mateix gruix que el de
I’emissor, procedia a enrotllar la tira al voltant del basté i podia aix{ llegir el missatge original
enviat.

La tira de papir, per si sola, era dificil de llegir, ja que contenia les mateixes lletres que el missatge
en clar pero desordenades per I’efecte de desenrotllar el papir. A més, si no es disposava d’un bastéd
del gruix adequat, el resultat d’enrotllar el papir al basté no revel-lava el missatge original.

Exemple 1.1 Exemple de xifra amb escitala

Xifrem el missatge THESEARESPARTASWALLS fent servir una escitala. Suposem que el gruix del
basto utilitzat com a clau permet escriure quatre linies de text i que la longitud del basté limita
cada linia a cinc caracters. Aleshores, el missatge quedaria escrit en quatre linies que serien:

THESE
ARESP
ARTAS
WALLS

Al desenrotllar el papir del bastd, el missatge que quedaria escrit en la tira de papir (i que
correspondria al missatge xifrat) seria: TAAWHRRAEETLSSALEPSS.

Noteu com, efectivament, les lletres del missatge en clar han quedat desordenades, ocultant aix{
el missatge original.

Exercici 1.1 Xifreu el missatge THESEARESPARTASWALLS fent servir una escitala amb un gruix
de basté que permeti escriure cinc linies de text i una longitud que permeti escriure quatre
caracters per linia.
1.2.2 Xifres de substitucié
En contraposici6 a les xifres de transposicio, les xifres de substitucié no desordenen el text en clar
per tal de xifrar, siné que substitueixen les lletres del text en clar per altres simbols. Depenent de

la tecnica utilitzada per realitzar les substitucions, distingirem entre xifres de substitucié simple,
polialfabetica i homofonica.

Substitucié simple

La xifra de substitucié simple és un dels metodes més senzills per a Xifrar text.
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La xifra de substituci6é simple consisteix a substituir cada lletra individual del
missatge en clar per una altra lletra.

La clau feta servir per xifrar és, aleshores, una taula que indica per cada lletra de 1’alfabet d’entrada,
quina és la seva corresponent lletra de 1’alfabet xifrat.

El procediment a realitzar per xifrar consisteix a buscar cada lletra del text en clar a la taula
utilitzada com a clau i substituir-la per la lletra indicada. Per a desxifrar, se segueix el mateix
procediment, fent servir ara la taula en sentit invers.

La mida de I’espai de claus (és a dir, el nimero de possibles taules que podem crear indicant
correspondencies entre lletres) ve donada per les mides dels alfabets en clar i xifrat. Aixi, per
exemple, si fem servir un alfabet de 26 caracters tant per al text en clar com per al text xifrat, ’espai
de claus té una mida de:

|| =26-25-24....-1 =26

ja que, per al primer caracter de I’alfabet en clar, podem triar 26 possibles lletres xifrades; per al
segon caracter, en podrem triar 25 (les 26 disponibles excepte la que ja hem triat per al primer
caracter); etc.

L’espai de claus de les xifres de substitucié simple pot semblar prou gran per oferir un nivell de
seguretat adequat. Tot i aixi, aquestes xifres sén en realitat molt facils de trencar, en part perque
preserven la freqiiencia d’aparici6 de les lletres. En efecte, si una determinada lletra del text en clar
x queda xifrada sempre per una lletra de 1’alfabet xifrat y, la freqiiencia d’aparicié de la lletra y en
el text xifrat sera exactament la mateixa que la freqiiencia d’aparici6 d’x en el text en clar. Ates que
les freqiieéncies d’aparici6 de les lletres en els textos escrits presenten marcades diferéncies, quan
els textos tenen certa longitud és facil identificar algunes lletres del text xifrat i acabar desxifrant el
missatge sense conéixer la clau feta servir per xifrar.

La Figura 1.3 mostra les freqiiencies d’aparicié mitjanes de les lletres de 1’alfabet en textos escrits
en catala:

Es diu que Juli Cesar va fer servir una variant de la xifra de substitucié simple per escriure a
Cicerd i d’altres amics. La variant que feia servir Cesar xifrava cada lletra de 1’alfabet en clar
per la lletra que es troba tres posicions després en 1’alfabet. Aixi, César feia servir les segiients

correspondencies:
A—D
B—E
C—F
D—G
E—H
X—=A
Y —B
Z—C

Una generalitzacié immediata de I’esquema que feia servir Cesar resulta de xifrar cada lletra per la
que es troba k posicions després en I’alfabet, on k pot ser qualsevol valor en [0,25] (en comptes de
fixar k = 3).> Aquesta generalitzacié és el que es coneix habitualment com a xifra de César.

SEl nebot de César, Augustus, feia servir una variant de la xifra de César amb k = 1.
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Percentatge d'aparicié

0
ABCCDEFGHI JKLMNOPQRSTUVWXY2Z
Lletra

Figura 1.3: Freqiiencies d’aparici6 de les lletres en catala.

Si assignem a cada lletra de I’alfabet una representacié numerica, on la A és representada pel 0, la
B per I'1, etc., aleshores podem definir formalment la funci6 de xifrat de cada lletra del missatge
com a:

E(x)=x+k mod26

on k és la clau secreta que comparteixen 1’emissor i el receptor.

Simetricament, la funci6 de desxifrat €és:

D(y)=y—k mod?26

Exemple 1.2 Exemple de xifra de César

Volem xifrar el missatge m = THEDIEISCAST fent servir la xifra de César original, amb k = 3.
Procedim doncs a substituir cada lletra del missatge en clar per la lletra que es troba tres posicions
després a I’alfabet, obtenint el missatge xifrat:

¢ = WKHGLHLVFDVW

Si volem fer servir la formulacié matematica, convertirem primer el missatge m en una seqiiencia
d’enters:
m =197 438481820 18 19

Sumarem k = 3 a cada valor, reduint el resultat modul 26 (noteu que en aquest cas concret, no
cal reduir cap valor ja que tots son inferiors a 26):

c=221076 11 7 11 21 5 3 21 22
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i finalment convertirem la seqiiéncia xifrada a cadena de caracters, obtenint el text xifrat c:

¢ = WKHGLHLVFDVW

Exercici 1.2 Desxifreu el missatge XADKTIWTCPBTDUWDCDGBDGTIWPCXUTPGSTPIW sabent que
ha estat xifrat amb una xifra de César amb k = 15.

Tant la xifra de substitucié simple com la xifra de César son xifres de substitucié monoalfabetiques:

Les xifres de substitucié monoalfabétiques es caracteritzen per fer servir una
substituci6 de caracters fixa, on una mateixa lletra del text en clar sempre corres-
pondra a la mateixa lletra del text xifrat, independentment de la posicié que ocupi
la lletra en el text en clar.

Substitucié polialfabética

Les xifres de substituci6 polialfabetiques van aparéixer bastants anys després que les xifres monoal-
fabetiques. Es creu que la primera xifra polialfabetica va ser creada per Leon Battista Alberti, sobre
I’any 1467. De totes maneres, alguns historiadors argiieixen que les xifres polialfabetiques van ser
ideades per Al Kindi molt abans (sobre I’any 800). La variant més popular de la xifra polialfabetica
és atribuida a Blaise de Vigenere (tot i que ell no en va ser I’inventor) i es coneguda com a xifra de
Vigenere.

Les xifres de substitucié polialfabetiques es caracteritzen per fer servir multiples
alfabets de substitucid, fent que una mateixa lletra del text en clar pugui quedar
xifrada amb diferents lletres, depenent de la posicié que aquesta ocupi en el text en
clar.

La xifra de Vigenere ¢s una xifra de substitucié polialfabetica periodica, on es combinen diferents
xifres de Cesar. El periode n ve determinat per la mida (en caracters) de la clau de xifrat de
Vigenere, i cada lletra individual de la clau es fa servir com a clau d’una xifra de Cesar. Aixi, per a
un missatge m = my,my,--- ,my, una clau k = ky, ko, - -- , k, i un alfabet de 26 caracters, la funcié
de xifrat és:

E(ml) =m; +ki moa » mod 26

De manera similar, la funcié de desxifrat és:

D(Ci) =Ci— ki mod n mod 26
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Exemple 1.3 Exemple de xifra de Vigenére

Suposem que volem xifrar el missatge

m = VIGENERECIPHERWASCREATEDBYGIOVANBATTISTA

amb la clau:

k = ENEGIV

Procedim a convertir tant el missatge com la clau a la seva representacié numerica, i a calcular la
representacié numerica de la lletra xifrada corresponent a cada lletra en clar (sumant els valors
modul 26). Finalment, convertim la seqii€éncia numerica a caracters i obtenim el missatge xifrat:

D <
o0 -
~Am o Q

A
> Z

aQ ~m

N
13

N < s~ m

= w

N~ m
% Z &

IO s I Sl e

~ T

N <«

Am &~

R

W
22

S
18

OO =i

N« w0

a =

&~
> Z + o

N O
<
S

-
&

A M o
Q o
(]

(@)}
oo

10

— @

~

<
~ 3

Qo

N~ o Q

NQ oo~

AT o

O

— d o0

& m

> o & m

o H

Qo oQ <o p

> O

OO =i

& m
> Z

54 89

<
~ 3

25 12
M

m &
N

El missatge xifrat resultant és doncs:

I WD)

~ S
o =X

m &

I WD)

Qo Q@ o »

=5

1 W

¢ = ZVKKVZVRGOXCIEAGAXVREZMYFLKOWQEAFGBOMFXG

23

~
Qo 9 <

Exercici 1.3 Xifreu el missatge USINGASERIESOFINTERWOVENCAESARCIPHERS amb Vigenere,

fent servir com a clau KASISKI.

Amb les xifres polialfabetiques s’aconsegueix que una mateixa lletra del text en clar no sempre
quedi xifrada per la mateixa lletra, dificultant I’analisi de freqiiencies.

Un cas especialment interessant de xifra polialfabetica és la xifra de Vernam.

La xifra de Vernam és una xifra polialfabetica on el nimero d’alfabets que codifica
la clau és igual o major al nimero de caracters del text en clar a xifrar.
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Quan es fa servir adequadament, amb claus aleatories i d’un sol s, la xifra de Vernam ofereix
secret perfecte. De fet, la xifra de Vernam €s I’'tinica xifra coneguda, encara avui, que ofereix
aquesta propietat.5

La xifra de Vernam és coneix també, en angles, com a one-time pad. El nom prové dels primers
usos del xifrat, on les claus es distribuien als espies en llibretes de paper (a vegades de paper
altament imflamable), el que permetia fer servir la clau una vegada i destruir després el full de
paper que contenia aquella clau.

Substitucié homofonica

Una altra alternativa per tal d’evitar revel-lar les freqiiencies d’aparicié de les lletres en el text xifrat
és la que presenten les xifres homofoniques.

La xifra de substitucié homofonica permet substituir cada lletra del missatge en
clar per un conjunt de lletres de I’alfabet xifrat.

Aixi doncs, a diferéncia de les xifres de substitucié simple, on una lletra de I’alfabet en clar
correspon a una Unica lletra de I’alfabet xifrat, en les xifres homofoniques una lletra del text en clar
pot correspondre a varies lletres de I’alfabet xifrat. Aix0 fa que 1’alfabet xifrat hagi de tenir més
caracters que 1’alfabet en clar.

Per tal d’aconseguir amagar les freqiiencies d’aparicié de les lletres, el que fan les xifres de
substitucié homofoniques és assignar més alternatives de xifrat a les lletres de 1’alfabet en clar
que apareixen més sovint, de manera que les freqiiencies d’aparicié de les lletres en el text xifrat
s’assemblin el maxim possible.

Exemple 1.4 Exemple de xifra homofonica

Suposem que volem xifrar el missatge THEBEALEPAPERS fent servir subsitucié homofonica amb
la segiient clau:

ABCDEFGHTIJKLMNOPQR STUVWXYZ
j BNP s TiS qlehDWRTfEdwyOMaIXtZ
g Qz u H U p k L m A K x r v
J o C c V I'Y F b n

G

i tenint en compte que si disposem de més d’una alternativa per a xifrar una lletra, seleccionarem
aleatoriament la lletra a xifrar d’entre les alternatives.

Noteu que, en aquest cas, I’alfabet del text en clar esta format per 26 caracters (les lletres de la A
a la Z en majudscula, sense incloure la C), mentre que 1’alfabet xifrat disposa de 52 caracters (les
lletres tant en majiscula com en minudscula).

6Secret perfecte: Claude Shannon va definir les mesures amb les quals s’avalua el nivell de secret que ofereix
una determinada xifra. Informalment, diem que un criptosistema ofereix secret perfecte si el text xifrat no ofereix cap
informaci6 sobre el text en clar.
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Aixi, un possible text xifrat seria yHCBs jpGfgfzdw, que correspondria a seleccionar la lletra y
d’entre les tres alternatives per a xifrar T (y, x i n); la lletra H d’entre les tres alternatives per a
xifrar H (S, H1i c); etc.

Per a desxifrar seguiriem el procés invers, buscant les lletres de 1’alfabet xifrat a la taula i
extraient-ne la corresponent lletra en clar. En aquest cas, el desxifrat és tinic. Es a dir, per a un
mateix text en clar, podem generar diferents textos xifrats. En canvi, per a un text xifrat, només
hi haura un Unic text en clar.

Exercici 1.4 Genereu 5 textos xifrats diferents corresponent al missatge THEBEALEPAPERS fent
servir la xifra de substitucié homofonica amb la segiient clau:

B C G J K P Q XY Z
B N i l e f E Xt Z

= |
o o
~ OIZ
=<8 A O

UV W
OM a
iF v

—0q —-| >
i eNs-llw)
QON »|M
o I wlx
< C e
o > ol X
o Rl
= S

Quina informaci6 en pot extreure un criptoanalista que tingui accés als 5 textos xifrats (i sapiga
que es tracta d’un xifrat homofonic)?

La xifra de Beale és una xifra homofonica que feia servir com a clau la declaracié d’independencia
dels Estats Units d’ America.

La historia diu que Thomas J. Beale va enterrar un tresor d’una expedici6é de miners que havien fet
fortuna a les mines de 1’oest llunya a la decada de 1820. El tresor, format per or, plata i joies, tindria
actualment un valor d’uns 43 milions de dolars. Beale va crear un conjunt de tres criptogrames que
descrivien, respectivament, la localitzacio, el contingut i els noms dels propietaris del tresor enterrat,
i va deixar una capsa de ferro amb els criptogrames a un taverner anomenat Robert Morriss. Beale
va desaparéixer, i el taverner va donar la capsa amb els criptogrames a un amic just abans de morir.
L’amic, del qual no se’n coneix el nom, va aconseguir desxifrar el segon dels criptogrames fent
servir un criptosistema homofonic amb la declaracié d’independencia dels Estats Units d’ America
com a clau. Per desxifrar el criptograma, 1’amic va numerar cadascuna de les paraules de la
declaracio i va anar substituint cada ndmero del text xifrat per la lletra inicial de la paraula que es
trobava en la posicié descrita pel nimero.

Es diu que I’amic no va ser capag de trencar els altres dos criptogrames, motiu pel qual, I’any 1885,
decideix fer publica la historia i els criptogrames, amb I’esperanca que algu altre pogués trencar-los.
Des de llavors, hi ha hagut multiples intents sense exit de trencar els dos criptogrames restants.

De fet, les teories actuals apunten a que la historia és en realitat un engany. Els arguments principals
que en qiiestionen la seva veracitat sén que el text en clar del segon dels criptogrames fa servir
paraules que no existien quan suposadament es van crear els criptogrames i que les caracteristiques
estadistiques dels dos criptogrames restants no semblen coincidir amb les que s’esperaria d’un text
en angles.
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Resum

En aquest capitol hem presentat els conceptes basics relacionats amb la criptografia i hem descrit
les fites historiques clau pel que fa al seu desenvolupament, tot introduint els criptosistemes que es
van anar dissenyant durant 1’era de la criptografia precientifica.

Anomenem criptografia a la ciéncia que estudia I’escriptura de secrets. En canvi, la criptoanalisi
és la cieéncia que se centra en trencar les tecniques que desenvolupa la criptografia. Ambdues
ciencies treballen paral-lelament, de manera que els avengos d’una ajuden a avangar 1’altra. Fem
servir el mot general criptologia per englobar tant criptografia com criptoanalisi.

Podem agrupar les xifres historiques en dos grans grups segons la técnica que fan servir per xifrar:
les xifres de transposicio i les xifres de substitucio. Les xifres de transposicié modifiquen 1’ordre
dels caracters del text en clar per generar el text xifrat. En canvi, les xifres de substitucié canvien
els caracters del text en clar per altres caracters.
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Solucions dels exercicis

Exercici 1.1:
Tenint en compte les mides del bastd, procediriem a escriure el missatge longitudinalment:

THES
EARE
SPAR
TASW
ALLS

El missatge xifrat resultant seria, per tant: TESTAHAPALERASLSERWS.
Exercici 1.2:

En primer lloc convertim les lletres del missatge en la seva representacié numerica:

2303101982219 215119320223236136 198 22 15 2
23 20 19 15 6 18 19 15 8 22

Seguidament, calculem x — 15 mod 26 per cada valor x de la representacié numerica de les lletres:

81114214197 41301241457 14 13 14 17 12 14 17 4 19 7 0 13
854017340197

Finalment, recuperem el missatge en clar, convertint la seqiicncia numerica de nou a lletres:
ILOVETHENAMEOFHONORMORETHANIFEARDEATH

Exercici 1.3:

Convertim tant el missatge com la clau a la seva representacié numerica, i calculem el text en clar
sumant els dos valors modul 26:

USINGASERIESOFINTERWOVENCAESARCIPHERS
2018 8 136 0184 178 4 18145 8 13194 172214214132 0 4180172 8157 41718
KASITSKIKASITSKIKASISKIKASISKIKASISKIKA
100 18 8 1810 8 10 0 18 8 1810 8 10 0 18 8 1810 8 10018 8 1810 8 10 0 18 8 1810 8 10 0
41802124100 1417 0 12102413181311129 6225 4 5101814 0 10172016 7 1712 1 18
ESAVYKAORAMKYNSNLMIJIGWFEFKSOAKRUQHRMB S

El text xifrat resultant és doncs ESAVYKAORAMKYNSNLMJGWFEFKSOAKRUQHRMBS.
Exercici 1.4:
Cinc possibles textos xifrats son:

* nHCBsJpsf j£GdK
* xHGBsJpC£JfCAD
* ycCBsjpzfgfsAw
* nczBzgpCfgfzFK
* xHsBCjpsfJfsFb

https://www.criptografia.cat v0.2.1 04/02/2026


https://criptografia.cat

1.4 Solucions dels exercicis 29

Noteu que la solucié no és unica. A primer cop d’ull, un criptoanalista pot deduir que, amb
probabilitat molt alta, les lletres xifrades B, p i £ corresponen a lletres del text en pla que només

tenen una Unica lletra xifrada assignada.
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2. Fohaments matematics

La criptografia és una disciplina amb un fort contingut matematic per diferents motius. Per una
banda, la matematica permet mesurar de forma precisa la quantitat d’informacié que conté un
missatge i, per tant, també pot mesurar si quan el xifrem la quantitat d’informaci6 que revela és
menor o no en revela cap, de manera que ens déna una mesura de la qualitat del sistema de xifrat
que estem utilitzant. D’altra banda, I’explicitacié de les funcions de xifrat i desxifrat de les quals
hem parlat en I’anterior capitol sovint es realitza utilitzant funcions i expressions matematiques.
Per aquest motiu, tenir uns bons coneixements de matematiques és fonamental per poder entedre el
correcte funcionament de la criptografia.

En aquest capitol es proporcionen conceptes basics d’aritmetica modular aixi com algunes propietats
dels nombres primers, necessaris en els criptosistemes de clau publica. D’altra banda, tal i com
veurem al llarg d’aquest llibre, els criptosistemes de clau publica, aixi com algunes funcions que
s’utilitzen en diferents protocols criptografics, basen la seva seguretat en problemes matematics
dificils de resoldre. Es per aixd que per entendre el grau de seguretat d’aquests sistemes és important
comprendre quins son els problemes matematics que hi ha al darrere i quina dificultat té la seva
resolucié. En aquest capitol s’enuncien els problemes matematics més utilitzats en criptografia i
se’n discuteix la seva complexitat.

Per dltim, és important destacar que aquest capitol no pretén en cap cas proporcionar explicacions i
demostracions formals dels conceptes matematics i menys encara presentar-ne una visié complerta.
L’objectiu d’aquest capitol és dotar al lector de les eines necessaries per a entendre els criptosistemes
i protocols que es descriuran al llarg del llibre. Per a aquells lectors que vulguin aprofundir en les
nocions matematiques que es presenten en aquest capitol es recomana la lectura de les referencies
bibliografiques que s’indiquen al llarg del text.

https://www.criptografia.cat v0.2.1 04/02/2026


https://criptografia.cat

2.1

2.1.1

32 Capitol 2. Fonaments matematics

Aritmética modular

Normalment, en la nostra activitat quotidiana treballem amb els nombres reals amb els quals sabem
realitzar tot un seguit de calculs com ara sumes, restes, divisions, multiplicacions, exponenciacions,
arrels quadrades, etc. Ara bé, una de les caracteristiques dels nombres reals és que n’hi ha infinits, de
manera que la seva representacié en un ordinador és impossible. Una possibilitat de resoldre aquest
problema és utilitzant conjunts que tinguin un nombre finit d’elements, podent-los representar tots
sense cap problema.

Laritmetica modular és una part de la matematica que permet definir tant aquest tipus de conjunts
amb un nombre finit d’elements com també les operacions que permeten operar amb els elements
d’aquest conjunt, assegurant que 1’operacié de dos elements del conjunt continuara proporcionant
un altre element del conjunt.

Estructures algebraiques: grups, anells i cossos

Des d’un punt de vista informal, podem definir una estructura algebraica com un conjunt d’elements
i unes operacions associades que permeten operar amb els elements del conjunt. Depenent de les
operacions que definim sobre el conjunt, quantes en definim i quines propietats tinguin, podem
classificar I’estructura algebraica en diferents tipus, els més coneguts dels quals sén els grups, els
anells i els cossos.!

Per exemple, si prenem el conjunt dels nombres enters, que es representen per la lletra Z, el qual
té infinits elements Z = {...,—3,-2,—1,0,1,2,3,...} i hi definim I’operacié suma tal i com la
coneixem, I’estructura algebraica resultant, que podem denotar per (Z, +), és un grup. Aixo és aix{
donada la segiient definici6.

Definicié 2.1  Un grup és una estructura algebraica en queé I’operaci6 definida compleix la
propietat associativa i, a més, el conjunt sobre el qual esta definida I’operaci6 conté 1’element
neutre i I’element invers d’aquesta operacid, que anomenarem invers additiu o oposat.

Per exemple, si prenem tres valors enters qualssevol, com ara el —3, el —1 i el 2, efectivament, veiem
que compleixen les propietats anteriors. Per la propietat associativa, tenim que ((—3)+(—1))+2=
(—=3)+ ((—1) +2). D’altra banda, I’element neutre de la suma (aquell que sumat amb qualsevol
valor déna ell mateix) pertany als enters, ja que com sabem el neutre de la suma és el 0. L’element
invers respecte la suma (aquell que sumat amb un element déna el neutre de la suma) és el mateix
valor canviat de signe, que també pertany al conjunt de nombres enters. Evidentment, aquest
exemple concret no és cap demostracié que (Z,+) és un grup perd ens déna una exemplificaci6
dels conceptes de propietat associativa, element neutre i element invers.

D’altra banda, també podem assegurar que I’estructura algebraica dels nombres naturals amb la
suma, (N, +) no és un grup ja que si bé la suma sobre els naturals si que té la propietat associativa
i I’element neutre és el 0, que si que pertany als naturals, I’element invers per la suma de cada
element d’N no pertany a aquest conjunt, ja que els naturals només comprenen nombres positius (i
el 0) i els inversos per la suma d’aquests valors sén nombres negatius.

Una altra propietat interessant de les estructures algebraiques és la commutativitat. Un grup

Malgrat que les operacions que es poden definir en una estructura algebraica poden ser tan complicades com es
vulguin, a llarg d’aquest text ens restringirem a les dues operacions habituals de suma, +, i producte, -, tal i com les
coneixem habitualment.
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s’anomena commutatiu si I’operacié que hi ha definida és commutativa, és a dir, donats dos
elements del conjunt a i b es compleix que a+b = b +a.

De la mateixa manera que hem definit una estructura algebraica amb una operacié, en podem
definir d’altres amb dues operacions diferents. Per exemple, la segiient estructura algebraica esta
formada pels nombres reals amb les operacions de suma i producte: (R,+,-). En aquest cas,
podem caracteritzar-les en funci6 de les propietats que presentin cada una de les operacions, fet
que proporciona la definici6 d’anell i de cos.

Definicié 2.2  Un anell és una estructura algebraica amb dues operacions on una d’elles
presenta estructura de grup commutatiu, 1’altra operacié compleix la propietat associativa i, a
més, ambdues propietats compleixen la distributivitat d’una respecte 1’altra.

Exemple 2.1

Lestructura algebraica (Z,+,-) és un anell ja que com hem comentat anteriorment (Z,+) és un
grup, a més és commutatiu i es compleix la propietat distributiva de la suma respecte el producte,
és adir’, Va,b,c € Z,a-(b+c) = (a-b)+ (a-c).

“Recordeu que el simbol V es llegeix com "per a qualsevol element".

Dels elements d’una estructura algebraica n’hi ha alguns d’especialment rellevants, com ara
I’element neutre de cada una de les operacions. S6n aquells que operats amb qualsevol element del
grup no n’afecten el seu resultat (és a dir, el O per a la sumai 'l per al producte). Com hem vist,
en la definicié de grup s’exigia que I’element neutre de la suma estigués contingut en el conjunt
d’elements. Ara bé, en un anell no s’ha indicat cap condici6 sobre I’existencia o no del neutre del
producte. Per tant, podem enunciar la segiient definicio:

Definicié 2.3  Un anell amb unitat és un anell que conté el neutre respecte el producte.

Exemple 2.2 (Z,+,-) és un anell amb unitat ja que 1 € Z i 1 és el neutre del producte,
perque compleix que Va € Z,a-1=1-a=a.

L’element unitat en un anell és important perque ens permet definir el concepte d’element invers.

Definicié 2.4 Donat un anell amb unitat, direm que un element a és invertible si existeix un
altre element b talque a-b =b-a =1, on 1 és I’element unitat.

Amb la definicié d’element invertible, ja podem definir I’estructura algebraica més important que
hi ha, el cos.

Definicié 2.5 Una estructura algebraica és un cos, quan aquesta és un anell amb unitat on
qualsevol element, llevat de I’element neutre de la suma, és invertible.

Notacié 2.1. Utilitzarem [’asterisc per denotar el subconjunt d’elements invertibles. Per exemple,
Z* ={1,—1} ja que son els iinics elements que tenen invers. D’altra banda, R* = R\ {0} ja que
tots els reals llevat del zero son invertibles.

Aixi, I'anell (Z,+,-) tot i ser un anell amb unitat no és un cos perque no tots els elements tenen
invers. Per exemple, I’invers de 2 és %, i aquesta fracci6 no pertany als Z. De fet, els tnics elements
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que tenen inversos en Z sén I’'1 i el —1. D’altra banda, els nombres reals amb la suma i el producte
(R,+,-) si que sén un cos perque tots els elements, llevat del 0, tenen invers en els R.

Divisibilitat als enters

Com acabem de veure, els enters amb la suma i el producte sén un anell, perd no tenen estructura de
cos perque no tots els elements tenen invers respecte el producte. Aquest fet fa que quan calculem
una divisié entre dos nombres enters el resultat no sempre sigui un nombre enter. Ara bé, el que si
que podem fer és caracteritzar els elements de 1’equacié resultant d’una divisié entera. Aquesta
caracteritzacié la proporciona el segiient teorema.”

Teorema 2.1 Donats dos elements a,b € Z qualssevol (amb b # 0), 3 ¢, r € Z tnics, tals que
a=b-g+r,on 0<r<|b|

El que ens indica aquest teorema és que si dividim 1’element a per un element b tenim com a
resultat un quocient, ¢, i un residu, r. A més, com ja sabem, el residu sempre sera més petit que
b ja que si no ho fos podriem continuar dividint i tindriem un quocient g+ 1, i aixo ho podriem
realitzar de forma repetida fins que el residu sigui més petit que b.

Una vegada caracteritzats els elements de la divisi6 entera, podem definir el concepte de divisibilitat
als enters.

Definici6é 2.6 Donats a,b € Z, diem que b divideix a siinomés si g € Z tal que a = b - q. Ho
denotarem per b|a.

Un dels entrebancs que sovint hi ha amb el concepte de divisibilitat és la multiplicitat de definicions
que en s6n equivalents. Aixi, que I’element b divideixi a I’element a és equivalent a dir qualsevol
de les segiients expressions:

e b ésfactord’a

e b és divisor d’a

* a és divisible per b
* g és mdltiple de b

La noci6 de divisibilitat és important perque ens permet definir altres eines com ara el maxim comu
divisor o caracteritzar alguns nombres, com ara els nombres primers.

Definicié 2.7 Donats dos elements a,b € Z direm que d és el maxim comu divisor d’a i de b si
d divideix tant a com b i donat qualsevol altre valor ¢ que també divideixi a i b, tenim que ¢ < d.
Denotarem el maxim comu divisor com ged(a,b) = d (de 1’angles, greatest common divisor).

Dels nostres estudis previs en matematiques molt probablement el calcul del maxim comu divisor
el sabem fer a partir de la descomposici6 dels nombres a i b en factors primers i prendre’n els
comuns amb els menors exponents. Es a dir, si volem calcular el gcd(16,28), com que sabem que
16 =2*.1i28 =2%-7-1 podem concloure que el gcd(16,28) = 2> = 4. Ara bé, aquest sistema per
calcular el maxim comd divisor no és gens eficient perque implica haver de factoritzar els nombres
pels quals volem calcular-ne el maxim comu divisor. L’ operaci6 de factoritzar, com veurem més
endavant en aquest mateix capitol, és un procés molt poc eficient computacionalment, per aixo

2Recordeu que el simbol 3 es llegeix com "Existeix".
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es fa servir I’ Algorisme d’Euclides que permet calcular el maxim comdu divisor de forma eficient,
independentment de la mida del nombres. L’ Algorisme d’Euclides es basa en el segiient teorema:

Teorema 2.2 — Teorema d’Euclides. Siguin a,b,q,r € Z tals que a = b - g + r aleshores
gcd(a,b) = ged(b,r).

Aquest teorema ens indica que podem calcular el maxim comu divisor de dos valors, a i b, calculant
el maxim comdu divisor de dos valors diferents, b i r, els quals sén tots dos més petits que els
anteriors, b < air < b. Aixi, calcular el maxim comu divisor consistira en fer un calcul recursiu
en el que es van dividint els nombres entre ells fins arribar a la condici6 final, que es concreta en el
fet que ged(x,0) = x,Vx € Z.

Exemple 2.3 Calcul de maxim comi divisor utilitzant I’Algorisme d’Euclides

Si volem calcular el maxim comu divisor de 2756 i 2621 podem realitzar les segiients divisions
successives:

2756 =2621-1+4135
2621 =135-19456

135=56-2+23
56=23-24+10
23=10-2+3
10=3-3+1
3=1-340

D’aquestes divisions i en base al Teorema d’Euclides tenim que:
gcd(2756,2621) = ged(2621,135) = ged(135,56) = ged(56,23) = ged(23,10) = ged(10,3) =
gcd(3, 1) Per tant, com que I’dltim residu no nul és el 1, tenim que gcd(2756,2621) =1

I Exercici 2.1 Calcula el maxim coma divisor de 35 i 48.

Una vegada definit el maxim comdu divisor de dos nombres, podem donar la definicié de nombres
coprimers.

Definici6 2.8 Dos elements a i b s’anomenen coprimers quan el ged(a,b) = 1.

Un altre teorema important que ens servira més endavant per a calcular inversos modulars, és la
Identitat de Bézout, que permet expressar el maxim comdu divisor de dos elements com a combinaci6
lineal dels mateixos.

Teorema 2.3 — Identitat de Bézout. Siguin a,b € Z tals que ged(a,b) = d. Aleshores,
existeixen uns tnics valors A, i € Z tals que Aa+ ub =d.

Tot i que la Identitat de Bézout només ens indica 1’existéncia d’aquests dos valors, podem utilitzar
el calcul del maxim comi divisor amb 1’ Algorisme d’Euclides per calcular-ne exactament els valors
A iU, tal i com es mostra en el segiient exemple.
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Exemple 2.4 Calcul dels coeficients de la Identitat de Bézout

El calcul dels coeficients de la Identitat de Bézout es pot realitzar utilitzant la descomposicio
que en resulta de 1’ Algorisme d’Euclides. Aixi, si volem calcular el coeficients de la Identitat
de Bézout per als valors 2756 i 2621, primer farem el calcul de les divisions successives de
I’ Algorisme d’Euclides:

2756 =2621-14135
2621 =135-19+ 56

135=56-2+23
56=23-2410
23=10-243
10=3-3+1

Posteriorment, en cada equacié n’aillarem el residu:
2756 — (2621-1) = 135

2621 —(135-19) =56

135—(56-2) =23

56—(23-2)=10

23—-(10-2)=3

10—(3-3)=1

i finalment substituirem en cada equacié el valor corresponent per acabar obtenint-ne una sola
amb els valors 2756 1 2621:

1=10—(3-3)=10—((23—(10-2))-3) = (10-7) — (23-3) = ((56 — (23-2)) - 7) — (23 -
(56-7)—(23-17) = (56-7) — ((135—(56-2)) - 17) = (56-41) — (135-17) = ((2621 —
19))-41 —(135-17) = (2621 -41) — (135-769) = (2621 -41) — ((2756 — (2621 -1)) -
(2621-837) — (2756 -796)

Aix{, tenim que

1 =2621-837+2756-(—796)

i per tant els coeficients de la Identitat de Bézout per a 2756 12621 sén —796 i 837 respectivament.

3)=
(135-
796) =

I Exercici 2.2 Calcula els coeficients de la indentitat de Bezout de 35 1 48.

Com ja hem indicat anteriorment, a més del maxim comu divisor, el concepte de divisibilitat també
ens permet definir els nombres primers.

Definicié 2.9 Direm que un nombre p € N, amb p > 1, és primer si només €s divisible per ell
mateix i per 1.

L’altim concepte relacionat amb la divisibilitat als enters que definirem és la funci6 fi d’Euler, la
qual, com veurem més endavant, és la base del funcionament de 1’algorisme de xifrat RSA.

Definicié 2.10 — Funci6 fi d’Euler. La funci6 fi d’Euler d’un valor natural n, ¢ (n), es defineix
com el cardinal del conjunt de nombres coprimers amb n més petits que 7. Es a dir:

¢(n) =#{a, 0<a<n, talque ged(a,n)=1}
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Exemple 2.5 Calcul de funcié fi d’Euler

Si volem calcular el valor de ¢(10) seguint la definicié d’aquesta funcid, ens caldra calcular tots
els nombres més petits que 10 que son coprimers amb 10, és a dir, que el ged(x, 10) = 1. Siels
calculem resultara que sén els segiients {1,3,7,9}, per tant, el valor de la funcié fi d’Euler sera
el nombre d’elements d’aquest conjunt, €s a dir 4.

¢9(10) =#{1,3,7,9} =4

Més enlla de calcular tots els elements coprimers amb 7 i comptar-los hi ha técniques més eficients
per calcular la funcié fi d’Euler. La més eficient que es coneix consisteix a descompondre el valor
n en factors primers. Un cop descompost el valor, s’utilitzen les segiients propietats:

* Si p és un nombre primer, ¢(p) = p — 1. Aix0 és facil de veure perque tots els elements més
petits que p seran coprimers amb p donat que no tenen cap factor en comd, justament pel fet
que p és primer.

» Sin=p-qtals que piq sén coprimers, aleshores ¢ (n) =

» Si n és una poténcia d’un primer, n = p*, aleshores ¢ (p¥)

o (p)-0(q).
=pt—pl=p1(p-1)

Com podem veure, malgrat que aquesta sigui la millor manera de calcular la funcié d’Euler, donat
que implica descompondre el valor en factors primers, no és una tasca computacionalment eficient
quan els valor del nombre és molt elevat.

I Exercici 2.3 Calcula quin és el valor de ¢(527).

Aritmeética modular amb enters

En el primer aparat d’aquest capitol hem vist quines sén les propietats que ha de tenir una estructura
algebraica per a ser un grup, un anell o un cos. Com ja hem comentat, els cossos sén estructures
algebraiques molt versatils gracies a les propietats que presenten les seves operacions. Els exemples
d’anells o cossos que hem vist en I’apartat anterior, i els que coneixem normalment, sén exemples
on el conjunt d’elements és un conjunt infinit. Aixi, el conjunt dels enters amb la suma i el producte
(Z,4,-) és un anell, pero els enters és un conjunt d’elements infinit. Igualment, el conjunt dels
reals amb la suma i el producte (R, +,-) és un cos, perd, de nou, els reals sén un conjunt infinit.
Per tant, ens podem preguntar si podem crear estructures algebraiques que siguin anells o cossos,
pero que tinguin un nombre finit d’elements. I la resposta a aquesta pregunta és afirmativa.

Definicié 2.11 Definirem el conjunt dels enters modul n, per a n > 2, i el denotarem per 7Z,,
com tots els nombres enters entre 0in— 1, és adir Z, ={0,1,--- ,n—1}.

Com és evident, els enters modul n és un conjunt finit, ja que conté exactament n elements. Per
tant, si aconseguim definir una operacié suma i una operacié producte que tinguin les propietats
que hem enumerat en anteriors apartats, aixo ens permetra construir anells i cossos amb un nombre
finit d’elements. Per definir tant la suma com el producte a Z, utilitzarem la definicié de suma
i producte d’enters que ja coneixem. Ara bé, caldra anar en compte perque és important que les
operacions siguin operacions internes, és a dir, quan operem dos elements d’un conjunt cal que el
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resultat sigui un element del mateix conjunt. Aixo amb els conjunts en els que estem acostumats
a treballar ja passa, perque si sumem (o multipliquem) dos elements enters en déna un enter i si
sumem (o multipliquem) dos nombres reals, el resultat també és un nombre real. Ara bé, si prenem
la suma tal i com la coneixem i considerem ara el conjunt Zs = {0, 1,2,3,4} veurem que cal anar
amb compte perque si fem la suma de dos elements de Zs, per exemple 4 + 4 el resultat és 8, que
no és un element del conjunt Zs. Per tal de resoldre aquest problema el que farem és pensar Z,
com una reduccid de tots els enters. Si tenim una manera per “reduir” qualsevol enter a un valor de
Z,, ja haurem aconseguit 1’objectiu, perque per una banda tenim definides la suma i el producte de
manera que el resultat és un enter, i amb I’eina de reduccid, podriem reduir el resultat de 1’operacié
a un element de 7Z,,.

Per obtenir aquesta funci6 de reducci6 de tots els enters a Z,, només ens cal recuperar el teorema de
divisi6 entera que hem vist anteriorment. Efectivament, si volem reduir un element enter a a un
enter entre 0 i n — 1 només cal fer la divisi6 entera de a entre n. Aquesta divisi6 tindra un residu
unic. A més, com que hem dividit per n, aquest residu sera un valor entre 0 i n — 1 que €s justament
el que ens interessa. També direm que reduim 1’element a modul n, i escriurem @ (mod n).

Si tornem ara a I’exemple dels enters modul 5, que recordem que és el conjunt format per Zs =
{0,1,2,3,4}, veiem que la suma que proposavem 4 + 4 donava com a resultat 8. Ara bé, si reduim
el 8 tal i com hem descrit anteriorment, tenim que la divisié entera de 8 entre 5 déna com a quocient
11 de residu 3. Per tant, podem concloure que el 8 equival a un 3 a Zs i que per tant, la suma que
tenfem ens queda 4 +4 = 8 = 3 a Zs. De la mateixa manera que hem pogut definir la suma, podem
fer el mateix amb el producte. Aixi 3 -4 =2 a Zs ja que si dividim 12 (que és el resultat de 3 per 4)
entre 5 tenim 2 de residu. 3

I Exercici 2.4 Quants elements té el conjunt Z,s?

Una vegada definit el conjunt dels enters modul 7 i les operacions de suma i producte dins d’aquest
conjunt, ja podem enunciar el segiient teorema:

Teorema 2.4 L’estructura algebraica (Z,,+,-) amb la suma i el producte tal i com els hem
definit anteriorment i per a qualsevol valor n > 2 és un anell commutatiu amb unitat.

D’aquesta manera, hem pogut definir un anell sobre un conjunt d’elements finits, com és el cas de
Z,. Per fer operacions de suma i producte a Z, ens caldra inicament operar de forma normal amb
els enters i un cop obtingut el resultat final reduir-lo al modul on treballem. A més, aquesta reduccid
al modul la podem fer al final dels calculs o en qualsevol moment, per exemple, per simplificar els
valors amb els que estem treballant.

Exemple 2.6 Calculs en anells modulars

Si volem saber el valor de I’expressié 5- (4 4 14) — 3-8 a Z;o podem fer el segiients calculs:
5-(4414)—3-8 (mod 10)

5-(18)—24 (mod 10)
90—24 (mod 10)

3Les equacions a Z,, s’anomenen equacions modulars. Per indicar I’equacié modular 4 +4 a Zs escriurem el segiient:
4+4=3 (mod 5).
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66 (mod 10)
6 (mod 10)

on I’dltim pas prové del fet que el residu de dividir 66 entre 10 és 6.

Fixeu-vos que una altra manera de realitzar el calcul és que en el primer pas, haguéssim reduit
tant el 18 com el 24 modul 10, aixo és hagués proporcionat I’expressio

5-(8) —4 (mod 10)

més facil de gestionar per la mida dels valors. Aquesta expressié també hagués proporcionat el
mateix resultat final, ja que

5-(8)—4 (mod 10) =40 —4 (mod 10) =36 (mod 10) =6 (mod 10)

Fixeu-vos que fins ara només ens hem referit a operar amb sumes, restes i multiplicacions. Aixo és
aixi perque, fins al moment, hem pogut assegurar que I’estructura algebraica que hem construit és
un anell. Perd en un anell no necessariament tots els elements tenen invers pel producte. Arribats a
aquest punt, ens podem preguntar si 1’estructura algebraica (Z,,+,), a més d’un anell és també un
COS.

Pel Teorema 2.4, (Z,,+,-) és un anell commutatiu amb unitat. P er veure si (Z,,+,-) és un cos,
atenent-nos a la definicié de cos que hem donat, només ens cal comprovar dos fets. El primer és
que aquest anell té unitat. I el segon, que tot element de 1’anell, llevat del neutre de la suma, és
invertible. La primera comprovacio €s trivial, ja que sabem que I’element 1, que és la unitat del
producte, sempre pertany a Z, (ja que hem dit que n > 2). Ara bé, la segona propietat no sempre és
certa, i dependra del tipus de valor n.

Teorema 2.5 L’estructura algebraica (Z,,+,-) és un cos si i només si el valor p és un nombre
primer.

Aquest teorema ens indica que, per exemple, I’estructura algebraica (Z;7,+,) és un cos perque
17 és un nombre primer. Per tant, qualsevol element a Z;7, que recordem que esta format pels
elements {0,1,2,3,4,--- 15,16}, té invers pel producte. El fet que qualsevol element tingui invers
és molt rellevant perque permet fer divisions amb elements d’aquest conjunt. En efecte, si volem
calcular % només hem de saber quan val I’invers de 3, és a dir 37! i multiplicar aquest valor per 2.

Inversos modulars

Com acabem de veure, I’tltim teorema de I’apartat anterior ens indica que I’estructura algebraica
(Zp,+,-) és un cos si p és primer. Per tant, sabem que per a qualsevol element de Z,, llevat del
zero, podem calcular-ne el seu valor invers. Vegem com fer-ho.

En primer lloc, és important recordar la definici6 d’element invers. Per exemple, si volem calcular
I’invers de 3 a Z;7 sabem que estem buscant un valor que multiplicat per 3 valgui 1 a Z17. A més,
com que sabem que Zj7 €s un cos sabem que I’invers de 3 ha de pertanyer a Z17, per tant ha de ser
un valor del conjunt {0,1,2,3,4,---,15,16}. Si multipliquem cada un d’aquests elements d’aquest
conjunt per 3, un dels productes ens donara 1. En efecte, si fem el producte 3 -6 = 18 veiem que el
resultat, reduit a modul 17, és 1. Aix{ doncs, I’invers de 3 modul 17 sera 6.

Evidentment, aquest sistema que acabem de descriure no és bo per calcular inversos modulars en
cas que el valor de p sigui molt gran, ja que ens requeriria fer molts productes. Una manera eficient
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de calcular inversos €s utilitzant la Identitat de Bézout.

Fixeu-vos que si volem calcular I'invers de x € Z, on p €s primer, com que x €s mé€s petit que
p i p és primer, tenim que ged(x, p) = 1, ja que si el maxim comd divisor d no fos 1, p no seria
primer perque es podria dividir per d. Ara bé, si gcd(x, p) = 1, per la Identitat de Bézout, sabem
que existeixen dos elements A i u tals que x- A + p- 1 = 1. Perd fixeu-vos que si aquesta equacié
I’expressem modularment a Z, ens quedax-A +p-u =1 (mod p) i si la reduim modularment
obtenim I’equacié equivalent x- 4 =1 (mod p) donat que p a Z, val 0 (ja que el residu de dividir
p entre p és 0). Per tant, el valor que multiplicat per x déna 1 modul p és justament A. Dit en altres
paraules, un dels coeficients de la Identitat de Bézout és el que ens proporciona I’invers modular.

Exemple 2.7 Calcul d’invers modular

Si volem calcular I’invers de 9 modul 11 calcularem els coeficients de la Identitat de Bézout tal i
com hem mostrat en exemples anteriors, utilitzant I’algorisme de les divisions successives:
11=9-1+2

9=2-4+1

De la segona equaci6 tenim 1 =9 — (2-4) i de la primera equacié 2 =11 —(9-1). Si les combinem
ensqueda: 1=9—(11—(9-1)-4)=9—(11-4)+(9-4) =5-9—11-4. Per tant, els coeficients de
la Identitat de Bézout de 91 11 s6n 5 i —4 respectivament ja que gcd(9,11) =1=5-9+11-(—4).
Per tant, si reduim aquesta equacié modul 11 ens queda 5-9 (mod 11) = 1, és a dir, I’invers de
9 modul 11 és 5. Aixo és facil de comprovar, perque 9 -5 = 45 i el residu de dividir 45 per 11 és,
efectivament, 1.

I Exercici 2.5 Troba I’invers de 7 a Z37

Exercici 2.6 Realitza els segiients calculs a Z37

¢ 20420
©20-4

° 202
20
7

I Exercici 2.7 Per que I’estructura algebraica (Z37,+,-) és un cos?

El Teorema d’Euler

L’ aritmetica modular conté innombrables resultats, que tot i ser molt interessants queden fora de
I’abast d’aquest llibre. En aquest apartat ens centrarem tnicament amb el Teorema d’Euler, que és
la pedra angular del funcionament de 1’algorisme de clau ptblica RSA.

Teorema 2.6 — Teorema d’Euler. Sigui n un nombre natural i ¢ (n) la seva funcié fi d’Euler.
Si ged(x,n) = 1, aleshores:
X =1 mod n

Aquest teorema ens indica que quan estem en un anell modular, qualsevol valor coprimer amb el
modul elevat a la funcié d’Euler del modul és igual a la identitat. La importancia d’aquest teorema
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en I’RSA és que permet demostrar, com veurem més endavant, que quan xifrem un missatge i
posteriorment el desxifrem, el resultat que obtenim és el text en clar original.

Una altra implicacié del Teorema d’Euclides és el segiient resultat que ens permet calcular inversos
modulars per mitja d’exponenciacions:

Proposicié 2.1  Sigui x € Z, tal que ged(x,n) = 1, I'invers d’x a Z, és x¢() =1,

Demostracio: La demostracié d’aquesta proposicié és immediata fent servir el Teorema
d’Buclides. Efectivament si multipliquem x per x?®~1 tenim x?(") que val 1 a Z,, pel Teorema
d’Euclides, cosa que prova que sén inversos. 1

Exemple 2.8 Calcul d’invers modular

Si volem calcular I’invers de 2 a Z;, com que gcd(2,11) = 1, podem calcular la funcié d’Euler
del modul ¢(11) = 10 i posteriorment calcular la segiient poténcia:

210-1—=22=512=6 (mod 11)

Per tant, I’invers de 2 modul 11 val 6.

Elements primitius

Quan treballem amb cossos finits, el fet que el conjunt d’elements que tenim sigui finit junt amb el
fet que les operacions entre elements han de ser internes, ens trobem en situacions que no es donen
quan treballem amb conjunts de mida infinita. Un exemple d’aquest cas el trobem en la definici6
d’ordre d’un element.

Definicié 2.12 L ordre d’un element a € Z, és el minim exponent i € N;i > 0 tal que ¢’ = 1
modul n.

Exemple 2.9 Ordre d’un element

L’ordre de I’element 5 a Zy» és 6 jaque 5' =5, 52 =25, 53 =41, 5*=37, 5> =17, 5°=1.

Una vegada definit el concepte d’ordre, podem definir el concepte d’element primitiu.

Definici6 2.13 Un element g € Z,, és un element primitiu si té ordre ¢ (n).

Fixeu-vos que en el cas que el modul del nostre conjunt sigui un nombre primer p, tenim que
I’element g sera primitiu a Z,, si té ordre ¢(p). Com que p es primer sabem que ¢ (p) = p — 1, per
tant, ’ordre de g sera p — 1. Aixo vol dir que si prenem g i anem calculant potencies ens generara
p — 1 elements diferents. Ara b€, fixeu-vos que Z, t€ p elements diferents i, en concret, llevat del 0
tots s6n invertibles (ja que Zj, és un cos). Per tant, Z,, t€ p — 1 elements i podem concloure que les
p — 1 potencies diferents de g generen tots els elements invertibles de Z,. Per exemple, si prenem
Z7 ={0,1,2,3,4,5,6}, veiem que els seus elements invertibles son Z; = {1,2,3,4,5,6}. Tenim
que 3 és un element primitiu, i podem comprovar que les seves poteéncies poden generar tots els
elements invertibles: 3! =3, 32 =2, 33 =6, 3*=4, 33 =5, 3°=1.
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Sistemes d’equacions modulars

En apartats anteriors hem vist la resolucié d’equacions modulars utilitzant els mecanismes estan-
dards de resolucid d’equacions pero tenint en compte que el conjunt on treballem és Z,. Ara bé, es
pot donar el cas que ens interessi resoldre un sistema d’equacions definides sobre diferents moduls,
com per exemple:

3x+5=0 (mod 11)
3x—2=0 (mod5)

En aquest cas, el Teorema xines dels residus ens proporciona informacié sobre I’existencia d’una
solucid.

Teorema 2.7 — Teorema xinés dels residus. Siguin n; i n; dos elements naturals tals que
gcd(ny,ny) = 1 aleshores, el sistema d’equacions modulars:

{x =a; (mod n)

x=a, (mod ny)
té una Unica solucié modul n = n; - ny definida per I’equacié:
x=A-m-ai+u-n-a, (mod n)

on A i u sén els coeficients de la Identitat de Bézout pt-ny +A -ny = 1.

Exemple 2.10 Resolucié d’un sistema d’equacions modular

Si volem resoldre el sistema d’equacions segiient:

3x+5=0 (mod 11)
3x—2=0 (mod 5)

En primer Iloc ens cal expressar les equacions en el format adequat. Es a dir:

A continuaci6, calcularem els elements de la Identitat de Bézout de 111 5, que sén p =11
A=-2,jaque 1-114(—2)-5= 1. Per tant, la soluci6 sera:

x=A-m-ar+u-n-ap (modn)=-2-5-2+1-11-4 (mod 55) =24 (mod 55)

Residus quadratics i arrels quadrades modulars

Quan treballem amb estructures algebraiques finites, una de les operacions que també ens interessara
realitzar sén arrels quadrades. Com veurem en aquest apartat, no tots els elements tindran arrels
quadrades i, a més, en cas que en tinguin en poden tenir més de dues.
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Definici6 2.14 Sigui p un nombre primer. Direm que y € Z, és un residu quadratic si existeix
un valor x € Z, tal que x%> = y. En cas que no existeixi aquest valor, direm que y no és un residu
quadratic.

En el cos Z,, hi ha el mateix nombre d’elements que s6n residu quadratic que elements que no ho
2 2 . -1 2 . N - . 2
s6n, és a dir un total de 5= elements. A més, hi ha una manera facil de calcular si un element és

un residu quadratic aplicant la segiient expressio:

=] 1 siy ésun residu quadratic

—1 siyno és un residu quadratic

Un cop sabem que un valor és un residu quadratic, podem calcular-ne les seves arrel quadrades, ja
que sabem que existeixen. Amb la férmula anterior, és molt simple comprovar si un valor és un
residu quadratic o no ho és. Ara bé, calcular-ne les arrels quadrades suposa una mica més de feina.
De tota manera, per a nosaltres ens sera suficient saber que existeixen algorismes eficients* que
poden calcular arrels quadrades d’un residu quadratic a Z, encara que el valor p sigui molt gran,
aixo si, sempre que p sigui un nombre primer.

Quan deixem els nombres primers com a base de la nostra estructura algebraica i adoptem elements
que sén producte de primers, les coses es compliquen.

Proposici6é 2.2  Siguin p i ¢ dos nombres primers i n el seu producte, n = p - g. Aleshores, a Z,
hi ha exactament w residus quadratics i cada un d’ells té exactament quatre arrels quadrades.

Un punt important a tenir en compte és que si un element y és residu quadratica Z,in=p-q,
aleshores y també és residu quadratic a Z), i a Z,. Aquest fet ens proporciona un sistema per
calcular arrels quadrades d’un residu quadratic y a Z,, ja que per calcular-les només ens caldra
calcular les arrels quadrades de y a Z, i a Z, i combinar-les.

Exemple 2.11 Calcul d’arrels quadrades a Z,, amb n = p - g producte de dos primers
Calculem les arrels quadrades de 4 a Z;s.

Donat que 15 és producte de dos primers, sabem que 4 té 4 arrels quadrades a Z;5, que denotarem
per x1,x2,x3,x4. Per calcular-les, calcularem primer les arrels quadrades de 4 a Z3 i a Zs.

Aquest cas és molt simple perque sabem que, en els reals, les arrels de 4 sén 2 i -2. Per tant, les
arrels quadrades de 4 a Z3 seran els valors y; = 2, y, = 1 i les arrels quadrades de 4 a Zs seran
els valors z; =2,z =3

Ara bé, sabem que les arrels quadrades de 4 a Z;5 que busquem també ho han de ser a Z3 i a Zs.
Aix0 fa que puguem plantejar el segiient sistema d’equacions:

4L’ algorisme de Tonelli-Shank permet, en temps polinomial, calcular arrels quadrades d’un residu quadratic a 7Z P>
per a qualsevol valor p primer.
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x=z (mod 5)

{x =y, (mod 3)

Si ens hi fixem, aqui tenim un sistema d’equacions modulars que podem resoldre amb el Teorema
xines dels residus, tal i com hem explicat en 1’apartat anterior. En aquest cas, com que els
coeficients de la Identitat de Bézout per 3 i 5 valen 2 1 —1, respectivament, ja que 1 =2-3 — 1.5,
la solucié del sistema amb el Teorema xings dels residus ens queda:

m=23z;—15y;

Per tant, només ens queda substituir els valors de y; i z; per i = {1,2} per trobar les quatre arrels
quadrades de 4 a Z;5 que seran {7,2,13,8}.

Hem vist que decidir si un element €s un residu quadratic a Z, €s facil en el cas que p sigui
un nombre primer. Ara bé, decidir-ho a Z, amb n producte de dos primers és un problema
computacionalment intractable. Com també ho és el calcul de les arrels quadrades. Si ens fixem
amb I’exemple anterior, per calcular les arrels quadrades x; hem hagut de calcular primer les y; i les
Z; per posteriorment combinar-les. Ara bé, aix0 ho hem pogut fer perque coneixiem la factortizaci6
del modul, en aquest cas sabiem que n = 3-5. Ara bé, si no coneixem la descomposicié del modul,
no podrem calcular les arrels quadrades. De fet, el segiient teorema mostra 1I’equivaléncia del calcul
d’arrels quadrades i la factoritzacié del modul.

Teorema 2.8 Sigui n = p-q, on p i g s6n primers imparells diferents. Si x i y soén arrels
quadrades essencialment diferents d’un element de Z, aleshores gcd(x + y,n) és un dels dos
factors p o q.

Dit d’una altra manera, el teorema anterior ens indica que saber calcular arrels quadrades a Z,, és el
mateix que saber calcular la factoritzacié del nombre 7.

Exemple 2.12 Equivalencia entre arrels quadrades i factoritzacio

Suposem que volem calcular la factoritzacié del valor n = 925219 perd no tenim un algorisme
per factortizar-lo. D’altra banda, sabem que les quatre arrels quadrades de 524422 a Zgys219
valen {272635,402576,522643,652584}.

Si prenem dues d’aquestes arrels quadrades que siguin essencialment diferents, per exemple,
{272635,402576}, i calculem gcd(272635 + 402576,925219) = gcd(675211,925219) = 947
podem veure que efectivament 947 és un dels primers que formen el valor 925219 ja que
si els dividim 929;542719 = 977 la seva divisi6 és exacta i ens proporciona I’altre factor primer:

925219 =947-977.

El concepte arrels essencialment diferents fa referéncia al fet que les dues arrels no poden ser
I’inversa una de laltra. Es a dir, si ens hi fixem, per exemple, les arrels {272635,652584}
compleixen que 652584 = —272635 (mod 925219). Aixo0 fa que si haguéssim agafat aquestes
dues arrels per fer el calcul del maxim comu divisor no haguéssim aconseguit cap resultat ja que
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6525844272635 =0 (mod 925219).

(124

Noteu que hem pogut factoritzar un valor “dnicament” calculant un maxim comu divisor, una
operacid que és computacionalment simple fent servir I’ Algorisme d’Euclides. El truc ha estat
que tenim totes les arrels quadrades d’un element.

2.1.4 Aritmética modular amb polinomis

En els apartats anteriors hem vist una manera de construir cossos finits, en concret cossos finits
que tinguin un nombre primer d’elements. La pregunta que ens podriem fer ara és si podem crear
cossos finits on la quantitat total d’elements no sigui un nombre primer. La resposta a aquesta
pregunta és afirmativa i a continuacié veurem com és possible crear cossos finits on el nombre total
d’elements sigui una poténcia d’un nombre primer.

Quan en I’apartat anterior hem parlat d’estructures algebraiques no hem fet mencié d’una altra
estructura algebraica for¢ca coneguda que també és una anell. Aquesta estructura és 1’anell de
polinomis amb coeficients als reals, que denotarem per (R[x],+,-). Com ja sabem, un element
a(x) € R[x] és un element del tipus a(x) = ag + arx +axx* + azx®> +---+ax* ona; € Riay #0 (s
és el grau d’a(x)). Amb els polinomis sabem perfectament sumar-los (sumant les components del
mateix grau) i també multiplicar-los (component a component). A més, igual com teniem amb la
divisié dels enters, en el cas que el grau d’un polinomi a(x) sigui més gran que el grau del polinomi
b(x) també podem dividir el polinomi a(x) entre el polinomi b(x) i obtindrem dos polinomis g(x) i
r(x) on es complira que a(x) = b(x) - g(x) + r(x) i a més el grau de r(x) és més petit estricte que el
grau de b(x).

Exemple 2.13 Operacions basiques amb polinomis

Donats els polinomis:
a(x) =3+ Jx+2x°
b(x)=14+x

Suma de dos polinomis:
a(x)+b(x) =3+ Ix+ 27 + 1 +x =4+ 3x+2x7

Producte de dos polinomis:
a(x) b(x) = 3+ 3x+2x?) - (1+x) =3+ Jx+ 32> +2x°

Divisi6 de polinomis:
a(x) = g(x) - b(x) +r(x) = (2x—3) - (x+1) +

[\S]\Ne)

Amb els anells de polinomis podem definir algorismes analegs als que hem vist per als enters. Aixi
podrem calcular el maxim com divisor de dos polinomis o els coeficients de la Identitat de Bézout.

Com és evident, el nombre d’elements de (R[x],+,-) és infinit ja que el nombre d’elements d’R ho
és. Ara bé, podriem intentar limitar el nombre de coeficients a utilitzar canviant el conjunt R pel
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conjunt Z,. Noteu que (Z,[x],+,-) continua tenint infinits elements perqué tot i que hem limitat
el nombre de coeficients que podem triar en el polinomi (ara només poden ser enters entre el O i
n— 1) continuem tenint el grau del polinomi il-limitat. Per tant, ens cal que el nostre conjunt, a més
de tenir el nombre de coeficients limitat, també tingui el grau del polinomi limitat.

Per limitar el grau del polinomi podem utilitzar un mecanisme analeg al que hem fet als enters.
Prenem tots els polinomis de Z, x| i els dividim per un polinomi de grau fixat k. Com que la divisi6
d’un polinomi de grau qualsevol per un polinomi de grau k sempre ens donara com a residu un
polinomi de grau més petit o igual que k — 1, si prenem tots els residus d’aquesta divisio haurem
aconseguit especificar tots els polinomis de Z,[x] que tenen grau com a molt k — 1, és a dir elements
del tipus a(x) = ag +ax+ax*+ -+ ar_1x*1 on a; € Z,. Si ens hi fixem, aqui si que el nombre
total d’elements d’aquest conjunt és un nombre finit, i concretament valdra n*. Aquest conjunt el
denotarem com Z, [x]/a(x) i seran els polinomis amb coeficients a Z, modul el polinomi a(x).

Aixi doncs, podem prendre el conjunt Z, [x]/a(x) i definir-hi una suma i un producte estandards de
polinomis. Si volem que les operacions siguin internes, és a dir que la suma i productes d’elements
de Zy[x]/a(x) continuin estan en el mateix conjunt haurem de fer el mateix que feéiem en els enters,
és a dir reduir el resultat modularment.

Teorema 2.9 Donat un nombre p primer i un polinomi m(x) € Z,, ’estructura algebraica
(Zp/m(x),+,-), amb la suma i productes de polinomis modulars és un anell commutatiu amb
unitat.

Exemple 2.14 Operacions a (Z,[x]/(x* +x+1),+, )

Com que estem a Z, i el polinomi és de grau 3 el conjunt tindra un total de 2° elements que seran
els segiients:
Zo[x])/ (> +x4+1)={0,1,x,x+ 1,22, x> + 1, x> + x, x> + x + 1}

Donats els elements:
a(x)=x*+x+1
b(x)=x+1

Suma de dos elements:
a(x)+b(x)=x*+x+1+x+1=x>+2x+2=1x%jaqueestema Z,i2 =0 (mod 2).

Producte de dos elements:
a(x)-b(x) = (¥ +x+1)-(x+1) =x>+2x? +2x+ 1 =x> + 1 = x, on I'dltima igualtat s’ obté de
dividir el polinomi x> + 1 entre x> +x+ 1 i quedar-se amb el residu, que val x.

I Exercici 2.8 Quants elements té el conjunt Z[x]/(x® +x+1)?
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Exercici 2.9 Realitza els segiients calculs a Z3[x]/(x*> +x+1)

s (x+1)+(2x+1)

e (x+1)-(x+3)
o Xt1
2x+2

En el cas dels nombres enters hem vist que el concepte de nombre primer ens servia per definir
estructures algebraiques a Z, que fossin cossos. Per tal de poder tenir la mateixa equivaléncia en
els polinomis ens caldra tenir un concepte similar al de nombre primer perd per als polinomis. Es
el concepte de polinomi irreductible.

Definici6 2.15 Un polinomi a(x) € Z,[x] és irreductible a Z,, si al descomposar-lo com a(x) =
b(x) - c(x) amb b(x),c(x) € Z,[x] aleshores b(x) o c(x) sén constants, és a dir b(x) € Z, o
c(x) € Zp.

Amb aquesta definici6 ja estem en condici6 de poder definir cossos finits de mida p*.

Teorema 2.10 Donat un nombre p primer i un polinomi m(x) € Z,, irreductible a Z,, i de grau
k, aleshores I’estructura algebraica (Z,[x]/m(x),+,-), amb la suma i productes de polinomis
modulars és un cos finit amb p* elements.

Fixem-nos que si I’estructura algebraica (Z,[x]/m(x),+,-) és un cos, podem calcular I’invers de
qualsevol dels seus elements. Per fer-ho, simplement utilitzarem les mateixes tecniques que hem
descrit per als enters, perd en aquest cas operant amb polinomis.

Exemple 2.15 Calcul d’inversos amb polinomis

Suposem I’estructura algebraica (Z[x]/(x* +x+1),+,-). Com que x> +x + 1 és irreductible a
Z, aquesta estructura algebraica és un cos. Calculem I’invers de I’element a(x) = x> +x + 1,
és a dir, hem de trobar el polinomi b(x) € Z,[x]/(x* +x+1) tal que a(x) - b(x) = 1. Per fer-ho,
hem de calcular els elements de la Identitat de Bézout entre a(x) i x> +x+ 1 que és el mddul on
estem treballant.

Si calculem les divisions successives de I’ Algorisme d’Euclides per trobar el maxim comu divisor
obtenim:

r+x+1=F+x+1)-(x+1)+x

PAx+1=(x)-(x+1)+1

tenim que el gcd(x® +x+1,x% +x+41) = 1, com ja sabiem. Ara si aillem els dos residus de cada
equacio:

l=x+x+1—(x)-(x+1)

r=xFx+1—(P+x+1) (x+1)

A partir d’aquestes equacions, podem calcular els coeficients de la Identitat de Bézout, igual que
hem fet en els enters. Fixeu-vos, que com que els coeficients del polinomi sén elements de Z, no
tenim en compte el signe jaque —1 =1 (mod 2). Aixi obtenim que:

1= 4+x4+1) - (x+1)+ (@@ +x+1)-(x?)
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Si prenem aquesta equacié modul x* + x + 1 tindrem que el primer terme val 0 i per tant ens
queda:

1= +x+1)-(x?)

és a dir, I’invers de 1’element x> + x + 1 que buscavem és el polinomi x>. Ho podem comprovar
fent el producte de x*> + x4+ 1 per x? i veient que si el dividim pel modul, x* +x + 1, el residu ens
dona 1.

2.2 Nombres primers

Els nombres primers han estat estudiats abastament ja que son la base de tots els nombres, donat
que qualsevol nombre enter es pot descompondre de manera inica com a producte de primers. Tot i
aixo, hi ha moltes propietats d’aquest tipus de nombres que encara no s’han pogut sistematitzar i
grans qiiestions obertes de la matematica giren al voltant dels nombres primers.

Com ja hem indicat anteriorment en la Definicié 2.9, un nombre primer és aquell
enter positiu > 1 que només es pot dividir per ell mateix i per la unitat.

Primers de Els primers del tipus 2”7 — 1 s’anomenen primers de Mersenne. Aquests tipus de
Mersenne nombres sén primers només en el cas que p sigui primer, perod no es cert que qualsevol
valor p primer generi un nombre 2P — 1 primer. Per exemple, per p = 2 si que
es compleix ja que 22 — 1 = 3 que és primer. Perd per p = 11 no és cert, perque
211 — 1 =2047 que no és primer.

Els nombres primers s’estudien des de 1’antiguitat i ja Euclides, 300 anys a.C. va demostrar que hi
havia infinits nombres primers. Tot i aix0, 1 malgrat els diferents estudis sobre nombres primers,
encara no s’ha pogut establir una férmula que permeti donar la seqiiéncia de nombres primers, i per
tant, la Gnica forma de trobar-los és anar generant nombres i comprovar si sén primers o no ho sén.
En aquest sentit, el primer més gran que s ha trobat (al gener del 2016) és el nombre 274207:281 _ |
que és un primer de Mersenne de més de 22 milions de xifres.

Tot i que no es coneix quina és la seqiiencia de nombres primers, si que hi ha alguns resultats que
permeten tenir estimacions sobre el nombre de primers que hi ha en un interval. Per exemple, el
teorema dels nombres primers ens en déna una aproximacio.

Teorema 2.11 — Teorema dels nombres primers. Sigui 77(n) el nombre de primers més petits
que un valor n, aleshores, es compleix que:

n(n)

lim

n—yoo

=1
In(n)

Es a dir, podem aproximar el nombre de primers més petits que 7 calculant-ne el seu logaritme. En
la segiient taula es pot veure la diferéncia entre aquesta aproximacio i el nombre real de primers
que existeixen per a valors petits on s’han pogut calcular tots els nombres primers i comptar-los.
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10 4 4.34
100 25 21.7
1000 168 144.8

100 78498 72382
10° 50847478 48254942

Si ens fixem en la taula, tot i que la diferéncia entre I’aproximaci6 i el nombre real de primers
sembla que cada vegada sigui més distant, si calculem el quocient dels dos valors podem veure que
efectivament cada vegada és més proper a 1.

A I’hora de trobar nombres primers, el teorema que acabem d’enunciar ens déna una estimacié de
la probabilitat que, donat un nombre aleatori qualsevol, aquest sigui primer. Efectivament, utilitzant
I’aproximacié que ens proporciona aquest teorema, sabem que trobar un nombre primer entre n

i 2n té una probabilitat de p = ﬁ — % ja que el nombre total de primers en I’interval sera

ln%—gn) — % i aixo caldra dividir-ho pel nombre d’elements de I’interval, és a dir n. Per posar

aquests valors en context, si fem els calculs, veurem que la probabilitat que donat un valor triat
aleatoriament entre 1-10%° i 2- 10?0 sigui primer és d’un 2%. Per tant, si el procés per aconseguir
un primer passa per seleccionar un valor a 1’atzar, mirar si és primer i siné buscar-ne un altre,
clarament el cost de mirar si un nombre €s primer cal que sigui computacionalment reduit si volem
ser eficients en la generacié de nombres primers.

Tests de primalitat

Com veurem al llarg del llibre, per a diferents criptosistemes i protocols criptografics, és necessari
poder disposar de nombres primers molt grans. A 1’hora de generar-los, donat que no tenim una
férmula que ens en doni la seqiiencia, el procés que es realitza consisteix a seleccionar un nombre
aleatori molt gran i verificar-ne si és primer o no.

Per tal de comprovar si un nombre és primer s’utilitzen els test de primalitat, que no sén més que
algorismes que reben com a entrada un nombre i proporcionen com a sortida informacié sobre la
condicié de primer del nombre donat. De test de primalitat n’hi ha de dos tipus: deterministes i
probabilistics.

Un test de primalitat determinista és aquell que donat un nombre natural ens
indica, de manera inequivoca, si és 0 no un nombre primer.

Una manera de determinar la primalitat d’un nombre seria fent-ne la descomposicié en nombres
primers. Si aquesta descomposici6 retorna més d’un factor diferent al propi nombre la conclusi6
és que el nombre no és primer i, en cas que els factors retornats siguin el propi nombre i I'1 es
determinara que el nombre si que és primer.

Per exemple, podem utilitzar 1’algorisme de factoritzacié per prova de divisions, com el que es
mostra en el segiient codi en SAGE?, que ens retornara un sol valor (el nombre proporcionat) en

SEl SAGE és un programari matematic molt potent de codi obert basat en Python. Podeu descarregar-vos-el de
http://www.sagemath.org/. Tots els fragments de codi que es mostren en aquest capitol sén codificats en SAGE.
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cas que aquest sigui primer.

def trial_division(n):
if n < 2:
return []
prime_factors = []
for p in primes_first_n(int(n*x%0.5)):
if pxp > n: break
while n % p == O0:
prime_factors.append(p)
n //=p
if n > 1:
prime_factors.append(n)
return prime_factors

Noteu que el bucle extern només prova primers p fins a /5. No cal provar divisors més grans que
\/n, perque si n té un divisor més gran que /n, aleshores I’altre divisor sera més petit que /n.

Evidentment aquest algorisme no és gens eficient, i per tant, per a verificar la primalitat de nombres
molt grans és totalment desaconsellable. En I’actualitat, 1’algorisme més eficient que proporciona
un test de primalitat determinista és el proposat pels matematics indis Agrawal, Kayal i Saxena
I’any 2002. Malgrat ser el test determinista més eficient, no s’utilitza a la practica ja que per a
valors elevats els temps de resposta sén massa grans.

Per tal d’obtenir test de primalitat amb una complexitat suficientment baixa per a poder generar
nombres primers prou grans en un interval de temps prou petit cal recérrer als tests de primalitat
probabilistics.

Un test de primalitat probabilistic és aquell que donat un nombre natural ens
indica si és primer amb una certa probabilitat.

Aixi doncs, un test de primalitat probabilistic ens pot indicar que un nombre és primer sense que
realment ho sigui. De fet un test de primalitat probabilistic ens retornara el que es coneix com a
pseudo-primer. El gran avantatge dels tests probabilistics és que sén extremadament eficients i, a
més, es pot determinar el valor de la probabilitat amb el que es poden equivocar i fer-lo tant petit
com es vulgui.

Test de primalitat de Fermat

El test de primalitat de Fermat és un test de primalitat probabilistic basat en el teorema petit de
Fermat. El teorema petit de Fermat és un cas particular del Teorema d’Euler que hem vist en
apartats anteriors.

Teorema 2.12 — Teorema petit de Fermat. Sigui p un nombre primer, aleshores a?~! = 1
(mod p) per a qualsevol valor a tal que 1 <a < p.

En base a aquest teorema, podem definir el test de primalitat de Fermat de la segiient manera:
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def Fermat_test(n,k):

if n <= 1:
return str(n) + ° no és primer’
if n <= 3:

s

return str(n) +
for i in range(k):
a = randint(2,n-2)
if (a?(n-1))%n != 1:
return str(n) + ° no és primer’
p = numerical_approx (1 —-(1/2)"k)

és primer’

return str(n) + ° és primer amb probabilitat ° + str(p)
Nombres de Els nombres de Carmichael sén nombres extremadament rars. Un nombre de Carmicha-
Carmichael el n, tot i no ser primer, compleix la congruéncia de Fermat per a tots els valors a, tals

que 1 <a < piged(n,a) = 1. Per aquest motiu, el test de primalitat Fermat aplicat al
nombre de Carmichael n = 340561 (que no és primer, ja que 340561 = 13-17-23-67)
ens pot arribar a donar que és un nombre primer amb probabilitat 0,999.

Fixeu-vos que la idea és prendre el nombre que volem analitzar i assignar-lo com al modul de
I’equacid. Pel teorema petit de Fermat sabem que si el nombre és primer, I’equacié modular sempre
ens donara 1. Ara bé, si el nombre no és primer I’equacié modular pot donar 1 o pot donar un
valor diferent de 1. A més, si n no és primer, en general, la meitat dels valors a més petits que
n complira I’equacié i I’altra meitat no. Aixo0 ens porta a assegurar que si anem triant valors a
diferents la probabilitat que 1’equacid sigui certa sense que n sigui primer és cada vegada més petita.
En particular, la probabilitat es redueix a la meitat. Per aquest motiu, si repetim el test de Fermat k&

vegades i ens indica que el valor n és primer, la probabilitat que aquest ho sigui sera 1 — (%)k

Test de primalitat de Miller-Rabin

El test de primalitat de Miller-Rabin és un test que combina la condici6 del teorema petit de Fermat
amb la particularitat dels residus quadratics en aritmetica modular. Tal i com hem vist en 1’ Apartat
2.1.3, en el cas que n és primer 1’equacié x> = 1 (mod 7) té tinicament dues solucions, mentre que
si n no és primer, en té quatre. Aixi, aquest fet, juntament amb el teorema petit de fermat es poden
unir creant el test de primalitat de Miller-Rabin implementat en el segiient algorisme:

def Miller_Rabin_test(n,k):
tmp = n-1
s =0
while tmp%2 ==
tmp = tmp // 2
s= s +1
r = (n=1) / (27s)
for i in range(k):
a = randint(2,n-2)

y = a’r%n
if (y != 1) and (y != n-1):
j =1
while (j >= (s—-1)) and (y != (n-1)):
y = (y*2)%n
if y==1:
return str(n) + ° no és primer’
j = j+1
if y != n-1:
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return str(n) + > no és primer’
p = numerical_approx (1 -(1/4)"k)
return str(n) + ° és primer amb probabilitat

)

+ str(p)

L’avantatge d’aquest test respecte el de Fermat és que no esta afectat pels nombres de Carmichael.
A més, a cada iteraci6 la probabilitat d’errar disminueix en 1/4 en comptes d’1/2 aconseguint
una probabilitat més alta d’encertar un primer amb menys iteracions que el test de Fermat. En
I’actualitat, per la seva eficiencia, aquest test, o alguna de les seves variants, és un dels més utilitzats
en les aplicacions criptografiques.

Problemes matematics dificils

Com veurem al llarg d’aquest llibre, la seguretat dels algorismes criptografics que es fan servir
avui en dia recau en la dificultat que un atacant pugui realitzar els calculs necessaris per trencar el
criptosistema. Aixi, tal i com hem definit anteriorment, la seguretat de la majoria dels criptosistemes
moderns és una seguretat computacional i no pas una seguretat tedrica.

Per tal de poder definir problemes que siguin dificils de resoldre per un atacant, ens caldra primer
definir que vol dir que un problema sigui dificil des d’un punt de vista computacional. A continuacid,
repassarem diferents funcions matematiques que presenten certa unidireccionalitat en el sentit que
el seu calcul en una direccié és molt simple pero el calcul de la seva inversa és molt complicat, fet
que s’utilitza en el disseny de criptosistemes i protocols criptografics.

Complexitat d’un algorisme

La teoria de la complexitat algorismica és molt complexa en si mateixa, de manera que en aquest
apartat només en donarem unes nocions molt basiques.

La complexitat de calcul d’un algorisme es mesura pel temps T que requereix la seva execucid i
s’expressa com a funcié de la mida n de I’entrada de 1’algorisme. Més que fer servir complexitats
exactes que s’expressarien com a f(n), se solen emprar ordres de magnitud, és a dir 0(g(n)), de
tal manera que f(n) = &(g(n)) vol dir que hi ha constants c i ng tals que:

f(n) <clg(n)|; peran>ngy

El proposit que hi ha en fer servir ordres de magnitud és que I’explicitacié de g(n) sigui més simple

que f(n).
Exemple 2.16 Ordre de la complexitat

Si la complexitat exacta d’un algorisme és f(n) = 36n+ 10, podem escriure que f(n) = &'(n),
jaque

36n+10<37n;peran > 10

Per la mateixa rad, si f(n) és un polinomi de grau 7 en n, podem escriure f(n) = 0'(n').
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Un algorisme polinomic és aquell que el seu temps d’execuci6 és T = & (n') per
a alguna constant . En el cas que £ = 0 direm que 1’algorisme és constant, lineal si
t = 1, quadratic si t = 2, etc.

Un algorisme exponencial és aquell que el seu temps d’execuci6 és T = &(¢"(")
per a alguna constant ¢ i un polinomi %(n).

Per a valors d’n grans, les diferents classes de complexitat impliquen temps molts diferents
d’execucié. Per exemple, si suposem una maquina capag d’executar 10'? instruccions per segon, la
taula segiient ens mostra els temps d’execucié per a les classes d’algorismes que acabem de definir.

Classe Complexitat | Operacions per n = 10'? Temps
Constant o(1) 1 10~12 segons
Lineal O(n) 102 1 segon
Quadratic O(n?) 102 31.709 anys
Ciibic on?) 1036 3,17-10' anys
Exponencial 02" 10310" 10299910 milions d’anys.

2.3.2 Producte de primers i factoritzacié d’enters

Un dels problemes matematics dificils és la factoritzacié d’enters. Si tenim dos nombres primers
p 1 g és molt facil calcular els seu producte n = p - g. Aixo és aixi independentment de la mida
dels valors p i g perque els algorismes que realitzen la multiplicacié d’enters son algorismes molt
eficients i per tant, la mida dels nombres afecta molt poc al temps de resolucié del producte.

Ara bé, donat un valor n que sabem que és producte de dos primers, és molt dificil trobar quins sén
aquests dos primers, és a dir, factoritzar-los, en el cas que # sigui prou gran.

Podeu veure la diferéncia entre aquestes dues operacions executant les segiients comandes de
SAGE.

p=next_prime (27100)
gq=next_prime (27101)

print ’'Temps per multiplicar’, p, ° per ', q, :’
time n=p=*q
print ’'Temps per factoritzar’, n, ’:’

time factor(n)

D’algorismes per a la factoritzacié d’enters n’hi ha de diferents tipus i la seva complexitat depen de
la forma dels primers que generen el valor a factoritzar. Si ens centrem en algorismes de factoritzaci6
generics, per a valors de p i g propers i grans pero sense cap caracteritzacié concreta, el millor
algorisme de factoritzaci6 que es coneix s’anomena garbell sobre el cos de nombres generalitzat,

| 2
en angles general number field sieve (GNFS) i té una complexitat @ (e VG +0(1))In(n)3 (in(in(n)) 3 )

Com veurem en els propers capitols, la dificultat en la factoritzacié d’enters de mida molt gran és la
base de la seguretat del criptosistema RSA.
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Exponenciacié i logaritme discret

Els enters modulars, Z, amb p primer, sén un grup multiplicatiu ciclic. Aixd vol dir que podem
trobar un element g que s’anomena generador, tal que les seves poténcies generen tots els elements
de Zj, llevat del zero. Per exemple, si considerem Z7 = {0,1,2,3,4,5,6} veiem que el 3 és un
generador perqué Z7 = {0,1 =3%2=323 =31 4=3%5=3% 6 =3%}. A més, la distribuci6 de
les poténcies del generador entre els elements de Z,, €s una distribuci6 uniforme.

En aquest entorn és on trobem un altre dels problemes matematics que s’utilitzen en cripotografia.
De nou, tenim una operacié molt facil de realitzar: donats dos elements x,y € Z,, calcular la seva
poteéncia, és a dir z =x" (mod p). Aquesta operacié és molt eficient de realitzar perque 1’tnic
calcul que realitzem s6n productes, amb una divisié per reduir el resultat al modul desitjat. Ara bé,
I’operaci6 inversa, la que donats dos elements x,z € Z, permet trobar I’element y tal que z = x”
(mod p) és un problema pel qual no se’n coneix cap algorisme eficient. Fixeu-vos que aquest
calcul és I’equivalent a calcular el logaritme de z en base x, pero en els enters modul p. Per aixo,
aquest problema se’l coneix com a problema del logaritme discret.

El problema del logaritme discret és la base de la seguretat de diferents esquemes i protocols cripto-
grafics, els més coneguts dels quals sén I’intercanvi de claus de Diffie i Hellman i el criptosistema
d’ElGamal.

Quadrats i arrels quadrades modulars

Un altre problema problema matematic que s’utilitza en criptografia és el calcul d’arrels quadrades
en un anell multiplicatiu sobre Z, quan el valor n és un producte de dos primers p i g.

Com ja hem comentat anteriorment, multiplicar dos nombres €s molt rapid, de manera que calcular
el quadrat d’un nombre ha de ser forcosament també molt rapid, perque és el producte d’un nombre
per ell mateix. A més, si una vegada hem fet el producte en volem calcular el seu equivalent modul
n, aix0 també és molt rapid, perque només cal que dividim el resultat pel modul i ens quedem amb
el residu. Per tant, calcular quadrats a Z, €s pot fer de manera molt eficient. Ara bé, I’operaci6
inversa, és a dir, donat un element x € Z, trobar-ne I’arrel quadrada (I’element y tal que x = y*
(mod n)), és una operacié molt costosa. De fet, tal i com s’enuncia en el Teorema 2.8, aquest
problema és equivalent a factoritzar ja que per calcular les arrels d’un valor a Z,,, on n = pg, ja hem
vist que ens caldra trobar les arrels quadrades a Z, i a Zg, i per tant, ens cal factoritzar n.
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Resum

En aquest capitol hem presentat els conceptes matematics basics utilitzats en criptografia, centrats
en I’aritmetica modular. Conceptes com la divisibilitat de nombres enters, el maxim comd divisor o
el Teorema d’Euler sén cabdals per poder comprendre les operacions criptografiques que realitzen
els algorismes de xifrat. Aixi, ’aritmetica modular és la base que ens permetra entendre el
funcionament de la majoria dels criptosistemes utilitzats en 1’actualitat, tant els de criptografia de
clau simetirca, com I’ AES, com els de clau ptblica com I’RSA o ElGamal.

Ja centrats en la criptografia de clau publica, és important tenir clares les caracteristiques dels
nombres primers, ja que aquests acostumen a ser la materia prima en la que es basen els criptosis-
temes. Aquests valors sovint formen part de les claus o dels parametres dels esquemes i per tant
coneixer-ne la seva distribuci6 i comprendre com es poden obtenir és vital per poder implementar
qualsevol criptosistema de clau publica.

Finalment, i continuant amb la criptografia de clau publica, hem analitzat diferents problemes
matematics que tenen una asimetria en la seva resolucid i que es fan servir en criptosistemes de clau
publica. Com hem vist, aquest problemes presenten una simplicitat d’execucié quan els mirem en
un sentit perod sén d’una dificultat extrema quan els volem realitzar en el sentit invers. Per exemple,
multiplicar dos primers grans p i g pot ser immediat mentre que trobar-ne els que composen un
nombre 7 pot implicar calculs de milers d’anys. Es important congixer quins sén aquests problemes
matematics per tal d’entendre quines son les bases de seguretat dels criptosistemes que els fan
Servir.

https://www.criptografia.cat v0.2.1 04/02/2026


https://criptografia.cat

2.5

56 Capitol 2. Fonaments matematics

Solucions dels exercicis

Exercici 2.1:

gcd(35,48) = 1 ja que si calculem les divisions successives tenim: 48 = 35-1+ 13
35=13-2+49

13=9-1+4
9=4.2+1
4=4-140

1 1’dltim residu nonul és I’ 1.
Exercici ??:

Per calcular el coeficients de la indentitat de Bézout utilitzarem les igualtats de I’ Algorisme
d’Euclides de I’exercici anterior i n’aillarem el residu:

48 —35=13
35— (13-2)=9
13-9=4
9—(4-2)=1

i substituirem en cada equacid el valor corresponent per acabar obtenint-ne una sola amb els valors
35148:

1=9—-(4-2)=9—((13-9)-2)=(3-9)—(13-2) = (3(35—(13-2)) — (13-2) = (35-3) — (8-
13) =(3-35)— (8(48—35))) = (11-35) — (8-48)

Aix{, tenim que

1=11-35+(-8)-48

1 per tant els coeficients de la Identitat de Bézout per a 35148 sén 11 1 —8 respectivament.

Exercici 2.3:
0(527)=¢(17-31) =¢(17)-¢(31) = (17—1)- (31 —1) = 16-30 = 480.
Exercici 2.4:

El conjunt Z;s esta format per tots els residus de dividir per 25, per tant tindra 25 elements que sén
ZZS = {0? 17273547 e ,22,23,24}

Exercici 2.7:

L’estructura algebraica (Zs37,4,-) és un cos ja que el nombre 37 és primer. Aixo fa que tots els
elements més petits que 37, és a dir tots els elements inclosos en Zs7, siguin coprimers amb 37 i
per tant tinguin invers, condici6 necessaria i suficient perque (Zs37,+,-) sigui un cos.

Exercici 2.5:

Linvers de 7 a Zs7 val 16 ja que 7-16 = 112 =1 (mod 37). El valor 16 el podem calcular
de diferents maneres. Per exemple, calculant 797)~1 =735 = 16 (mod 37) o bé calculant els
coeficients de la Identitat de Bézout de 7137, és adir 7-16 437 - (—3).

Exercici 2.6:
Realitza els segiients calculs a Z3;

* 20420 =40=3 (mod 37)
*«20-4=80=6 (mod 37)
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* 20% =400 =30 (mod 37)
« 2 =20-16=320=24 (mod 37), ja que 16 és I'invers de 7 tal i com hem calculat anterior-
ment.

Exercici 2.8:

El conjunt Z, /(x® 4+ x4+ 1) té un total de 2° = 64 elements ja que s6n tots els polinomis de grau 5
amb coeficients binaris.

Exercici 2.9:
Realitza els segiients calculs a Z3 /(x> +x+ 1)

o (x+1)+(2x+1)=2 (mod (x> +x+1))

o (x+1)-(x+3)=x>+x=2 (mod (x> +x+1))

. 2’;112 =(x+1)-x=2 (mod (x> +x+1)), jaque x*>+x+ 1 = 0 per ser el modul i per tant:
x? +x = 2 ja que els coeficients del polinomi s6n de Zs.
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Ja hem vist en anteriors capitols que un criptosistema incondicionalment segur necessita tants bits
de clau com bits de text a xifrar. El xifratge de Vernam és el criptosistema que aconsegueix aquesta
seguretat incondicional, pero el preu que en paga és la ineficiencia del xifratge. Aquesta ineficiencia
recau justament en el fet que la clau ha de tenir la mateixa longitud del text a xifrar. Aixd comporta
que la longitud de les claus sigui molt gran i, per tant, sigui més dificil guardar-les en secret. A
més, es dona la paradoxa que si tenim un canal segur per intercanviar les claus, aleshores també
podem utilitzar-lo per intercanviar els missatges, ja que tenen la mateixa longitud.

Les xifres de flux sorgeixen com una aproximacié optimitzada al xifratge de Vernam. La idea és
construir una clau suficientment llarga, com a minim de la longitud del missatge, a partir d’una
clau inicial curta. Aix0 s’aconsegueix utilitzant el que s’anomena un generador pseudoaleatori.
Aquest generador expandeix una clau petita, anomenada llavor, obtenint-ne una de molt més llarga.
L’operacié d’expansi6 cal que tingui certes caracteristiques ja que la seqiiéncia que en resultara és
la que s’utilitzara per xifrar el text en clar. Caldra doncs, veure quines propietats hauran de complir
les esmentades seqiiencies i estudiar quin tipus de generadors hi ha per obtenir-les.

Les xifres de flux sén xifres de clau compartida ja que la llavor (que es fa servir per obtenir la
seqiiencia xifrant) és utilitzada tant per a xifrar com per a desxifrar, i és per tant compartida entre
I’emissor i el receptor.

Una alternativa al xifratge de flux és el que s’anomena xifratge de bloc. Aquest xifratge s’inclou
també dins dels critosistemes de clau compartida ja que la clau que s’utilitza per a xifrar i desxifrar
és la mateixa i la comparteixen emissor i receptor. La diferéncia basica entre el xifratge en flux i
el xifratge de bloc és la utilitzacié de memoria en els algorismes de xifratge. En el Capitol 4 es
tracten amb més detall les xifres de bloc.

Com veurem en aquest capitol, el xifrat de flux utilitza una clau diferent per cada bit d’informacio.
Aquesta clau depen de I’estat inicial del generador, perd també de I’estat del generador en el
moment de xifrar un bit concret. Per tant, dos bits iguals es poden xifrar de maneres diferents
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depenent de I’estat en que es trobi el generador. En el proper capitol veurem que en el xifratge en
bloc aix0 no passa. Les xifres en bloc actuen sense memoria, i per tant el text xifrat només depén
del text en clar i de la clau.

Criptografia de clau simétrica o compartida

En aquest capitol introduirem les xifres de clau compartida.

Les xifres de clau simetrica o compartida son aquelles en els quals 1’emissor
1 el receptor comparteixen una mateixa clau, que és la que utilitzen per xifrar i
desxifrar missatges.

Es a dir, en les xifres de clau compartida, la clau que s’utilitza per xifrar és la mateixa que es
fa servir per desxifrar i per tant, en qualsevol moment, I’emissor pot passar a fer de receptor i a
Iinrevés, utilitzant sempre les mateixes claus.

Per les seves caracteristiques, les xifres de clau compartida no poden oferir la propietat de no-repudi.
Com veurem més endavant, existeixen altres construccions que si que ens permetran oferir aquesta
propietat.

Els dos tipus de xifres de clau simétrica més utilitzats son les xifres de flux i les de bloc. La
diferencia entre els dos tipus de xifres radica en com es processa la informacié: a les xifres de
flux la informaci6 es xifra bit a bit, és a dir, els bits es xifren de manera invididual, mentre que els
criptosistemes de bloc xifren un bloc sencer de n bits alhora.

Definicio de les xifres de flux

D’una manera esquematica, un criptosistema de flux es pot expressar tal com mostra la Figura 3.1.

Tant I’emissor com el receptor disposen d’una mateixa clau ¢ (anomenada llavor del generador), i
d’un mateix algorisme determinista Alg, anomenat generador pseudoaleatori. Al proporcionar
la clau k£ com a entrada a I’algorisme, aquest déna com a sortida una seqiiencia s que s’anomena
seqiiencia xifrant.

Per tal de xifrar el missatge, I’emissor va sumant cada bit del missatge m amb cada bit de la
seqiiencia xifrant s, obtenint el missatge xifrat y. Quan el receptor rep el missatge xifrat y, utilitza
el mateix algorisme determinista Alg i la clau k, que comparteix amb I’emissor, per tal d’obtenir
la mateixa seqiiencia xifrant. Aixi sumant bit a bit el missatge que li arriba y, amb la seqiiéncia
resultant de 1’algorisme s, obté el text en clar m enviat per I’emissor. Al llarg de tot aquest capitol
les seqiiencies amb les que treballarem seran binaries i les operacions a les que ens referirem seran
totes modul 2.!

Per tal que aquest criptosistema sigui segur, és basic que la seqiiencia xifrant no sigui coneguda, és
a dir que en cap moment es pugui saber quin sera el segiient bit de sortida. Idealment, el que es
necessita per a la seguretat incondicional és que la clau, en aquest cas la seqii¢ncia xifrant, sigui

De forma equivalent, podem pensar la suma mddul 2 com una XOR.
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k k
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T y Yy ‘;T
m m
Emissor Receptor

Figura 3.1: Esquema general de flux

completament aleatoria. En el nostre esquema no es pot donar aquesta condicié ja que el generador
que utilitzem ha de ser determinista per tal que emissor i receptor obtinguin la mateixa seqiiencia
quan donen com a entrada la mateixa clau secreta. Aixi doncs, la seqiiencia xifrant tindra propietats
molt properes a les que té una seqiieéncia completament aleatOria i per tant s’anomenara seqiiencia
pseudoaleatoria.

Concretament, si una seqiiencia no és aleatoria, vol dir que a partir d’un cert moment es repeteix.
Aquesta subseqiiéncia que es va repetint és el que s’anomena periode. El que és important, doncs,
és que aquesta subseqii¢ncia, el periode, sigui indistingible d’una seqiiencia completament aleatoria
d’igual longitud.

Per aix0 aquesta seqiiencia ha de complir certes propietats que veurem en els propers apartats.

No hem d’oblidar que els criptosistemes de clau compartida basen la seva seguretat en el fet que la
clau utilitzada per xifrar i desxifrar només és coneguda per I’emissor i el receptor. En el xifratge en
flux, si bé la clau no s’utilitza directament per xifrar, cal igualment que no es faci publica ja que
I’algorisme determinista es conegut i per tant es podria obtenir la seqiiencia xifrant a partir d’ell i la
clau.

Si ens fixem en I’esquema de xifratge en flux de la Figura 3.1 veiem que per tal d’obtenir el text
xifrat que enviem al receptor hem d’anar sumant el text en clar amb la seqiiencia xifrant que
resulta del generador pseudoaleatori. Aixo vol dir que la velocitat de transmissié de les dades entre
I’emissor i el receptor ve determinada pel minim entre la velocitat de generacié del missatge, m, i
la velocitat de generaci6 de la seqiiencia xifrant, s. Aixi doncs, cal tenir en compte aquest fet quan
estudiem els possibles generadors pseudoaleatoris ja que en funcié de la seva implementaci6 (ja
sigui en hardware o en software), obtindrem una velocitat o una altra. Cal que 1’algorisme que ens
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generi la seqiiencia sigui de facil implementacid, tant des del punt de vista de complexitat com pel
que fa al vessant economic.

No oblidem el || Els telefons mobils amb tecnologia GSM incorporen un xifrador de flux. Seria impen-
mén real sable que el cost economic del xifrador incrementés el preu del telefon mobil. Tampoc
no seria admissible que la velocitat de la comunicaci6 es veiés afectada per la velocitat
de I’esmentat xifrador.

Periode

Hem vist que per tal d’implementar un criptosistema de xifratge de flux necessitem un algorisme
que ens doni com a sortida la seqiiencia xifrant. Com ja hem dit anteriorment, el fet que aquest
algorisme sigui determinista fa que la seqiiencia que en resulta no sigui completament aleatoria i
per tant implica que a partir d’un cert moment es repeteix. Aquesta subseqiiencia que es va repetint
és el que s’anomena periode. Formalment, sigui {s;};>¢ una seqiiencia perioddica, el periode p és
I’enter més petit tal que s;1, = s; per a tot i > 0.

Ates que el periode es repeteix, una vegada es coneix ja es pot determinar exactament tota la
seqiiencia xifrant i per tant el criptosistema es pot trencar. Per aixo les seqiiencies que s’utilitzen
per al xifratge en flux cal que tinguin un periode molt gran, ja que d’aquesta manera triguen molt a
repetir-se i, per tant, és més dificil predir-ne la sortida.

El concepte de perfode gran és relatiu al xifrador i a I’aplicacié. Un periode de 232 pot

no ser prou llarg per a un xifrador que xifri a 1 Mbyte/seg. ja que a aquesta velocitat el
periode es repeteix només cada 8.5 minuts.

Aleatorietat

Com hem comentat, les xifres de flux fan servir generadors pseudoaleatoris.

Un generador pseudoaleatori (o PRNG, de I’angles, Pseudo Random Number
Generator) és un algorisme determinista que genera una seqiiencia a partir d’'una
entrada que anomenem llavor. La seqiiencia generada per un PRNG intenta
reproduir les propietats que tindria una seqiiencia generada de manera aleatoria.

Determinisme || Noteu que els PRNG sén algorismes deterministes, és a dir, donat un PRNG i una
en els PRNG llavor, la seqiiéncia generada sera sempre la mateixa.

Els generadors pseudoaleatoris criptograficament segurs (o CSPRNG, de 1’anglés, Crypro-
graphycally Secure Pseudo Random Number Generator) sén un tipus especial de PRNG que
generen seqiiencies no predictibles. En concret, per a que un PRNG sigui considerat un CSPRNG,
cal que les seqiiencies que genera tinguin dues propietats. A partir de k bits de la seqiiencia
generada, s;y 1,842, ,Sitk:

1. No existeix un algorisme en temps polinomial que pugui predir el segiient bit de la seqiiencia,
Si+k+1, amb probabilitat major al 50% i
2. No és computacionalment possible predir el bit anterior de la seqiiencia, s;.
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PRNG i Tots els CSPRNG s6n PRNGs pero I’afirmacié contraria no és certa, és a dir, un
CSPRNG generador pseudoaleatori no té perque ser criptograficament segur.

El concepte de complexitat lineal ens mesura el grau d’impredictibilitat d’una seqiiencia. En
concret, la complexitat lineal ens diu quina part de la seqiiéncia ens cal coneixer per tal de poder-la
predir tota. Per tal de calcular la complexitat lineal utilitzarem 1’algorisme de Massey. La definicié
formal de la complexitat lineal va lligada al concepte d’LFSR, que presentarem més envadant.
Aixi doncs, detallarem la definicié formal de complexitat lineal una vegada haguem introduit
I’arquitectura dels LFSR.

Una configuracié bastant habitual en criptografia és fer servir CSPRNG amb valors veritablement
aleatoris com a llavors. Aconseguir nombres (veritablement) aleatoris no és una tasca senzilla.
Per tal de generar-los cal disposar d’una font d’aleatorietat natural. Addicionalment, si aquesta
font d’aleatorietat es vol fer servir en criptografia, caldra assegurar també que un adversari no €s
capag¢ de manipular-la ni observar-la. Existeixen, principalment, dues maneres d’obtenir valors
realment aleatoris: a través de hardware, explotant I’aleatorietat que es produeix en fenomens fisics,
o a través de software, a partir d’observacions afectades pel comportament de ’usuari. Aixi, per
exemple, es pot fer servir el so capturat per un microfon, el soroll termic? d’una resisténcia o d’un
diode, les turboleéncies creades per 1’aire en segons quins dispositius o el moviment del ratoli.

Tests d’aleatorietat del NIST

El NIST disposa d’un banc de proves estadistiques per avaluar 1’aleatorietat de seqiiencies binaries
generades per PRNG. El banc consta de 15 testos. En aquest apartat, descriurem els testos més
senzills, amb 1’objectiu de donar una idea del que es busca en 1’avaluaci6 de 1’aleatorietat de
seqiiencies. Per tal de descriure els testos, suposarem que s’avalua la seqiiéncia binaria S =
{1,852, ,8,} de mida n bits.

El test de freqiiencia de bits individuals comprova que la proporcié d’uns i zeros de la seqiiéncia
proporcionada s’aproxima a la que observariem en una seqiiencia veritablement aleatoria, €s a dir,
que la proporcié d’uns i zeros és similar i s’aproxima, per tant, a 0.5. Per fer-ho, en primer lloc es
transforma la seqiiencia binaria d’entrada a una seqiiencia de —11 1:

X={x|xi=2-s;,— 1,Vie[l,n]}

és a dir, els zeros es converteixen en —1 i els uns segueixen representant-se amb 1.

Després, es calcula s,p,:
Sops = | YiiiXi |
obs —
N

Si la seqiiencia és aleatoria s, tendira cap a 0, mentre que si hi ha massa zeros o massa uns en la
seqiiéncia, aleshores s, tendira a ser major a zero.

Superacié dels || A partir del valor s, €ls testos del NIST calculen el nivell de significacié observat
testos per decidir si la seqiiencia supera o no la comprovacid. En concret, es considera que la
seqliencia supera la prova si el valor p és major o igual a 0.01. El lector interessat en
els detalls sobre els testos estadistics pot consultar la publicacié original del NIST: A.
Rukhin, J. Soto, J. Nechvatal, et al. (2010). A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications.

2S’anomena soroll térmic o soroll de Johnson-Nyquist a les fluctuacions eléctriques generades per 1 agitacié termica
dels electrons.
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Exemple 3.1 Calcul de la prova de freqiiéncia de bits individuals

Donada la seqiiéncia:
s=4{0,1,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,1,1,0,1,0,1,0,1,0,0,0}
amb n = 28, procedim a calcular s,p;.

En primer lloc, transformem la seqii¢ncia de zeros i uns en una seqiienciade —11 1:
X={-11,-1,1,-1,—-1,-1,-1,—-1,—-1,—1,1,1,—-1,—-1,1,1,1,1,—1,1,—1,1,—1,
1,-1,-1,-1}
Seguidament, calculem el valor s,;:

_XEx] |6

Sobhs = = ~ 1.1339
ok T /28 /28

Superacié del || En aquest cas, el nivell de significacio per a 5,55 = 1.1339 és de 0.256, de manera que
test el test es considera superat ja que 0.256 > 0.01.

El test de freqiiencia en un bloc comprova que el ndimero de zeros i uns en un bloc de m bits sigui
aproximadament m /2. Per fer-ho, es particiona la seqiiéncia a avaluar en b = |n/m| blocs de m
bits, descartant els bits sobrants.

k=1 k=2 k=b
S15 825+ -+y8m SmA+1ySm+25 -+ s Sm+m coo S=DmA1s 5 S(b—1)mtm
L ]l ] L 1
m bits m bits m bits

Aleshores, per cada bloc k (amb k= 1,---,b), es calcula:

m
Y Sk 1)t
m

o =

és a dir, es calcula la proporcidé d’uns que hi ha a cada bloc.

Finalment, es calcula:

b
Xops =4m Y, (m—1/2)*
k=1

Exemple 3.2 Calcul de la prova de freqiiéncia en un bloc

Donada la mateixa seqiiencia que en I’exemple anterior:
s=4{0,1,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,1,1,0,1,0,1,0,1,0,0,0}
amb n = 28, procedim a calcular m; per a cada bloc amb m = 6.

En primer lloc, dividim la seqiiéncia en b = |n/m| = |28/6| = 4 blocs de m = 6 bits
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0,1,0,1,0,0 0,0,0,0,0,1 1,0,0,1,1,1 1,0,1,0,1,0 1,0,0,0

6 bits 6 bits 6 bits 6 bits

Els ultims 4 bits de la seqiiencia es descarten i no s’utilizen en el test.

Aleshores, per cada bloc k (amb k= 1,---,4), calculem 7:
m oS : 6 s; 2
T = 2171 (k—1)m+j _ ijl J _c_ 1/3
m 6 6
6
T = 72171 6t = 1/6
6
6
- 182.647 4
s — Z,l6z6+j S 2/3
6
- 183. g 3
Ty = ZJ]636+j =z= 1/2

I finalment estem en disposici6 de calcular xobs

Mw

ngx = (ﬂ"k - 1/2)

k=1
= 4. 624:(7rk—1/2)

k=
=24. (1/3—1/2 (1/6—1/2)2+(2/3—1/2)2—1—(1/2—1/2)2)
=24-(1/36+1/9+1/36+0) =

Superacio del || En aquest cas, el nivell de significaci6 per a onbs =4 (tenint en compte que tenim b =4
test blocs) és de 0.4060, fent que el test es consideri superat ja que 0.4060 > 0.01.

El test de rafegues comprova si el nimero de rafegues tant d’uns com de zeros de la seqiiéncia
s’assembla al que trobariem en una seqii¢ncia aleatoria.

Definirem una rafega com un conjunt de bits consecutius iguals, és a dir una rafega de longitud k
consta dels elements s;, -+ ,5;1 4 1, tals que s, s =811 = = Sp1k_1 F Srak-

Per avaluar la prova de rafegues, es calcula:

on r(i) és la funcio:
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I"(l) _ 07 sis; = Si+1
1, altrament

Oscil-lacions La seqiiencia 10101010 oscil-la molt rapidament, ja que cada bit canvia el valor respecte
al bit anterior. En canvi, la seqiiencia 11111100 oscil-la molt lentament, ja que només
es produeix un canvi de valor en tota la seqiiencia.

Valors grans de V,;; indiquen que les oscil-lacions de valors en la seqiiencia avaluada (és a dir, els
canvis de u a zero o de zero a u) succeeixen rapidament, mentre que valors petits indiquen que les
oscil-lacions s6n lentes.

El NIST recomana que les seqiiencies avaluades amb aquest test tinguin com a minim 100 bits (s
a dir, n > 100).

Addicionalment, aquest test té com a prerequisit que la seqiiencia passi el test de freqiiencia de
bits individuals que hem descrit anteriorment. Es a dir, si una seqiiéncia no supera el test de bits
individuals, aleshores ja no es realitza el test de rafegues.

Exemple 3.3 Calcul de la prova de rafegues

Seguint amb 1’avaluaci6 de la mateixa seqiieéncia que en els exemples anteriors:
s={o,1,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,1,1,0,1,0,1,0,1,0,0,0}

amb n = 28. Noteu que si seguissim les recomanacions del NIST, no efectuariem el test de
rafegues sobre aquesta seqiiencia, ja que aquesta no té una longitud minima de 100 bits. A tall
d’exemple, pero, realitzarem els calculs per a aquesta seqiieéncia.

En primer lloc comprovem que la seqiiencia superi el test de freqiiencia de bits individuals.
Com hem vist al primer exemple, la seqiiéncia supera aquest test, aixi que procedim a calcular
Vag(obs).

n—1
Vu(obs) = (Z r(i)) +1

i=1
=(14+1+14+140+04+04+0+0+0+14+0+14+0+1+0+
+0+0+1+14+14+1+14+1414+04+0)+1=15

Superacié del || En aquest cas, el nivell de significacié per a V,,(obs) = 15 (i tenint en compte que la
test seqiiencia té 28 bits i una proporci6 de 11/28 d’uns) és de 0.5151, fent que el test es
consideri superat ja que 0.5151 > 0.01.

Com s’ha comentat, el banc de proves del NIST recull 15 testos diferents. A més dels tres
comentats, els altres testos comproven I’aparici6 de les rafegues d’uns més llargues, la repeticié de
subseqiiencies concretes dins la seqiieéncia, la facilitat de comprimir-la, la seva complexitat lineal o
les seves propietats espectrals, entre d’altres.
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Generadors lineals de seqliéncia xifrant

En I’apartat anterior, hem estudiat les propietats que han de tenir les seqiiencies xifrants per tal de
poder-les utilitzar en criptosistemes de xifratge de flux. Tractem ara com han de ser els algorismes
deterministes que generen aquests tipus de seqiiencies.

Des d’un punt de vista general tenim dos tipus de generadors: els lineals i els no lineals.

Els generadors lineals s6n aquells que només realitzen operacions lineals sobre els elements
d’entrada per obtenir la seqiiencia de sortida. Contrariament, els generadors no lineals sén els que
realitzen a més a més operacions no lineals, com podrien ser permutacions.

Generadors congruencials

Els generadors congruencials es basen en equacions modulars recurrents del tipus:
Xn = (axy,—1 +b) mod m

En aquest cas el valor xj seria la llavor de la seqiiencia xifrant. Un criptosistema que utilitzi un
generador d’aquest tipus tindra com a clau secreta els valors {xo,a,b,m}, i per tal que el periode
sigui maxim caldra que compleixi que ged(a,m) = 1.

Cal dir pero, que aquests tipus de generadors pseudoaleatoris no sén segurs des d’un punt de vista
criptografic ja que s’ha pogut demostrar que amb pocs valors x; coneguts ja es poden esbrinar els
parametres secrets {xo,a,b,m}. Fins hi tot, només amb una part dels bits que formen els x;, perd
aixo si, coneixent els parametres {a,b,m}, es pot arribar a determinar el valor de la llavor x.

Tot i aix0, aquests tipus de generadors s6n molt utilitzats en sistemes informatics per a aplicacions
no criptografiques.

Exemple 3.4 La funci6 rand() del sistema UNIX BSD utilitza el segiient generador congruen-
cial aff:

Xy = (1103515245x,_1 + 12345) mod 2*!

on la llavor especifica el valor inicial.

Registres de desplacament realimentats linealment (LFSR)

Un registre de desplacament realimentat linealment (o LFSR, de I’angles, Linear Feedback Shift
Register) de longitud n €s un dispositiu fisic o logic format per n cel-les de memoria i n portes
logiques que té una estructura com es mostra a la Figura 3.2.

Inicialment, les cel-les contenen els valors d’entrada, i a cada impuls de rellotge el contingut de
la cel-la s; es desplacga a la cel-la s;_; realitzant les operacions associades. D’aquesta manera es
genera un nou element, s,4 que és determinat per 1’expressio:

Spt1 = C18p + -+ CuS1 3.1

onels ¢; € {0, 1} corresponen als valors de les portes logiques de I’esquema. Es a dir, els coeficients
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Figura 3.2: Esquema general d’un LFSR

seran 1 si hi ha una connexié i 0 si no n’hi ha. Aquest nou element, s, 1, se situa a la cel-la s,, que
ha quedat buida a causa del desplagament.

El conjunt de valors continguts en cada cel-la en un instant de temps s’anomena estat. L’estat
inicial és I’estat en que es troba I’'LFRS en el moment de comencgar el procés.

Exemple 3.5 Funcionament d’un LFSR

Aquest exemple segueix el funcionament de I’LFSR de 4 cel-les representat en la segiient figura:

L0 1 0

Com es pot veure, I’estat inicial és 1010, que correspon a I’impuls de rellotge # = 0. La taula
segiient mostra 1’evolucié de I’LFSR en els diferents instants de temps.

Impuls de rellotge (t) | s4 s3 s» s | Sortida
0 1 0 1 0 0
1 0O 1 0 1 1
2 0O 0 1 o0 0
3 0O 0 0 1 1
4 1 0 0 O 0
5 0O 1 0 O 0
6 1 0 1 0 0
7 0O 1 0 1 1

Ent=01les cel-les s; i s3 contenen un 0 i, per tant, el bit 54 sera O en el segiient impuls de rellotge
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(t =1). Noteu com la resta de valors es desplacen: at =1 la cel-la s; conté el valor que hi havia
ent =0 alacella s, lacella s, conté el valor que hi havia a s3, etc.

En general, per i > 1 tenim:

sit=i)=st=i-1)
s(t=i)=s3(t=i—1)
sa(t=1i)=s4(t=10i—1)
sa(t=0i)=s51t=i—1)Ds3(t=i—1)

Si ens fixem, en I’impuls de rellotge r = 6 tornem a tenir 1’estat inicial i, per tant, a partir d’aqui
la seqiiencia es torna a repetir. Aquesta seqiiencia, doncs, té periode 6.

Un cop definit el que és un LFSR podem passar a fer un estudi una mica més exhaustiu per tal
de determinar-ne les seves caracteristiques més importants. L’avantatge principal dels LFSR és
que tenen una formulacié matematica molt simple, com veurem a continuacid i, per tant, es poden
estudiar de manera forga clara i completa. A més, com que es defineixen per mitja de cel-les i
portes logiques, s’implementen facilment en el maquinari, fet que permet obtenir generadors de
gran velocitat.

Primerament cal fer notar que I’estat inicial d’un LFSR no pot ser tot zeros. Si fos aix{, la seqiiencia
que produiria seria també tota de zeros, ja que totes les operacions son lineals. Es diu que I’estat
que tan sols té zeros és un estat absorbent. També convé destacar que el periode maxim d’un
LFSR és 2" — 1. Aquest valor s’obté de considerar tots els estats possibles 2" i eliminar-ne 1’estat
absorvent.

Si ens fixem en I’expressi6 3.1 ens adonarem que tota la seqiiencia de sortida d’un LFSR queda
determinada per I’estat inicial {sy,---,s,} i per la relacié

CiSptk—i perk >0 (3.2)

n
Snt+k =

i=1
onc; €{0,1} per1 <i<n.
El polinomi de connexions d’un LFSR de longitud 7 és el polinomi de grau n
Clx)=1+cx' +ox® +-- 4x"

onels ¢; € {0, 1} corresponen als valors de les portes 1ogiques de la figura de I’esquema general
d’un LFSR.

Exemple 3.6 Polinomi de connexions d’un LFSR

El polinomi de connexions corresponent a I’LFSR de I’exemple 3.5 és:

Cx)=1+0-x14+1.24+0- 2 +1-2* =14+2+x*
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Un LFSR queda determinat pel seu polinomi de connexions. Una seqiiéncia queda
determinada pel polinomi de connexions i pel seu estat inicial.

Definit el polinomi de connexions, ja podem determinar les caracteristiques de I’LFSR d’acord
amb les del seu polinomi de connexions:

1. Polinomi de connexions factoritzable: els LFSR’s que tenen polinomis de connexions
factoritzables generen seqiiencies que depenen de 1’estat inicial. A més, el periode de les
esmentades seqiiencies és sempre més petit que el periode maxim que pot tenir un LFSR,
que és 2" — 1.

2. Polinomi de connexions irreductible: igual que en el cas anterior, un LFSR amb un polinomi
de connexions irreductible (perd que no sigui primitiu) genera seqiiencies que depenen de
I’estat inicial de I'LFSR i, en aquest cas, el seu periode és un divisor de 2" — 1.

3. Polinomi de connexions primitiu: un LFSR amb polinomi de connexions primitiu té la
seqiiencia de sortida de periode maxim, 2" — 1. Aquesta seqiiencia de periode maxim s’obté
per a qualsevol estat inicial, llevat de I’estat absorbent.

Polinomi Un polinomi primitiu és també irreductible. Per tant, les seqiiencies generades per
primitiu LFSR amb polinomis de connexions primitius no dependran de I’estat inicial.

Considerant les propietats de les seqiiencies segons els seus polinomis de connexions, veiem que
per a esquemes de xifratge de flux és aconsellable fer servir la que determina el periode maxim.

Exemple 3.7 LFSR amb polinomi de connexions primitiu

El polinomi 1+ x> +x* (amb coeficients a Z,) és primitiu. Construim un LFSR amb aquest
polinomi de connexions, i observem la seqiiencia de sortida de I'LFSR al fer servir els valors
0001 com a estat inicial.

En s3 S2 51

c1 c2 Cc3 C4

[
U<
A

La seqiiéncia generada sera:

L; =1000100110101111000...

Efectivament, el periode de la seqiiencia generada és 2" — 1 = 2* — 1 = 15: a partir del bit 16, la
seqiiencia torna a repetir-se.

Si generem una segona seqiiencia amb el mateix LESR pero fent servir els valors 1010 com a
estat inicial, la seqiiencia que s’obté és:

L, =0101111000100110101...
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De nou, el periode de la seqiiéncia generada és 15.

El polinomi de connexions que hem fet servir és també irreductible. Per tant, les seqiiencies
generades amb diferents estats inicials son les mateixes, perdo amb un desplacament. En efecte,
podem veure com la seqiiencia L, és la seqiiencia L; desplacada 9 posicions a I’esquerra:

Ly = 100010011 0101111000100110101
Ly = 0101111000100110101

Per dltim, aprofitarem I’exemple per mostrar perque no podem generar una seqiiencia de periode
superior amb un LFSR de 4 cel-les. La taula segiient mostra tots els estats per els quals passa
I’LFSR per generar la seqiiencia Li:

t [Estat Sortida || t+ Estat Sortida
0 0001 1 8 0101 1
1 1000 0 9 1010 0
2 0100 0 10 1101 1
3 0010 0 11 1110 0
4 1001 1 12 1111 1
5 1100 0 13 0111 1
6 0110 0 14 0011 1
7 1011 1 15 0001 1

Fixeu-vos que I’estat a = 15 correspon a I’estat inicial (t = 0), motiu per el qual la seqiiencia
comenga a repetir-se. Noteu també com I’LFSR passa per 15 estats diferents, que sén tots els
possibles estats que es poden generar amb 4 bits, exceptuant 1’estat absorvent (0000). El periode
és doncs maxim, i no hi ha manera de generar un periode superior amb I’estructura d’un LFSR,
ja que no hi ha més estats possibles.

Addicionalment, fixeu-vos que 1’estat en = 9 correspon a I’estat inicial amb el que generem la
seqiiencia Ly.

Exercici 3.1 Calculeu els primers 15 bits de la seqiiencia de sortida d’un LFSR de 5 cel-les que
té com a polinomi de connexions 1 s s i que s’inicialitza amb 1’estat 0,0,0, 1, 1.

3.3.3 Limitacions dels generadors lineals

Nimero de No hem d’oblidar que el nombre de polinomis primitius de grau n ve donat per
polinomis I’expressié ¢ (2" —1)/n on ¢ és la funcié totient d’Euler.
primitius

Ja hem posat en relleu que els LFSR es comporten molt bé en termes de facilitat d’analisi, d’imple-
mentacié i de velocitat. Un dels punts negatius d’aquests generadors és que per tal que el periode
2" —1 sigui gran cal que la longitud de I’'LFSR, també ho sigui. Aixo pot representar un problema
ja que el cost de trobar polinomis primitius amb grau gran és forca elevat.

Malgrat els avantatges i inconvenients presentats, la rad principal per la qual els LFSR no serveixen
per si sols per a sistemes de xifratge en flux és que son facilment predictibles.
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En efecte, suposem que coneixem 2n bits consecutius, Ski1,Sk+2,° "+ ,Sk+2, aleshores podem de-
terminar els coeficients del polinomi de realimentacid, c;, i per tant tota la seqiiencia. Per fer-ho
només cal basar-se en I’expressié 3.2 per plantejar el segiient sistema d’equacions:

Sk+1 Sk+2 T Sk+4n Cn Sk+n+1
Sk+2  Sk+3 ot Sktntd Cn—1 Sk4-n+2
Sk+n  Sk+n+1 0 Sk+2n—1 Cl Sk+2n

Per tant, tenim un sistema d’n equacions amb » incognites, ¢; per 1 <i < n, amb la qual podem
determinar tots els coeficients.’

Aix{ doncs, a I’hora d’utilitzar un generador per a un procés de xifratge en flux, cal fixar-se
també (com ja hem esmentat anteriorment) en la seva predictibilitat, és a dir, el que s’anomena la
complexitat lineal.

Atés que qualsevol seqiiencia periddica es pot generar amb un LFSR no singular, J.L. Massey* va
definir la complexitat lineal d’una seqii¢ncia de la segiient manera:

La complexitat lineal d’una seqii¢ncia és el nombre de cel-les de I’'LFSR més curt
capag de generar-la.

Per tant, una seqiiencia generada per un LFSR de longitud » té dbviament com a molt complexitat
lineal n, molt baixa comparada amb el periode, 2" — 1. El mateix Massey va proposar un algo-
risme que, a partir d’una seqiiencia, determina I’LFSR minim que la genera amb 1’estat inicial
corresponent.

Exercici 3.2 Quin és el periode i la complexitat lineal maxima de les seqiiencies generades per
I’LFSR amb polinomi de connexions 1+ x4 x7?

Exercici 3.3 Donada la seqiiencia s = 00010011010111100010 , sintetitzeu I’LFSR que 1’ha
generada, sabent que el polinomi de connexions té grau 4.

Per a disminuir la predictibilitat de la seqiiencia de xifratge cal, doncs, augmentar la complexitat
lineal de la seqiiencia de xifratge, que convindria que fos de llargada propera a la del periode. Una
manera de fer-ho és basant-se en operacions no lineals, tal com veurem més endavant.

Generadors no lineals
A continuacié analitzarem alguns del generadors no lineals destinats a augmentar la complexitat

lineal de les seqiiencies de flux que es fan servir en I’actualitat. En concret, descriurem I’ A5 i el
Trivium.

3Noteu que aquest sistema d’equacions es pot resoldre facilment amb qualsevol métode de resolucié de sistemes
d’equacions lineals, per exemple, el metode de Gauss. Per a una introduccid als sistemes d’equacions lineals, podeu
consultar el primer capitol del llibre Elementary linear algebra, d’H. Anton.

#Massey va proposar un algorisme per sintetitzar I'LESR més curt capag de generar una seqiiéncia I’any 1969 a
I’article Shift-Register Synthesis and BCH decoding.
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AS

L’ AS és un algorisme de xifrat en flux que s’utilitza per al xifrat de dades en les transmissions de la
xarxa GSM?.

L’ A5 disposa de quatre variants, denotades amb els noms A5/0, A5/1, A5/2 1 A5/3. L’ A5/0 no fa
servir xifrat (retorna el propi text en clar), I’A5/1 correspon a la versi6 original de I’algorisme que
es fa servir a Europa, I’A5/2 és un algorisme de xifrat més debil creada per poder complir amb les
regulacions per exportar criptografia (i feta servir als Estats Units) i I’A5/3 és un algorisme de xi-
fratge totalment diferent (afegida amb posterioritat). En aquest apartat, descriurem el funcionament
de I’algorisme A5/1.

L AS va comencar a utilitzar-se a la xarxa GSM sense fer publica la seva especificacid, seguint el
principi de seguretat per obscuritat (en angles, security through obscurity). L'ds d’aquest paradigma
esta totalment desconsellat pels experts ja que viola el principi de Kerckhoffs.® Tot i no fer-se
public oficialment, un primer esborrany de I’algorisme va ser publicat al 1994 i I’especificacid
completa va ser finalment obtinguda a través d’un procés d’enginyeria inversa del firmware d’un
telefon mobil i donada a coneixer al public el 1999.

El criptosistema A5/1 és un criptosistema de flux que utilitza una combinaci6 no lineal de la sortida
de tres LFSR. Si pensem que I’ A5/1 xifra cadenes de text en clar de 228 bits (el que en el llenguatge
de telefonia mobil es coneix com trames de 228 bits), podem dividir el funcionament de 1’A5/1 en
tres etapes:

1. la inicialitzacié dels LFSR,

2. I’obtencio dels 228 bits de la seqiiencia de xifrat a partir del moviment dels LFSR,

3. el xifrat del text en clar propiament dit, que segueix el procediment habitual dels xifrats de
flux, realitzant una XOR de la seqii¢ncia de xifrat amb el text en clar.

Per xifrar 228 bits més caldra tornar a reinicialitzar els LFSR, obtenir els nous 228 bits de la
seqiieéncia xifrant i fer I’XOR amb els nous bits de text en clar.

La inicialitzacié dels tres LESR que formen 1’ A5/1 no es limita a donar-ne els seus valors inicials,
siné que el contingut inicial de les cel-les dels LFSR es calcula a partir d’unes claus d’entrada i
d’unes transformacions que descriurem més endavant. Com que la inicialitzacié dels LFSR es fa a
partir de propi funcionament del sistema, passem primer a descriure com s’obtenen els bits de la
seqiiencia de xifrat.

L’ AS5/1 té una estructura formada per 3 LFSR tal com es mostra en la Figura 3.3.

La Taula 3.1 detalla les longituds de cadascun dels LFSR de I’ A5/1 aixi com els seus polinomis de
connexions.

La no linealitat del sistema ve donada perque a cada impuls de rellotge no tots els LFSR avancen.
Només ho fan aquells LFSR els bits dels quals s6n majoria en les cel-les anomenades clocking bit
(en el cas de I’esquema, els clocking bits sén les cel-les marcades amb sombrejat, és a dir la cel-la 9
per al primer LFSR 1 les cel-les 11 per al segon i tercer). Aquest esquema es coneix com a clocking

SGSM sén les sigles de Global System for Mobile Communcation, la xarxa que englobava més del 80% de les
connexions mobils el 2010. L'ds de la xarxa ha anat minvant amb 1’aparicié de xarxes amb més ample de banda com ara
el 3G 0 4G.

6Recordem que el principi de Kerckhoffs postula que un criptosistema ha de ser segur encara que tota la informacié
sobre el criptosistema sigui piiblica, exeptuant la clau que ha de romandre privada. Es a dir, la seguretat d’un criptosistema
ha de recaure dnicament en el secret de la clau.
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irregular segons la funcié majoritaria.
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Figura 3.3: Esquema de I’ AS.

LFSR Longitud Polinomi de connexions Clocking bit
1 19 R SR | 9
2 22 2+ 41 11
3 23 P47+ a8 41 11

Taula 3.1: Descripci6 dels LESR de I’ AS.

Aixi, per exemple, si en la cel-la 9 del primer LFSR hi ha un 1, i en les cel-les 11 del segon i tercer
LFSR hi ha un 0, només avancaran el segon i el tercer LFSR, que tenen un 0. Si els tres sén iguals,
aleshores avancen tots. D’aquesta manera es van obtenint les sortides de cada un dels LFSR que
formen I’XOR que acabara proporcionant cada bit de la seqiiencia de xifratge.

Exemple 3.8 Iteracio de I’AS

Si en I'instant ¢ tenim els segiients estats interns® en els LFSR:
LFSR1: 1011100011 011000010

LFSR2: 1011011011 1101000010 01

LFSR3: 1110111110 0111001000 001

La sortida en aquest mateix instant de temps ¢ sera doncs:
z=0&1&1 =01 es calcula a partir de la sortida dels tres LFSR (els bits subratllats en els estats
interns).

Per tal de calcular I’estat dels LFSR en el segiient instant de temps ¢ + 1, observarem el bit de
clocking de cada LFSR (indicat amb negreta). En aquest cas, els bits de clocking sén 1, 11 0 per
al’LFSR 1, 2 i 3, respectivament. Per tant, el bit majoritari és 1, i avancaran doncs els LFSR 1 i
2. Aixi, I’estat intern dels LFESR en 7 + 1 és:

LFSR1: 1101110001 101100001
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LFSR2: 1101101101 1110100001 00
LFSR3: 1110111110 0111001000 001

“L’agrupaci6 de bits de 10 en 10 respon tnicament a qiiestions estetiques: s ha triat aquesta representacio per tal

que sigui més facil de llegir.

Passem ara a descriure el procés d’inicialitzacié de I’AS. La inicialitzaci6 requereix dos valors, una
clau de sessi6 de 64 bits i un niimero de trama de 22 bits, i consta de quatre passos:

1. En primer lloc, s’omplen tots els registres dels tres LESR amb el valor 0.

2. Seguidament, s’executen 64 impulsos de rellotge dels tres LFSR sense fer servir clocking
irregular. Es a dir, a cada impuls de rellotge, els tres LESR avancen. La particularitat d’aquest
pas és que el bit de retroalimentacié de ’LFSR fa una XOR amb un bit de la clau de sessi6
abans de ser inserit a la primera cel-la de ’LFSR. Cadascuna de les 64 polsacions fa servir
un dels bits de la clau de sessi6 diferent, de manera seqiiencial.

3. De manera similar al pas anterior, s’executen 22 impulsos de rellotge dels tres LFSR sense
fer servir clocking irregular. Aquest cop, pero, el bit de retroalimentacié fa una XOR amb els
bits del nimero de trama abans d’inserir-se de nou a la cel-la corresponent.

4. Finalment, es realitza una fase d’escalfament, on s’executen 100 impulsos de rellotge amb

clocking irregular.

La Figura 3.4 esquematitza el procés utilitzat per a realitzar els passos 2 i 3 de ’algorisme
d’inicialitzacié. Noteu que els passos 2 i 3 poden unir-se també amb un sol pas, on s’executen
64 +22 = 86 polsacions de rellotge fent una xor amb cadascun dels bits de la clau de sessié seguida

del nimero de trama.

| FRAME COUNTER SESSION K+Y |—

»@

o[ Twmr o] o Telel
3 B
—>o—> 1] Lrsr2 [11] 21|22
I
”A'i 1| LFSR 3 |8| |11| |21|22|23|

P

P

4

Figura 3.4: Esquema dels passos 2 i 3 de la inicialitzacié de I’ AS.

D

~
d

Es important remarcar que en aquests passos d’inicialitzacié el que interessa és el contingut que
acabaran tenint les cel-les dels LFSR i per tant, els bits de sortida dels LFSR en tots aquests passos
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es descarten. Un cop inicialitzats els LFSR es procedeix a obtenir els 228 bits de la seqiiencia de
xifratge. Finalment, per tal de xifrar una trama, es fara una xor amb els 228 bits obtinguts de la
sortida de I’ AS5/1 i els 228 bits que representen el text en clar de la trama.

Per tal de xifrar la segilient trama de 228 bits, procedirem a incrementar el comptador de trama
i tornarem a realitzar el procés d’inicialitzacié amb la mateixa clau de sessi6 i el nou valor de
comptador de trama.

Noteu que la clau de sessi6 no es canvia per cada nova trama a Xxifrar, siné que, en el context
de telefonia mobil en el que s’utilitza aquest sistema, la clau de sessié s’actualitza quan la xarxa
decideix tornar a autenticar el dispostiu mobil.

Trivium

El Trivium és un generador pseudoaleatori dissenyat pels criptografs Christophe De Canniere i
Bart Preneel que aprofita una implementacié hardware molt simple amb una velocitat elevada de
generaci6 de la seqiiencia, fet que el fa interessant en dispositius amb unes capacitats limitades
de processat, com ara etiquetes RFID. El seu funcionament esta descrit en 1’estandard ISO/IEC
29192-3.

El Trivium utilitza una clau de 80 bits 1 un vector d’inicialitzacié també de 80 bits 1 permet generar
seqiiencies de fins a 26* bits.

A diferéncia de I’AS, el Trivium no es basa en LFSR, pero si que esta format per 3 registres de
desplacament, tot i que la seva realimentaci6 no és lineal. Es a dir, les cel-les que contenen els
registres es desplacen a la dreta com en un LFSR pero la seva retroalimentacié no esta definida per
una funcio lineal. En la Figura 3.5 podem veure I’esquema del Trivium.

D ‘i1| A |66| |69| |91|92|93} >@

D
%9—>|1| B 69| | 78] |82 8381 |—>® 'X Z »
<I>—>| 1 | c |66| |87| |109|110|111} >

@
<«

Figura 3.5: Esquema del Trivium.

Com es pot veure, el Trivium esta format per tres registres de desplacament, A, Bi1C, de 93, 84 1
111 cel-les, respectivament. La retroalimentacié de cada registre no és lineal i, a més, la sortida de
cada un dels registres retroalimenta un altre dels registres.
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D’una banda, la sortida del Trivium (z) ve determinada en cada instant per les sortides dels tres
registres (9, b, 1°):

2=t 1
on cada un dels elements sén bits i, per tant, la suma es realitza modul 2.

Cada una de les sortides ¢t queden determinades per 1’estat dels registres de la segiient manera:

a __ . a a
t —S93+S66
b_ b b
t —S84+S69

c __ C C
1" = 5711 T Se6

Per tal de calcular el valor de la cel-la en la retroalimentacio, es fan servir les sortides ¢, de manera
que la sortida del registre a, t, s’utilitza en el calcul de la retroalimentacié del registre b; la sortida
del registre b, ¢, es fa servir en la retroalimentacié de ¢; i finalment la sortida del registre c, t, es
fa servir en la retroalimentacié del registre a. En concret, la retroalimentacié de cada registre ve
donada per les expressions:

a __ 4C C C a
Snew = 1+ (5509 * $110) + 569
b _ .a a a b
Spew = 1+ (591 - 552) + 578

c _ b b b c
Snew =1+ (552 - 583) + 587

on, de nou, tots els operands son bits i tant la suma com el producte’ d’aquesta expressio es realitzen
modul 2.

La taula segiient resumeix les accions que realitza cada posici6 especifica de cada un dels registres:

Feedback bit | Feedforward bit | AND inputs
A 69 66 91,92
B 78 69 82,83
C 87 66 109,110

Taula 3.2: Taula 3.2. Posicions destacades dels registres del Trivium.

Exemple 3.9 Iteracié del Trivium

Si en I'instant ¢ tenim els segiients estats interns? en els registres:

A:0111111100 1101111010 1111100101 1101010001 0111100010 0110110001
1100110111 1111100110 0101011100 011

B: 0100001010 1111011011 0110101000 1100010001 1111011000 1011110001
1101110100 0111100001 1011

C:1111110100 0111011101 0101111100 1010111100 0100011100 0001111011
1000011010 0111000011 1101010011 0101001000 0100000011 O

"De forma equivalent, també podem pensar el producte mddul 2 com un AND.
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Les sortides dels registres ¢ corresponen als valors:

tazsg3—|—sg6:1—{—1:0
tb:Sl§4+Sl679:1+0:1
IC:S€11+SE6:0+1:1

Noteu que els bits involucrats en els calculs dels valors ¢ es troben subratllats en 1’estat dels
registres per facilitar la lectura.

Aixi, la sortida del Trivium en I’instant ¢ correspon a:

2=t 4+tP+1°=0+1+1=0

Podem calcular també els bits que es faran servir en la retroalimentacié dels registres, per tal
d’actualitzar-ne el seu estat:

Szew:tc'f‘(scl‘ogScl‘lo)‘i_sggzl‘i_(l1)+1:1+1+1:1
Shew =1+ (551 -56) + 5735 =0+ (0-1)+0=040+0=0
Snew =17+ (83 -583) +557 =1+ (0-1) +0=1+0+0=1

Noteu que els bits involucrats en els calculs dels valors s,,,s €s troben indicats en negreta en
I’estat dels registres per facilitar la lectura.

Els bits sy, serviran per actualitzar 1’estat intern de cadascun dels registres. A tall d’exemple,

veiem quin seria I’estat del registre A en I’instant ¢ + 1:

A:1011111110 0110111101 0111110010 1110101000 1011110001 0011011000
1110011011 1111110011 0010101110 001

“De nou, I’agrupacié de bits de 10 en 10 respon tnicament a qiiestions estetiques: s’ha triat aquesta representacio
per tal que sigui més facil de llegir. Noteu, perd, que els 80 bits corresponen a I’estat del registre, sense cap mena de
separacio entre ells.

Inicialitzacié

A T’hora de xifrar un missatge, en primer lloc caldra realitzar la fase d’inicialitzacio del Trivium.
Aquesta fase fa servir el vector inicial, V1, i la clau, k, ambdés valors de 80 bits. Aleshores, es
prenen els 80 bits del vector inicial i es posen en les cel-les de més a I’esquerra del registre B.
Seguidament, es prenen els 80 bits de la clau i es posen en les cel-les de més a I’esquerra del registre
A. La resta de cel-les, de qualsevol dels tres registres, que no han quedat plenes s’omplen amb
zeros, llevat de les 3 cel-les de més a la dreta del registre C, en les que s’hi inclou un 1 en cada un
d’elles. La Figura 3.6 mostra graficament la inicialitzaci6 del Trivium.

Una vegada s’han situat aquests valors en els estats dels 3 registres, s’executen 1152 cicles de
rellotge descartant els bits de sortida d’aquestes 1152 iteracions.
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Figura 3.6: Fase d’inicialitzaci6 del Trivium.

Finalment, una vegada s’ha inicialitzat el generador ja es pot utilitzar la seqiiencia de sortida per
xifrar el missatge en clar. Aix{i, cada bit de sortida del generador a partir de la iteracié 1153 (un cop
s’ha inicialitzat el generador) es combinara amb una XOR amb el bit de text en clar a xifrar.

Per desxifrar un missatge utilitzant el Trivium, caldra realitzar exactament el mateix procés aquesta
vegada sobre el missatge xifrat, procés que es pot dur a terme perque emissor i receptor comparteixen
tant el vector inicial com la clau, ja que estem davant d’un criptosistema de clau simétrica.
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Resum

En aquest capitol hem descrit el funcionament i les caracteristiques principals dels esquemes de
xifratge de flux. Hem estudiat les propietats que ha de tenir una seqiiencia aleatoria perque es pugui
utilitzar com a seqiiencia de xifratge. Hem presentat igualment diferents tipus de generadors per a
obtenir seqiiencies pseudoaleatories. Hem assenyalat que els registres de desplagcament realimentats
linealment (LFSR) eren els més interessants perque sén facils d’estudiar, tot i que, com ja hem
apuntat, no n’aconsellem 1’aplicacié en criptografia perque la seva criptoanalisi és forca senzilla.
Finalment, hem estudiat dos generadors que es fan servir avui en dia en productes habituals, I’ A5 i
el Trivium.
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Solucions dels exercicis

Exercici 3.1:

Tenint en compte el polinomi de connexions de I’'LFSR, el nou bit es calcula fent una XOR entre
els bits de les cel-les s4 1 51 (que es troben subratllats a la taula) en I’instant de temps anterior:

Impuls de rellotge (7) Estat Sortida

0 00011 1
1 10001 1
2 11000 0
3 11100 0
4 11110 0
5 11111 1
6 01111 1
7 00111 1
8 10011 1
9 11001 1
10 01100 0
11 10110 0
12 01011 1
13 00101 1
14 10010 0

Aix{i doncs, els 15 primers bits de la seqiiencia de sortida sén: 110001111100110
Exercici 3.2:

El polinomi 1+ x4 té grau n = 5 i és un polinomi primitiu. Per tant, la complexitat lineal
maxima de les seqiiéncies que genera és n = 5 i el periode serh 2" — 1 =25 —1 =31.:

Exercici 3.3:

Per trobar el polinomi de connexions necessitem tnicament 2n = 8 bits consecutius de la seqiien-
cia de sortida. Si agafem, per exemple, els 8 primers bits, podem plantejar el segiient sistema
d’equacions:

0001 ch 0
0010 | | o
0100 o |71
100 1 ¢ 1

La soluci6 del sistema és c4 = 1,c3 = 1,¢p = 0,c; = 0 i, per tant, el polinomi de connexions és
AP+,
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4.1

Una alternativa a les xifres de flux son les xifres de bloc. Aquestes xifres s’inclouen també dins dels
criptosistemes de clau compartida ja que la clau que s’utilitza per a xifrar i desxifrar és la mateixa i la
comparteixen emissor i receptor. La diferéncia basica entre el xifratge en flux i el xifratge en bloc és la
utilitzacié de la memoria en els algorismes de xifratge.

Ja hem vist en el capitol anterior que el xifrat de flux utilitza una clau diferent per cada bit d’informacié.
Aquesta clau depen de ’estat inicial del generador, perd també de ’estat del generador en el moment de
xifrar un bit concret. Per tant, dos bits iguals es poden xifrar de maneres diferents depenent de 1’estat en que
es trobi el generador. En el xifratge en bloc aix0d no passa ja que les xifres en bloc actuen sense memoria, i
per tant el text xifrat només depen del text en clar i de la clau. D’aquesta manera, dos blocs de text en clar
iguals es xifren sempre de la mateixa manera quan s’utilitza la mateixa clau. Caldra estudiar aquest fet en
detall ja que si no es corregeix, els sistemes de xifrat que en resulten sén forca vulnerables, ja que es poden
inserir o esborrar blocs de text xifrat sense que es pugui detectar. A més, el fet que dos blocs de text en clar
quedin xifrats d’una mateixa manera, pot donar pistes per a una possible criptoanalisi de tipus estadistic.

Pel que fa a la seva utilitzacid, les xifres de bloc sén forga utilitzades ja que aconsegueixen una velocitat
acceptable de xifratge. En concret, el xifrador en bloc més utilitzat és 1’ AES (Advanced Encryption Standard)
ja que esta establert com a estandard per el NIST des de 1’any 2002.

Definicio de les xifres de bloc

Les xifres de bloc s6n un dels elements més importants en criptografia i es fan servir en diferents contextos.
D’una banda, es poden fer servir directament en esquemes de Xifrat per tal de proporcionar confidencialitat.
D’altra banda pero, també es fan servir com a primitives basiques en altres esquemes criptografics, com ara
els generadors pseudoaleatoris, les funcions hash o els codis d’autenticacié de missatges (coneguts per les
seves sigles en angles, MAC de Message Authentication Codes).

Una xifra de bloc és una funcié que rep un bloc b d’n bits de text en clar i retorna un text xifrat ¢ també d’n
bits:

c = Ex(b)
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Diem que 7 és, aleshores, la mida de bloc del criptosistema.

Noteu que la funcié rep com a parametre el valor k, que representa la clau. La mida de la clau és la longitud
en bits de k.

Per tal d’assegurar que al desxifrar un text xifrat amb E (amb una mateixa clau k) obtenim el text original, la
funcié E ha de ser invertible. Aixi doncs, les xifres de bloc diposen també d’una funcié de desxifrat, que
realitza el procés invers de la de xifrat:

b = Dy(c)

La majoria de vegades que fem servir un criptosistema de bloc voldrem xifrar contingut que supera la mida
del bloc del criptosistema utilitzat. En aquests casos, el que es fa és partir el text que cal xifrar, m, en diversos
blocs, my,my, ..., cada un dels quals té la llargada corresponent al bloc per a xifrar (n bits), i xifrar cadascun
dels fragments. El procediment a seguir per xifrar cadascun dels fragments queda determinat per el mode
d’operacio.

Modes d’operacio

El mode d’operacié més senzill és coneix com a ECB (de I’angles, Electronic Code Book) i consisteix a
xifrar cada un dels blocs del missatge en clar, m;, de manera individual, fent servir la mateixa clau. Aixi,
s’obtenen els blocs xifrats ¢;, que es concatenen per formar el text xifrat c. La Figura 4.1 esquematitza el
procés de xifrat en mode ECB.

c1 c2 ce Cn

Figura 4.1: Esquema de xifrat amb el mode ECB.

Les propietats principals que ens ofereix el mode ECB sén:

1. Els blocs de text en clar idéntics resulten en blocks xifrats també ideéntics (si es fa servir la mateixa
clau).
2. Cada bloc es xifra de manera independent als altres blocs.
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3. Permet accés aleatori al contingut, és a dir, és possible desxifrar un bloc i sense haver de desxifrar els
anteriors.
4. Els errors no es propaguen: un error en un bloc afecta només a aquell bloc.

Com a conseqiiencia immediata d’aquestes propietats, el mode ECB és vulnerable a certs atacs. D’una banda,
per la propietat 1) un atacant que observi el text xifrat pot aprendre directament si el text original conté
blocs iguals. A més, aquesta propietat també pot facilitar els atacs de tipus estadistic per a obtenir la clau k.
Aix{ mateix, el mode ECB no és capa¢ d’amagar els patrons en les dades. D’altra banda, per la propietat
2), un atacant pot reordenar el text xifrat, fent que al desxifrar-se s’obtingui el text en clar reordenat, sense
que el receptor pugui detectar el canvi. Addicionalment, un atacant també pot inserir blocs de text xifrat o
eliminar-ne, sense que el desxifrat posterior falli.

Per tal d’exemplificar les conseqiiencies de fer servir el mode ECB per a xifrar dades de mida superior al
bloc, procedim a xifrar una imatge amb aquest mode, i a visualitzar el text xifrat resultant també en forma
d’imatge (veure Figura 4.2.

Figura 4.2: Exemple de xifrat d’'una imatge amb ECB.

La imatge de I’esquerra correspon a la imatge en clar i la de la dreta és el resultat de xifrar la primera imatge
fent servir el mode d’operacié ECB. Com es pot apreciar, tot i que detalls concrets de la imatge original no es
revel-len en la versi6 xifrada (per exemple, el color), la silueta de la imatge queda perfectement reconeixible.

Exercici 4.1 Suposem un esquema de xifrat de bloc amb mida de bloc de 2 bits i mida de clau també
de 2 bits que implementa la segiient funci6 de xifrat E:

Entrada k  Sortida || Entrada &k  Sortida
00 00 11 00 01 00
01 00 10 01 01 01
10 00 01 10 01 10
11 00 00 11 01 11
00 10 01 00 11 10
01 10 11 01 11 00
10 10 00 10 11 11
11 10 10 11 11 01

Xifreu el missatge m = 1001100100110000 amb k = 10 fent servir la funcié de xifrat E i el mode
d’operaci6é ECB.

El mode CBC (de I’angles, Cipher Block Chaining) consisteix en I’encadenament dels blocs per al xifratge,
de manera que es crea una dependéncia del xifratge de cada bloc amb I’immediatament anterior. De nou,
cada bloc es xifra amb la mateixa clau k, pero el text que es xifra no és directament el bloc en clar, sin6 el
resultat d’'una XOR entre el bloc en clar i el bloc xifrat anterior. La Figura 4.3 esquematitza el funcionament
del mode CBC.
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co —>@

c1 2 e Cn

Figura 4.3: Esquema de xifrat amb el mode CBC.

Suposem un xifratge de bloc amb una clau k, una funcié de xifratge E i una de desxifratge D. Simy,...,my,
son els blocs de text en clar que cal xifrar, mitjangant el sistema CBC el xifratge del bloc m; es porta a terme
de la manera segiient:

ci = Ex(mi®ci1).

Per a fer-ne el desxifratge també ens cal partir del text xifrat anterior, i aleshores hem d’executar 1’operacié
segiient:
Dy(ci) @ ci-1 = Di(Ex(m;i ©ci-1)) ®ci1) = (mi @ cim1) S ci1)m;.

Per a xifrar el primer bloc necessitarem un bloc inicial aleatori, cg, que no cal que sigui secret. Aleshores,
incloent aquest nou vector inicial en el xifratge podrem obtenir dos textos en clar iguals pero xifrats de
manera diferent; aixi, encara que emprem la mateixa clau, k, només ens caldra canviar el vector inicial, cy,
que, a més, pot incorporar una marca temporal.

En contraposicié amb el mode ECB, si un atacant canvia 1’ordre dels blocs xifrats amb CBC, aleshores el
procés de desxifrat no es realitza correctament. Addicionalment, un error en un bloc xifrat afecta el desxifrat
d’aquell bloc, perd també del segiient. Noteu que els blocs successius es desxifren ja correctament.

Amb aquesta estructura, el mode CBC aconsegueix ocultar els patrons del text en clar molt millor que el
mode ECB. Si repetim el procediment de xifrar la imatge del cadenat fent servir ara el mode CBC, podem
observar com ara en la Figura 4.4 no podem intuir el perfil de la imatge a partir de la imatge xifrada.

Exercici 4.2 Xifreu el mateix missatge m amb la funcié E definida en I’exercici 4.1 i la clau k = 10,
fent servir ara el mode d’operacié CBC amb el vector inicial 10.

El mode de xifratge CFB (de I’angles, Cipher Feedback) utilitza indirectament el xifrador de bloc, com
veurem a continuacié. Per aixo, la llargada dels blocs que s’han de xifrar no cal que sigui la mateixa que la
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Figura 4.4: Exemple de xifrat d’'una imatge amb CBC.

dels blocs del criptosistema amb que actua, sind que pot ser més petita. L’esquema general de funcionament
d’aquest metode es mostra a la Figura 4.5.

VI
VI | VI V] c1
\ \4
k—| E k—| E
E(VI) L 4 \
E(VI)L|E(VI), E(VI)
v y
mi >® ma >@D
A Y
Cc1 Cc2

Figura 4.5: Esquema de xifrat amb el mode CFB.

Donat m =mm; ..., en que m és el missatge de text en clar, i my,my, ... representen els blocs de longitud n
que formen el missatge, si considerem el vector inicial VI com una concatenacié d’/ blocs de longitud n,
ésadir, VI=VI}VI,...VI;, on VI; i té n bits de llargada, podrem calcular el xifratge del vector VI, E(VI),
mitjangant el criptosistema de bloc.

El resultat tindra la mateixa llargada que VI i, per tant, el podrem descompondre de la mateixa manera que
aquell:
E(VI)=E(VI)E(VI),...E(VI),

Finalment, ja podrem xifrar el primer bloc de text en clar, m, fent la suma bit a bit amb el darrer bloc,
E(VI);:
c1 =my EBE(VI)I;
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obtenim aix{ el primer bloc xifrat de longitud n, c;.

Per a xifrar el segon bloc, m; , tornarem a fer el mateix procés, perd aquesta vegada prendrem com a vector
inicial el vector format pels fragments segiients:

VI= V12V13 cee VIlcl,

és a dir, hem desplacat els blocs d’n bits cap a I’esquerra per afegir-hi el bloc ¢ i descartar-ne el V1.
D’aquesta manera, el segon bloc de text xifrat 1’obtenim fent I’operacié segiient:

c) = E(Vlb)l Smy.

El procés es repeteix al llarg dels blocs de text que es vol xifrar: per al bloc segiient es desplacen els blocs del
vector inicial anterior, V1p,... a I’esquerra per afegir-hi el darrer bloc de text xifrat obtingut i anar aplicant el
que ja hem descrit anteriorment.

Exercici 4.3 Xifreu el mateix missatge m amb la funcié E definida en I’exercici 4.1 i la clau k = 10,
fent servir ara el mode d’operacié CFB amb el vector inicial 10.

El mode de xifratge OFB (de 1’angles, Output Feedback) utilitza el criptosistema de bloc com a generador
pseudoaleatori. Es un sistema molt semblant a I’anterior; ’tinica diferéncia que presenta és que el vector
inicial es realimenta directament amb el resultat del xifratge de bloc abans de fer la suma bit a bit amb el
bloc de text en clar, com es pot veure a la Figura 4.6.

VI
VIi| VI VI E(VI)
\ \d
k—| E k —| E
E(VI) v
E(VI):|E(VI), E(VI)
| l
m1 >® my ——>®
A\ l
c1 Cc2

Figura 4.6: Esquema de xifrat amb el mode OFB.

Com que el xifrador de bloc actua com un generador pseudoaleatori, cal que els criptosistemes de bloc que
emprem amb el mode OFB compleixin les caracteristiques requerides per als generadors pseudoaleatoris,
tant pel que fa a la impredictibilitat de la seqiiencia resultant com a la complexitat lineal.
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4.2 El criptosistema AES Q1

Exercici 4.4 Xifreu el mateix missatge m amb la funcié E definida en I’exercici 4.1 i la clau k = 10,
fent servir ara el mode d’operacié6 OFB amb el vector inicial 10.

El mode CTR (de I’angles, counter) és similar a 1I’OFB, convertint també el criptosistema de bloc amb un
xifrador de flux. La seqiiencia de xifrat es genera xifrant succesius valors d’un comptador (d’aqui en sorgeix
el seu nom), que pot ser qualsevol funcié que tingui un periode gran (veure Figura 4.7).

ctrq ctrg v ctrp

¢l o e cn

Figura 4.7: Esquema de xifrat amb el mode CTR.

Un us habitual és fer servir un valor de nonce aleatori concatenat amb un comptador que s’incrementi d’un
en un. Aixi, per exemple, si la mida de bloc del xifrador a utilitzar és de 128 bits, se selecciona una nonce
de 64 bits i un comptador de 64 bits. Per a xifrar el primer bloc, es concatena la nonce amb el comptador
inicialitzat a 0. Per a cada nou bloc, el comptador s’incrementa en 1. D’aquesta manera, es poden xifrar 26
blocs amb la mateixa nonce.

El principal avantatge d’aquest mode d’operacié és que permet paral-lelitzar tant el procés de xifrat com
el de desxifrat, el que el fa addient per funcionar en dispositius amb més d’un processador. A més, permet
accés aleatori (com el mode ECB).

Exercici 4.5 Xifreu el mateix missatge m amb la funcié E definida en I’exercici 4.1 i la clau k = 10,
fent servir ara el mode d’operacié CTR amb el vector inicial 10.

El criptosisterna AES

L’any 1998, els criptografs belgues Vincent Rijmen i Joan Daemen van desenvolupar 1’algorisme anomenat
(en reconeixement dels autors) criptosistema de Rijndael. Aquest criptosistema va ser triat pel NIST com a
AES (de I’angles, Advanced Encryption Standard) 1’any 2000, reemplagant el DES.

De fet, el Rijndael és una familia d’algorismes de xifrat amb diferents mides de clau i de bloc. En concret, el
Rijndael defineix blocs i claus de mida minima 128 i maxima de 256, acceptant multiples de 32 bits. L’ AES
n’és només un subconjunt, amb mida de bloc fixada a 128 bits.
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El criptosistema AES xifra blocs de text en clar de 128 bits de longitud. La longitud de
les claus de xifratge que aquest criptosistema empra pot variar entre 128, 192 o 256 bits.
Les operacions criptografiques es basen en un grup finit d’ordre 28.

4.2.1 Descripcié del funcionament

El funcionament de I’ AES es mostra en la Figura 4.8. Es basa en una transformacié inicial seguida d’un
nombre d’iteracions que varien entre 101 14, segons la longitud de la clau.

El nombre El nombre d’iteracions que es mostren en el grafic €s n — 1 perque la iteracio final, tot i
d’iteracions que es considera iteracié, no conté la funcié mixColumn.

Initial transformation

cleartext »

AddRoundKey

——

<

A\

Standard Iteration

ByteSub
ShifRow
MixColumn
AddRoundKey

n-

iteral

1
tions

A

Final transformation

ByteSub
ShifRow
AddRoundKey

ciphertext

Figura 4.8: Estructura de I’ AES.

La taula segiient mostra el nombre exacte d’iteracions Nr en funcié del nombre de paraules de 32 bits que té

la clau que s’utilitza per xifrar (Nk):

Nk=4 | Nk=

6

Nk =

8

10

12

14

La unitat basica d’informacié amb que treballa I’ AES és el byte. Totes les cadenes de bits (textos en clar i
claus) es representen amb matrius de bytes. Per exemple, una cadena de 128 bits de text en clar:

m=mpmy---nmj7mi2g

es representard amb 16 bytes de la segiient manera:
aop,0 = mmym3m4msmeniynig
ai,0 = momiony1m2Mm3ni4msiie
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asz 3 = Mmi21M122M123M1241M125M126/111271M128

1 aquests bytes es poden expressar de forma matricial:

apo | @01 | o2 | ao3
aio | a1 | @ | 13
aro | a1 | a22 | A23
aso | a3 | a3p | a3

Les diferents funcions que executa I’AES (per exemple, AddRoundKey, ByteSub, etc.) tenen com a entrada i
com a sortida una matriu de bytes com I’anterior.

Les matrius intermedies amb que treballa el criptosistema AES s’anomenen matrius
d’estat. Les matrius d’estat son matrius 4 x 4 i cada element de la matriu és un byte. Els
elements de cada estat es denoten per s;;, on i determina la fila i j la columna.

Les operacions “suma” i “producte” de bytes que executa I’ AES no sén les operacions convencionals que
coneixem. En concret, I’AES considera els bytes en una representacié de polinomi. Cada byte b es pot
representar amb 8 bits:

b= [b77b67b57b4vb37b27blab0]70n bi S {07 1}
Aquest conjunt de bits es pot expressar com els coeficients d’un polinomi de grau 7:

b7xT 4 bex® + bsx® + bax* 4+ b3x> + box® + b1x+ by = Y| bix'. Per exemple, el byte 01100011 té com a
representacio el polinomi x® 4+ x> +x+ 1

Per tal de simplificar la notacid, representarem els bytes en notaci6 hexadecimal. Aix{, I’element 01100011
en base binaria es representara per un 63 en base hexadecimal, ja que 011000115 =99 19 = 63 (1.

Donades aquestes representacions, considerem que la “suma” i el “producte” es defineixen de la manera
segiient.

Siguin les representacions binaries dels bytes x = (x7,X¢,Xs,%4,X3,%2,X1,%0) 1Y = (37,6,Y5,Y4,Y3,Y2,Y1,50)-

Definim I’operacié suma:
x®y = (x7Dy7,%6 D Y6,%5 D Y5, X4 D ya,X3 DY3,%2 Dy2,%1 D y1,% D yo)
on @ denota I’operacié XOR bit a bit.!

D’altra banda, definim 1’operaci6 producte:
x®@y = (x7x7 + x6x% 4 x5x° + x40t 4+ x33% +2x0x7 + x1x +x0) (Y727 4+ Y6x° + Y510 + yax* +y3x° +yox Fy x4+
bo) (mod x® 4+x* +x° +x+1).

Exemple 4.1 Calcul de “suma” i “producte”:
Donats els bytes x i y:
x="5716=01010111 =x®+x*+ x> +x+1
y=83(16 = 10000011, = x" +x+1,

calculem la suma i el producte de bytes:

IRecordeu que I’operacié XOR queda definidaper: 180=001=1,191=050=0.

https://www.criptografia.cat v0.2.1 04/02/2026


https://criptografia.cat

4.2.2

423

94 Capitol 4. Les xifres de bloc

x@y = 57(16 D 83(16 = D4(16’
ja que: 01010111, @ 10000011, = 11010100, = D16

D’altra banda, pel “producte” tenim:
x®y=157(16 ®83(16 = Cl1s,

ja que:
(O +xt+x2+x+1)-(x" +x+1) (mod x® +x*+x3+x+1) =
=@ +xM + 2+ B+ B+ P+ 2P +1) (mod AP+ + 2 +x+1) =

=x"+x%+1= 11000001, = C1 4.

Un cop vistes aquestes representacions, ja podem passar a veure el funcionament de 1’algorisme.

Detall d’'una iteracié

En el grafic del funcionament general de I’algorisme es mostra com I’ AES realitza, primer, una transformacié
inicial del text d’entrada, aplicant la funcié AddRoundKey. Després, s’executen n — 1 iteracions, cadascuna
de les quals aplica les funcions ByteSub, ShiftRow, MixColumn i AddRoundKey. Finalment, es realitza una
transformacié final que executa tres de les quatre funcions anteriors, deixant d’aplicar la funcié MixColumn.

A més d’aquestes operacions, en la transformacié inicial el text en clar s’ha de convertir en una matriu
d’estat, que sera utilitzada per la funci6 AddRoundKey. De manera similar, la transformacid final transforma
la sortida de la funcié AddRoundKey (que és una matriu d’estat) en el text xifrat final.

Passem a descriure cada una de les funcions que s’executen en cada iteracio.

Funcié AddRoundKey

La funcié AddRoundKey s’utilitza tant en les transformacions inicial i final com en les iteracions estandard.

La funci6 AddRoundKey fa una suma XOR de la matriu d’estat amb cada byte de la
subclau K(i) corresponent. En el cas de la transformaci6 inicial tenim, i = 0; per tant,
utilitzem la primera subclau K (0).

Les subclaus L’index i denota la subclau de 128 bits que es fa servir en la i-€sima iteracid tenint en

compte que K(0) sera la subclau que es fara servir per a la transformacié inicial. Podeu
trobar la descripcié de com s’obtenen les subclaus a partir de la clau inicial de xifratge
en el subapartat 4.2.7 d’aquest capitol.

Exemple 4.2 Calcul de la funcié AddRoundKey
Considerem la subclau: K(0) = b692¢f0b643dbd f1be9bc5006830b3 fe

9d 28 91 00
f1 7f 718 a6
39 ¢l 6¢c c6
3¢c aa 25 a5

ila matriu d’estat S =
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El resultat d’aplicar la funci6 AddRoundKey sera:

9d 28 91 00 b6 64 be 68 2b 4c 2f 68

|7 7 78 a6 92 3d 9 30| |65 42 €3 96
AddRoundKey(S,K©O) =139 1 6c ¢6|®|cf bd 5 b3|=|f6 7c a® 75
3¢c aa 25 a5 0b f1 00 fe 37 5b 25 5b

Fixeu-vos que la suma XOR de les matrius correspon a la suma XOR de cada una de les seves entrades. Ai-
xi, per exemple, la primera posici6 de la transformacié val 2B, ja que 9D @ B6 = 10011101 & 10110110 =
2B.

S
-
9d ‘ b6 2
AddRoundKey(S, K(0) = | 1% E 92 65
39 cf 6
r

4.2.4 Funci6 ByteSub

La funcié ByteSub aplica una substitucié no lineal dels bytes de la matriu d’estat.

La funci6 ByteSub? rep com a entrada una matriu d’estat A, hi aplica una transformacié S i obté una altra
matriu d’estat B, de manera que b;; = S(a;;). La transformaci6 de cada byte de la matriu es realitza de
manera independent.

Les caixes S de I'AES

Les caixes S de I’AES s6n una matriu de 256 elements que s’utilitza com una taula de consulta. Normalment
es representa com una matriu de 16 files i 16 columnes. Si representem cada byte a processar amb dos
caracters hexadecimals xy, aleshores el valor x indica la fila i el valor y la columna de la posici6 on es troba
el byte resultant.

Taula de Una taula de consulta (en angles, lookup table) és una estructura de dades que substi-
consulta tueix una execucio algorismica per una operacié d’indexacié. Normalment I’ objectiu
d’utilitzar taules de consulta és reduir el temps d’obtencié del resultat esperat.

2La funcié ByteSub apareix amb aquesta denominacié a la proposta inicial del criptosistema de Rijndael. A la
publicacié de I’ AES en I’estandard FIP-197, la funcié s’anomena SubBytes. Sigui quin sigui el nom que se li doni, en
els dos casos és la mateixa funcid.

https://www.criptografia.cat v0.2.1 04/02/2026


https://criptografia.cat

96 Capitol 4. Les xifres de bloc

H X0 x1 x2 x3 x4 x5 x6 X7 x8 x9 xa xb xc xd xe xf

Oy |[63 Tc 77 Tb f2 6b 6f ¢S5 30 1 67 2b fe dI ab 76
ly|lca 82 9 7d fa 59 47 fO0 ad d4 a2 af 9c ad 72 <0
29 || BT fd 93 26 36 3f f71 cc 34 a5 €5 f1 71 d8 31 15
3y || 4 7 23 3 18 96 5 9a 7 12 80 €2 eb 27 b2 75
4y |1 9 83 2¢ la 1b 6e 5a a0 52 3b d6 b3 29 €3 2f 84
Sy (/53 dl 0 ed 20 fc bl 5b 6a cb be 39 4a 4c 58 cf
6y ||dO ef aa fb 43 4d 33 85 45 f9 2 Tf 50 3¢ 9f a8
Ty || 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 || cd Oc 13 ec 5f 97 44 17 ¢4 a7 Te 3d 64 54 19 73
9y || 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e O0b db
ay||e0 32 3a 0a 49 6 24 5¢ 2 d3 ac 62 91 95 e4 79
by || el ¢8 37 6d 8 d5 4e a9 6¢c 56 f4 ea 65 Ta ae 8

cy||ba 78 25 2 1lc a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
dy||70 3e b5 66 48 3 f6 0e 61 35 57 b9 86 «cl 1d 9e
ey || el f8 98 11 69 d9 8e 94 9 1le 87 €9 ce 55 28 df
fyl|l 8 al 89 0d bf e6 42 68 41 99 2d Of bO 54 bb 16

Exemple 4.3 Calcul de la funcié ByteSub

b5 bl b9 b5
9 cc 5 8
17 11 1b 15
9¢ 99 92 9d

Calculem la transformacié de la primera entrada de la matriu, Soo = b5. Busquem el valor de primera
component, b a les files de la taula de les caixes S, i el valor de la segona component 5 a les columnes.
Aix0 ens indica que el valor que hi ha a la intersecci6 sera el valor resultant, en aquest cas el d5. Si fem el
mateix procés amb tots els elements de la matriu tenim com a resultat:

d5 ¢8 56 d5
dd 4b a6 €8
f0 82 af 59
0b ee 4f 5Se

ByteSub(S) =

4.2.5 Funcio ShiffRow

La funcié ShiftRow desplaga les files de la matriu d’estat de manera que la fila zero
es deixa igual, la fila 1 es desplaca una posicié a 1’esquerra, la fila 2 es desplaca dues
posicions a I’esquerra i la fila 3, tres posicions a I’esquerra.

Exemple 4.4 Calcul de la funcié ShiftRow
Si suposem la matriu d’estat:

d5 ¢8 56 d5
dd 4b a6 €8
fO 82 af 59
0b ee 4f 5Se

S:

Podem realitzar el calcul de la funci6 ShiftRow tal com es mostra a la figura segiient, deixant la fila zero
de la matriu sense modificar i desplacant les files 1, 2 i 3, una, dues i tres posicions, respectivament:
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dd
f0 82 f0 82
0b ee Af 0b ee Af

ShiftRow(S) = ShiftRow

La matriu d’estat resultant de la transformacié sera doncs:

d5 c¢8 56 d5
4b a6 e8 dd
af 59 f0 82
Se 0b ee 4f

ShiftRow(S) =

4.2.6 Funcié MixColumns

La funcié MixColumns barreja les columnes de la matriu d’estat a partir d’operacions
polinomials.

Concretament, aquesta funcid considera les columnes de la matriu d’estat com polinomis de grau 3. Cada
columna es multiplica pel polinomi c(x) = “03”x> 4+ “01”x? +“01”x + “02” i el resultat es redueix modul
x*+ 1. Aquest producte dels polinomis es pot escriure com un producte de matrius:

50, 02 03 01 01\ [so;
sy | |01 02 03 01| sy
sy | {or o1 02 03 (s
sk 03 01 01 02/ \s3,

ELIEANT3

Tingueu en compte que les operacions “suma” i “producte” entre els elements de la matriu i els del vector
columna sén les operacions & i ® definides en el subapartat anterior.

El polinomi ¢(x) és coprimer amb x* + 1 i, per tant, invertible. D’aquesta manera, I’operacié MixColumns
es pot desfer multiplicant cada columna per el polinomi d(x) tal que:

c(x)®d(x) =“01"

El polinomi d(x) és doncs “0B”x> + “0D”x? 4 “09”x + “0E”.

Exemple 4.5 Calcul de la funcié MixColumns

d5s ¢8 56 d5
S m una matriu d’estat: S = @ &
uposem una matriu d’estat: § = af 59 f0 82

Se 0b ee 4f

Per a obtenir la transformacié de la primera columna calcularem:
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02 03 01 01 ds
01 02 03 01 4b
01 01 02 03| |af
03 01 01 02 5e

Aix0 ens donara un vector columna de quatre bytes determinats pels valors segiients:

(02®d5) @ (03®4b) ® (01 ®af) ® (01 ® Se)
(01®d5)® (02®4b) B (03 ®af) & (01 Se)
(01®d5)® (01 ®4b) ® (02®af) ® (03 Se)
(03d5)® (01@4b) & (01 ®@af) ® (02® 5¢)

Per exemple, vegem quant val la segona posici6 del vector columna:
(01®d5)® (0204b) & (03®@af) ® (01 ®5e¢)

Si passem els valors hexadecimals a representacié polinomica (passant per la seva representacié binaria)
tenim:

Hexadecimal Binari Polinomi
01 00000001 1
ds 11010101 57 e s L
02 00000010 x
4b 01001011 P |
03 00000011 x+1
af 10101111 X"+ +x° +x2+x+1
5e 01011110 O+t 32 4x

Si ara fem els calculs, resulta:
(“01”®“D5”) = (1) (x” + x4+ x*+x2+1) (mod x®+x* 4+ x> +x+1) =x" +x0+x*+x2+1— 11010101
(“02"®@“4B”) = (x)(x® + x> +x+1) (mod x® +x* + 3 +x+1) =" +x* +x> +x — 10010110

(“03”@“AF”) = (x+ 1) (x’ +° + x> +x%+x+1) (mod B +x*+ 3 +x+ 1) =2+ 4+ + 3 +x—
11101010

(“01”®%“5E”) = (1) (x® +x* + x> +x% +x) (mod x® +x* +x3 +x+1) =x0+x* +x* +x2+x— 01011110
Finalment, fem la XOR:
11010101 ¢ 1001011064 111010100 01011110 11110111 — f7

Concretament, el resultat de tots els elements de la primera columna és:

(02®d5) @ (03®4b) ® (01 ®af) ® (01 ® Se) 9d
(01®d5) @ (0224b)® (03®af)®(01@5e) | | f7
(01®d5) @ (01 ®4b) ® (02®af)®(03®5e) | — | 39
(03d5)® (01@4b) & (01 ®@af) ® (02® 5¢) 3¢

I el resultat de la funcié MixColumns sobre tota la matriu d’estat és:

9d 28 91 00
f7 7f 718 ab
39 ¢l 6¢c c6
3¢c aa 25 a5

MixColumns(S) =

https://www.criptografia.cat v0.2.1 04/02/2026


https://criptografia.cat

4.2.7

4.2 El criptosistema AES 99

Generacio de subclaus

A T’igual que la majoria de criptosistemes en bloc, I’algorisme de Rijndael treballa amb diferents subclaus en
cada iteraci6. Aquestes subclaus s’obtenen per I’aplicacié d’una funcié d’ampliacié a la clau de xifratge
inicial.

La funcié d’expansi6 genera, a partir de les Nk paraules de 32 bits de clau de xifratge, K = (Ko, K, ..., Kni—1),
una clau estesa W = (Wo,Wy,...,Wy(y,41)—1) que conté 4(Nr+ 1) paraules de 32 bits. Cada iteraci6 de
I’algorisme de xifrat fara servir 4 paraules de 32 bits i caldran 4 paraules addicionals per a la inicialitzaci6.
Si denotem per K (i) cada una de les subcadenes de W de 4 paraules de 32 bits tindrem que K (i) és la subclau
que s’utilitza en la i-essima iteracié. Graficament les subclaus de cada iteraci6 en relacié amb la clau estesa
es poden expressar com:

W:( W07W17W2aW3a W4aW5aW6aW7a W4Nr7"'7W4(Nr+l)fl )

K(0) K(1) K(N7)

Els parametres || Recordem que els parametres (Nk,Nr), que representen respectivament la mida de la
NkiNr clau en paraules de 32 bits i el nimero d’iteracions, poden prendre els valors (4, 10),
(6,12)1(8,14).

Aix{, la transformacié inicial utilitza la subclau K(0) formada per les primeres 4 paraules de W i en cada
una de les Nr iteracions s’utilitzen 4 paraules. D’aquesta manera, per valors d’Nk de 4, 6 1 8 es generaran,
respectivament, claus exteses W de 44, 52 i 60 paraules de 32 bits (que corresponen a 1408, 1664 1 1920
bits).

L’ algorisme d’expansi6 de clau consta de dues fases:

» Fase d’inicialitzacio, on la clau de xifratge és copia integrament a les primeres posicions de la clau
extesa. Es a dir:

W, =K;,Vi=0,...,Nk—1

» Fase d’expansid, on s’agafa I’tltima paraula calculada i s’extén. L’algorisme que implementa aquesta
fase queda descrit pel segiient pseudocodi:

for (i = Nk ; i < 4(Nr + 1); i++)

temp =W;_;

if i=0 mod Nk then
temp = SubWord(RotWord (temp)) ® Rconli/ NK]

else if ((Nk>6) and (i modNk=4)) then
temp = SubWord(temp)

endif

W; =W, _ny ©temp

La fase d’expansi6 fa servir dues funcions: SubWord i RotWord. La funcié SubWord és la mateixa funcié
que ByteSub (definida anteriorment). La funcié RotWord simplement fa una permutacié ciclica a la paraula
de 4 bytes, és a dir, si tenim [¢0,al,a2,a3] com a entrada, la sortida sera [al,a2,a3,a0]. D’altra banda també
es fa servir la constant Rconl[i] que val Reon[i] = [x'~!,“00”,“00”,“00]. Recordeu que x en hexadecimal
val “02” ja que correspon a la representacié en binari de 00000010.

L’esquema segiient resumeix el procés d’expansié de claus per al cas Nk = 4, és a dir, per a claus de 128
bits. En aquest cas, si considerem la clau K = (KoK K>K3), aleshores els valors W ... W3 contindrien la clau
inicial K, i la resta de valors (fins a Ws3) es calcularien en funcié d’aquestes quatre paraules inicials.
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Wo | Wi | Wa Ws

S
vyl v
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Figura 4.9: Esquema d’expansi6 de claus de I’ AES per a Nk = 4

Noteu que I’esquema inclou la funcié f, que correspon a aplicar SubWord (RotWord(temp)) & Rconli/ Nk
sobre el valor que es rep a I’entrada.

Exemple 4.6 Calcul de I’expansié de claus

Suposem que la longitud de la clau és de 128 bits, és a dir, Nk = 4 paraules de 32 bits i que la clau de
xifrat (representada en hexadecimal®) correspon a:

K =00 01 02 0304 05 06 07 08 09 OA OB OC OD OE OF

Ko K K K3

Amb aquests parametres tenim que el nombre d’iteracions és Nr = 10. Aixo vol dir que la clau extesa W
tindra 4 - (10 + 1) = 44 paraules de 32 bits.

Denotant per K (i) la clau que es fa servir a I’i-€ssima iteracié. Els primers bytes de la clau extesa sén els
mateixos que els de la clau de xifratge:

Wo =00 01 02 03

W =04 05 06 07

W, =08 09 OA OB

W3 =0C OD OE OF

Per tant:
K(0) = WoWW,rW3 = 00010203 04050607 08090A0B OCODOEOF = K Aquestes quatre paraules sén

les que es fan servir en la transformacio inicial de 1’algorisme.

La segona subclau sera:
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Wy =Wy @ SubWord(RotWord(W3)) @ Recon|1]
SubWord(RotWord(Ws)) = RotWord(0C 0D OE OF) =0D OE OF 0C
SubWord(0D OE OF 0C) = (D7 AB 76 FE)
W4 =00 01 02 03@D7 AB 76 FEGO1 00 00 00 =D6 AA 74 FD
Ws =W, ®W; =04 05 06 07®D6 AA 74 FD=D2 AF 72 FA
We =Wo®Ws =08 09 OA OB(®D2 AF 72 FA=DA A6 78 F1
W; =W3@&Weg=0C 0D OE OF DA A6 78 F1=D6 AB 76 FE

Per tant, la subclau K(1) =D6 AA 74 FD D2 AF 72 FA DA A6 78 F1 D6 AB 76 FE.
La resta de la clau ampliada es calcula de la mateixa manera.

“Recordeu que cada caracter hexadecimal permet representar 4 bits (s a dir, valors des de O fins a 15).

Exercici 4.6 Suposem que la clau de xifratge de 192 bits d’un xifrador AES expressada en hexadecimal
és la segiient:

8E 73 BO F7 DA OE 64 52 C8 10 F3 2B 80 90 79 E5 62 F8 EA D2 52 2C 6B 7B. Doneu-
ne les dues primeres subclaus, és a dir, K(0) i K(1).

Exercici 4.7 Donat un xifrador Rijndael amb clau de xifratge K i un bloc de text per xifrar B:

K 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C

B 32 43 F6 A8 88 5A 30 8D 31 31 98 A2 EO 37 07 34

Quantes iteracions cal fer per xifrar aquest bloc de text en clar amb aquesta clau? Quina és la matriu
d’estat a I’inici de la segona iteraci6?

4.2.8 Desxifrat

En el subapartats anteriors hem definit amb tot detall les operacions de xifratge de 1’ AES. Totes les funcions
que s’utilitzen en el procés de xifratge (ByteSub, ShiftRow, MixColumn i AddRoundKey) s6n invertibles i,
per tant, se’n pot definir la corresponent funcié inversa.

Si les funcions definides en el xifratge s’apliquen en I’ordre oposat al que s’executen en el procés de xifratge,
obtenim el procés de desxifratge del criptosistema.
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Resum

En aquest capitol hem descrit el funcionament i les caracteristiques principals dels esquemes de xifratge de
bloc. En primer lloc n’hem descrit la seva estructura general. Després, hem passat a detallar com es poden
fer servir les xifres de bloc per a xifrar textos de mida superior al bloc, descrivint diferents modes d’operacio:
ECB, CBC, CFB, OFC i CTR. Finalment, hem presentat el criptosistema de bloc més utilitzat avui en dia,
I’ AES, tot detallant-ne tant I’arquitectura com les funcions internes que fa servir.
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Solucions dels exercicis

Exercici 4.1:

En primer lloc, procedim a separar el missatge en blocs de 2 bits, la mida de bloc de la funcié de xifrat:
m=100110010011 00 00

Després procedim a aplicar la funcié de xifrat a cada bloc individual, i concatenem els resultats:
¢=0011001101100101

Exercici 4.2:

En primer lloc, procedim a separar el missatge en blocs de 2 bits. Després, per cada bloc, realitzem una xor
amb el bloc xifrat anterior (fent servir el vector inicial com a bloc xifrat anterior per al primer bloc, My).
Finalment, apliquem el xifrador de bloc sobre la sortida de la xor. El procés a seguir és doncs:

Bloc M;®Ci—q Ci=EM;®Ci)
Mi=10 M;®&Cy=10&10=00 E(00) =01
My=01  My&C =01601=00 E(00) =01
My=10  M;®C=10001 =11 E(11)=10
My=01  M;&Cy=01&10=11 E(11)=10
Ms =00 Ms®Cy=00410=10 E(10) =00
Mg=11  Mg®Cs=11000=11 E(11)=10
M7 =00 M;B5Ce=00510=10 E(10) =00
Ms=00  Mg®Cy=00a00=00 E(00) =01

El text xifrat correspon a la concatenaci6 dels blocs xifrats: 0101101000100001.
Exercici 4.3:

En aquest cas, la mida de bloc del criptosistema és de 2 bits, pel que els blocs de text a xifrar poden ser
com a molt de 2 bits. Agafem doncs blocs de text a xifrar de 2 bits i procedim a realitzar el procés de xifrat.
Particionem el missatge M en blocs de 2 bits, i fem una xor de cada bloc amb el resultat de xifrar el bloc
anterior, utilitzant el vector inicial com a bloc anterior per a la primera iteracio:

Bloc E(Ci1) C=E(Ci-1)®M;
Mi=10  E(Co)=E(10)=00 M;@E(Cy)=10&00= 10
My=01  E(Ci)=E(10)=00 M;®E(C;)=0100=01
M;=10  E(G)=E(01)=11 M@EG)=10®11=01
Mi=01  E(C)=E01)=11 Mi®E(C3)=01511=10
Ms=00  E(Ci)=E(10)=00 MsaE(Cs)=00e00=00
Mg=11  E(Cs)=E(00)=01 Ms@E(Cs)=11a01=10
My=00  E(Cs)=E(10)=00 M;®E(Cs)=0000=00
My=00  E(C;)=E(00)=01 My E(C;)=00601 =0l

El text xifrat correspon a la concatenaci6 dels blocs xifrats: 1001011000100001.

Exercici 4.4:

En aquest cas, la mida de bloc del criptosistema és de 2 bits, pel que els blocs de text a xifrar poden ser
com a molt de 2 bits. Agafem doncs blocs de text a xifrar de 2 bits i procedim a realitzar el procés de xifrat.
Particionem el missatge M en blocs de 2 bits, i fem una xor de cada bloc M; amb el resultat de xifrar v;, on
vi=E(vi_1),amb vy =VI:
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Bloc vi=E(vi_1) Ci=vi®dM,;
M; =10 vi=E(v)=E(10)=00 v;®&M; =00010=10
M, =01 va=E(v;)=E(00)=01 v,®&M,=01401=00
Mz =10 V3:E(V2):E(O]):11 voM;=11910=01
My =01 V4—E(V3):E(11):10 vaBMy=10001 =11
Ms =00 vs =E(v4) =E(10) =00 vs®Ms=00300=00
Mg =11 ve =E(vs) =E(00) =01 v¢®Mg=01®11=10
M7 =00 vi=E(vg)=E(0l)=11 v;®&M;=11000=11
Mg =00 Vg ZE(V7)=E(11)=10 vg HMg =10900 =10

El text xifrat correspon a la concatenaci6 dels blocs xifrats: 1000011100101110.
Exercici 4.5:

En aquest cas, com que la mida de bloc és molt petita, farem servir directament un comptador que s’in-
crementa d’un en un, sense incorporar cap nonce. Noteu que el comptador només té 4 valors, pel que la
seqiiencia és repeteix. En una situacio real, cal evitar aquest fet ja que compromet la seguretat del sistema.

Procedim doncs a particionar el missatge M en blocs de 2 bits, i fem una xor de cada bloc M; amb el resultat
de xifrar v;, on v; és un comptador ciclic que s’inicia amb el valor 00 i s’incrementa per cada nou bloc a
xifrar:

Bloc vi=E({i—1 mod4) Ci=vi®M;
M; =10 vi = E(00) =01 vieM; =01610=11
M, =01 v, =E(01)=11 vwOMy; =11901 =10
Mz =10 v3 = E(10) =00 M3 =00410=10
My =01 vy =E(11)=10 vabMy=10001 =11
Ms =00 vs = E(00) =01 vs M5 =01 500 =01
Mg =11 ve =E(01) =11 ve PMg=11011 =00
M7; =00 v; = E(10) =00 v @& M7 =00500 =00
Mg =00 vg =E(11)=10 vg P Mg =10400=10

El text xifrat correspon a la concatenaci6 dels blocs xifrats: 1110101101000010.
Exercici 4.6:

Ates que la clau de xifratge és de 192 bits, el nombre de paraules de 32 bits de la clau val Nk = 6; per tant,
haurem d’aplicar 1’algorisme per al cas Nk < 6.

Els primers bits de la clau estesa sén exactament els mateixos bits de la clau de xifratge:

W, = 8E 73 BO F7
W, =DA OE 64 52
W> =C8 10 F3 2B
W =80 90 79 E5
W, =62 F8 EA D2
Ws =52 2C 6B 7B

Per tant:

K(0) = WoW, Wa W3 Wy Ws =
— 8E73BOF7 DA OE 64 52 C810F32B 809079ES 62FSEAD2 522C6B7B =
=K
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Si apliquem 1’algorisme per al cas Nk < 6 amb els valors W; anteriors obtenim:

We =Wo & SubWord(RotWord(Ws)) & Reon|1]

RotWord(Ws) = RotWord(52 2C 6B 7B) =2C 6B 7B 52

SubWord(2C 6B 7B 52) = (71 7F 21 00)
We=8E 73 BO F7T®71 7F 21 00401 00 00 00 =

=8E 73 BO FT®70 7F 21 00=FE 0C 91 F7

W7 =W, ®Ws =DA OE 64 52@GFE 0C 91 F7 =24 02 F5 A5
Ws =Wr&W; =C8 10 F3 2B®24 02 F5 A5 =EC 12 06 8E
Wo =W3&Wg =80 90 79 ES®EC 12 06 8E=6C 82 7F 6B
Wio =W4s®Wy =62 F8 EA D2®6C 82 7F 6B=0E 7A 95 B9
Wi =Ws&Wjp=52 2C 6B 7TBELOE 7A 95 B9 =5C 56 FE C2

Per tant, la subclau:
K(l)ZFE 0C 91 F7 24 02 F5 A5 EC 12 06 8E 6C 82 7F 6B OE 7A 95 B9 5C 56 FE C2.

Exercici 4.7:

Caldra fer deu iteracions per a xifrar aquest bloc de text en clar, ja que tant la longitud de la clau és de 16
bytes; per tant, Nk = 4.

En la transformacio inicial s’aplica la transformacié addRoundKey. En el nostre cas:

3288 31 €0\ (2 28 ab 09 19 a0 9a 9

|43 sa 31 37| (7e ae f7 ocr| [3a f4 6 s3]

AddRoundKey($,K(0)) = | ¢ 55 93 07| ¥ |15 a2 15 4af | = |e3 2 sa 48| ="
a8 84 a2 34) \16 a6 88 3c be 2b 2a 08

El resultat de la primera iteracié correspondra a executar les funcions ByteSub, ShiftRow, MixColumns i
AddRoundKey. El resultat de la funcié ByteSub sobre la matriu d’estat Sy és:

19 a0 9a €9 d4 e0 b8 le
3d f4 6 f8 |27 bf b4 41
ByteSub\ 1 03 oo 8a ag| | T |11 98 54 s2| =%
b3 2b 2a 08 ae fl1 €5 30
El resultat de la funcié ShiftRow sobre la matriu d’estat S, és:
dd e0 b8 le dd e0 b8 le
. 27 bf b4 41 | bf b4 41 27|
ShiftRow 1 | 11 98 54 52| | = |54 52 11 98| =
ae fl1 e5 30 30 ae f1 €5

El resultat de la funcié MixColumns sobre la matriu d’estat S3 és:

d4 e0 b8 le 04 €0 48 28
, bf b4 41 27| | _[66 cb f8 06|
MixColumns sq 50 11 9% =131 19 B3 26 =584
30 ae f1 €5 e5 9a Ta 4c

Ara ens cal calcular el valor de la clau de la segona iteraci6, és a dir, el valor K(1). Per fer-ho, aplicarem
I’algorisme d’expansi6 de claus descrit en 1’apartat 4.2.7, que ens permetra obtenir la matriu:
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88
54
2c
bl

23
a3
39
39

Una descripci6 grafica per a la generacié d’aquesta subclau la podeu trobar en aquest enllag.

Finalment, el resultat de la funcié AddRoundKey sobre la matriu d’estat S4 resulta:

04 0 48 28 a0 88 23 2a
66 cb f8 06| |fa 54 a3 6c| _
81 19 d3 26 fe 2¢ 39 76| 7

e5 9a Ta 4c 17 b1 39 05

a4 68 6b 02
9 9f 5b 6a
7f 35 ea 50
f2 2b 43 49

https://www.criptografia.cat

a4
9¢

7f

12

Aixi, el valor de la matriu d’estat a I’inici de la segona iteraci6 valdra:

68 6b 02
9f 5b 6a
35 ea 50
2b 43 49
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5.1

Les funcions hash sén una primitiva criptografica cada vegada més important en diferents protocols i
aplicacions criptografiques. Com veurem, una funcié hash és una funcié que permet obtenir un valor fixat
de mida reduida a partir d’'una entrada arbitrariament gran. Gracies a les propietats que ofereixen a aquest
valor de sortida, els usos de les funcions hash s6n miiltiples, des de la seva utilitzaci6 per a I’autentificacié
d’informacié sense 1’Us de signatures digitals (fent servir criptografia simetrica) fins a la verificacié de proves
de treball en criptomonedes, passant per la generacié de contrasenyes o la reducci6 de la complexitat de
calcul en un procés de signatura digital.

L’ds de les funcions hash cada vegada en més contextos implica que la seva importancia també hagi anat
augmentant. Com €s sabut, la seguretat que ofereix un sistema criptografic és equivalent a la seguretat que
ofereix el seu component més feble o insegur. Per tant, a mida que les funcions hash han anat incloent-se en
nous sistemes, la robustesa de les funcions hash afecta de ple en la seguretat d’aquests sistemes. Aquest
punt és molt rellevant perque una vulnerabilitat en una funcié hash implicaria una vulnerabilitat en tots els
sistemes criptografics que 1’utilitzen. Per exemple, si un atacant pogués predir la sortida d’una funcié hash
donada una entrada fixada, podria arribar a trencar la seguretat d’algunes criptomonedes.

En aquest capitol definirem que son les funcions hash i quines propietats presenten. Posteriorment, veurem
com es poden construir utilitzant com a base un criptosistema de bloc. Repassarem també quines son les
funcions hash més utilitzades, funcions hash construides especificament per a aquest proposit i que no es
basen en cap criptosistema de bloc. En concret, veurem en detall el funcionament de la funcié hash SHA256.
Finalment, enumerarem algunes de les maltiples aplicacions que tenen les funcions hash i també algunes
propietats addicionals que es poden demanar a les funcions hash que sén ttils en algunes de les aplicacions
esmentades.

Les funcions hash

Com ja hem avangat, les funcions hash s’utilitzen en multiples aplicacions i la raé d’aquest fet recau en les
seves propietats. En aquest apartat definirem acuradament que sén les funcions hash i quina diferéncia hi ha
entre una funcié hash i una funcié hash criptografica.

També descriurem el concepte d’atac a una funcié hash i explicarem com n’indiquem el nivell de seguretat.
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5.1.1 Definicions

Una funcio hash de mida n és una funcié que pren com a entrada un missatge (o cadena)
d’una mida arbitrariament gran i en retorna una cadena de mida fixa n. A més, una funcié
hash és eficientment calculable i determinista, és a dir, donades dues entrades iguals
sempre ens proporcionara la mateixa sortida.

Mida d’una La mida de les funcions hash es determina en bits.
funcié hash

Leficiencia de les funcions hash és un element molt important ja que el seu Us esta especialment indicat per
a reduir missatges de mida molt gran. Per aquest motiu, la facilitat per tractar aquest tipus de missatges tan
grans ha d’estar garantida per tal que la seva utilitzaci6 no faci augmentar la complexitat del sistema que les
utilitza. D’altra banda, malgrat sembli innecessari indicar el caracter determinista de les funcions hash, és
important ressaltar-lo perque, com veurem més endavant, les funcions hash s’utilitzen de forma similar a un
oracle aleatori i aixo pot induir a pensar que el seu funcionament no és determinista.

Exemple 5.1 Exemple de funcié hash
Un exemple de funci6 hash de mida 3 digits decimals seria la segiient: 2(x) = x (mod 1000)

Aquesta funcié hash retorna sempre, per a qualsevol mida de I’entrada, un valor fixat de 3 digits, con-
siderant que representem el nombre amb tres digits incloent els zeros que calgui davant. Per exemple,
h(8472937003) = 8472937003 (mod 1000) = 003.

De la mateixa manera, la funcié (x) = x (mod 22°%) també seria una funci6 hash, en aquest cas de mida
256 bits.

Si bé les funcions hash tal com les acabem de definir tenen algunes aplicacions, la seva poténcia s’incrementa
quan se li afegeixen un seguit de propietats que conformen el que es coneix com a funcid hash criptografica.

Una funcié hash criptografica és una funci6 hash, /(x), amb les segiients propietats:

1. Resistent a preimatge (o unidireccional): donat un valor y no és possible calcular
una x tal que A(x) = y.

2. Resistent a segones preimatges (o resistent a col-lisions febles): donat un valor x tal
que y = h(x), no és possible trobar un valor x’ tal que x’ # x i que a més y = h(x').

3. Resistent a col-lisions (o resistent a col-lisions fortes): no és possible trobar dos
valors xj i xp diferents (x; # xp) tals que A(x;) = h(x).

Un punt important a destacar sobre les funcions hash criptografiques és que, tal i com hem vist en la seva
definici6, no incorporen cap tipus de clau ni d’informaci6 secreta. Donada una entrada, si coneixem de quina
funci6 hash es tracta, en podrem calcular la sortida sense cap problema. Es important destacar aquest fet
perque es pot pensar que, tractant-se d’una funcié criptografica, cal que involucri una clau i en el cas de les
funcions hash no és aixi.

Funcions hash || Tot i que les funcions hash, per definicid, no utilitzen cap clau, es poden utilitzar en
i claus esquemes en les que se’ls associi una clau, tal i com veurem en 1’apartat d’aplicacions
d’aquest mateix capitol.
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Exemple 5.2 Contraexemple de funcié hash criptografica

Si ens fixem en les funcions hash que hem definit en 1I’exemple anterior, veurem que tot i ser funcions
hash, no s6n funcions hash criptografiques.

Si analitzem la funci6 A(x) = x (mod 1000) veiem que no compleix cap de les tres propietats que hem
enumerat. Per exemple, si prenem y = 345, és molt simple trobar una imatge x que retorni aquest valor
hash, en concret, qualsevol cadena que acabi en 345, com per exemple x = 642345. Per tant, la primera
propietat ja no es compleix. De fet, €s trivial observar que la segona i la tercera tampoc es compleixen,
simplement per la simplicitat amb la que s ha definit la funcié. Per exemple, donat x = 3456 sabem que
y = h(3456) = 456 i és trivial trobar un valor x’ # x tal que h(x') = h(x), per exemple, X' = 958456 (o
qualsevol cadena acabada en aquests tres nombres).

De fet, malgrat que definir les propietats d’una funcié hash criptografica és forga simple, no és gens facil
construir una funcié que les complexi, com veurem més endavant quan analitzem com es construeixen les
funcions hash que s’utilitzen en I’actualitat.

De cara a simplificar tant la redaccié com la lectura de la resta del capitol, abusarem del llenguatge i
assumirem que totes les funcions hash a les que fem referencia a partir d’aquest punt sén funcions hash
criptografiques, excepte quan diguem explicitament el contrari.

Propietats

Es important aturar-se a mirar amb deteniment les tres propietats de les funcions hash criptografiques ja que
I’analisi del seu detall permet veure que sén més diferents del que aparenten.

En primer lloc, és important remarcar que una funcié hash no pot ser una funcié bijectiva sind que Gnicament
és una funci6 exhaustiva. Es a dir, tot element té una imatge perd no és cert que donada una imatge només hi
hagi una sola antiimatge. Aquest fet s obvi si pensem que el conjunt de sortida pot ser de mida arbitraria (és
a dir, tan gran com es vulgui) i el d’arribada té mida fixada n, més petita que la del conjunt de sortida. Per
tant, si hem de poder calcular el hash de qualsevol dels elements de sortida, donat que hi ha menys elements
al conjunt d’arribada, forcosament se’n repetiran, tal i com es mostra en la Figura 5.1:

Funcié hash

Conjunt de sortida Conjunt d'arribada

Figura 5.1: L’exhaustivitat de les funcions hash

Un altre punt a analitzar és la difereéncia entre la segona i la tercera propietat de les funcions hash criptografi-
ques, és a dir, la diferéncia entre col-lisions febles i fortes. Aparentment, les dues propietats poden semblar la
mateixa perd una analisi més acurada ens mostra que ni de bon tros sén iguals. La diferéncia entre aquestes
dues propietats s’explica amb el que es coneix com la paradoxa de 1’aniversari.

La paradoxa de I’aniversari ens diu que si volem que, amb probabilitat del 50%, almenys dues persones
d’un grup tinguin I’aniversari el mateix dia, només cal que el grup tingui 23 persones (suposant uniforme la
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distribuci6 dels naixements al llarg dels dies de 1’any). Aquests valors contradiuen la nostra intuicié que
semblaria que el nombre de persones hagués de ser molt més gran, per exemple, proper o més gran a 183 que
és la meitat de dies que té I’any. De fet, la contradiccié ve de pensar que aquest problema pot ser equivalent a
trobar dues persones que tinguin 1’aniversari en un dia concret de I’any. Si fem I’analogia amb les propietats
de les funcions hash criptografiques, el primer cas correspondria a la tercera propietat (colisions fortes) i el
segon cas a la segona (col-lisions febles). Ara bé, si calculem detingudament les dues probabilitats veurem
que no s’assemblen gens.

Exemple 5.3 Calcul de les probabilitats en la paradoxa de I’aniversari.

Donat un grup de n = 23 persones, si triem una d’elles a I’atzar, quina és la probabilitat que una de les
altres persones del grup tingui 1’aniversari el mateix dia (fixeu-vos que aixo és el cas de les col-lisions
febles).

La probabilitat que una persona tingui I’aniversari aquell dia fixat és facil de calcular, ja que és % si
suposem naixements uniformes i anys de no traspas. Per tant, la probabilitat que 1’aniversari d’aquesta
persona no sigui el dia triat sera el complementari, és a dir, 1 — %. Si ara mirem per a una altra
persona del grup, com que el naixement de les dues és independent, veiem que les probabilitats valen
el mateix i, per tant, la probabilitat que 1’aniversari de dues persones sigui diferent del dia fixat sera

(1— %)2. Si repetim 1’argument, les 22 persones restants tindran 1’aniversari en un dia diferent al fixat

amb probabilitat (1 — 3%)22 =0,94. Aixi doncs, alguna persona tindra 1’aniversari al dia fixat amb
probabilitat (1 —0,94) = 0,06, és a dir, hi ha un 6% de probabilitat que un d’ells tingui 1’aniversari en el

mateix dia d’un dels altres membres del grup, un cop el membre ja s’ha fixat préviament.

Ara bé, quina és la probabilitat que donat un grup de n = 23 persones, com a minim dues d’elles tinguin
I’aniversari el mateix dia. Aquest seria el cas de les col-lisions fortes.

Si prenem dues persones, la probabilitat que tinguin I’aniversari en el mateix dia és % i per tant, la
probabilitat que el tinguin en un dia diferent és 1 — %. Ara bé, si afegim una tercera persona, la
probabilitat que aquesta nova tingui I’aniversari en un dia diferent de les dues sera de %, perd com que
les dues primeres també han de tenir I’aniversari en un dia diferent, ens queda que per a que les tres
persones tinguin 1’aniversari en un dia diferent la probabilitat és (1 = %) . (1 = %) Si ho generalitzem
a les 23 persones, ens queda que la probabilitat que totes tinguin 1’aniversari en un dia diferent és de
(1—555) +-.r (1= Z5L) = 0,493. Per tant, la probabilitat que almenys dues tinguin Ianiversari en el
mateix dia és de (1 —0,493) = 0,507.

Aixi, en aquest cas, amb 23 persones hi ha un 50% de probabilitat que dos d’elles tinguin I’aniversari el
mateix dia. Fixeu-vos que aixo és molt més del que teniem en el primer cas.

Exercici 5.1 Calculeu la probabilitat que en un grup de 50 persones triades a I’atzar, dues d’elles tinguin
I’aniversari el mateix dia. Quina és la probabilitat que almenys una d’elles hagi nascut el dia 1 de gener?

5.1.3 Seguretat de les funcions hash

Per parlar de seguretat d’una funci6 hash ens cal primer definir que s’entén per atac a una funcié hash.

Un atac a una funcié hash criptografica és aquell que intenta trencar alguna de les seves
propietats: unidireccionalitat o no-existencia de colisions (febles o fortes).

Com ja hem comentat en 1’apartat anterior, és molt més probable trobar dos elements diferents que proporci-
onin la mateixa imatge que no pas fixar-ne un i trobar un altre element que retorni la mateixa imatge que
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I’element fixat. Per tant, la manera més facil d’atacar un funcié hash (des del punt de vista probabilistic) és
per mitja de la cerca de col-lisions fortes. Per tant, com a conseqiiencia de la paradoxa de I’aniversari, podem

obtenir la segiient férmula:
n+l ]
t=272 /In| ——
“<1A>

que ens proporciona el nombre de missatges ¢ als quals hem de calcular-los el hash per trobar una col-lisié
amb una probabilitat A, on n és la mida en bits de la funci6 hash.

En la Taula 5.1 veiem les dades per a diferents mides de funci6 hash.

Taula 5.1: Nombre de missatges per aconseguir col-lisions.
Mida de la funcid hash (n)

A 128 bits | 160 bit | 256 bits | 384 bits | 512 bits
0.5 265 281 2129 2193 2257
0.9 267 282 2130 2194 2258

Aixi, per exemple, si tenim una funcié hash de mida 160 bits, ens caldra calcular 28! missatges per trobar
una col-lisi6 amb una probabilitat de 0,5. Perd només 282 perque la probabilitat de trobar-la sigui de 0,9. Per
tant, com a conclusid, veiem que per a que una funci6 hash tingui un nivell de seguretat d’x bits necessitarem
que la seva mida sigui, com a minim, de 2x.

Finalment, és important indicar que malgrat que trobar una tnica col-lisié en una funcié hash és un fet que en
posa en entredit la seva seguretat, al tractar-se d’un fet probabilistic, cal analitzar com s’ha trobat la col-lisié
ja que una funcié hash es considera trencada només quan es pot reduir la complexitat de I’atac a valors més
petits dels que determina la Taula 5.1.

Construccio de funcions hash

Les propietats que es demanen a una funci6 hash criptografica, en particular les propietats que fan referencia
a col-lisions, ja donen una idea de la complexitat que poden arribar a tenir aquestes funcions. Cal recordar
que una funcié hash no incorpora cap clau de manera que qualsevol usuari coneix el funcionament exacte i
complert de la funcié (no hi ha cap parametre desconegut) i per tant un atacant pot estudiar la construccio i
funcionament per atacar-la. Es per aquest motiu, que la complexitat en la definicié d’aquest tipus de funcions
és molt elevada, com podrem veure al llarg d’aquest capitol.

Tot i la seva complexitat, les funcions hash tenen una estructura general estandard que s’esquematitza en la
Figura 5.2.

missatge | b bits | b bits | b bits [ | b bits

Valor l

Inicial v y

Funci6 de Funci6 de Funcié de Funci6 de
0 compressid compressio compressio /| 7 compressio

[] [k]

Valor hash final

Figura 5.2: Estructura general d’una funci6 hash
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Com es pot veure en la figura, les funcions hash processen els missatges partint-los en blocs (de forma
similar a com fan els criptosistemes de bloc), tractant cada bloc de forma especifica i combinant les sortides
que proporciona la funcié per cada bloc amb la resta de sortides dels altres blocs (també de forma semblant
als modes de xifrat de bloc).

La base de les funcions hash és una funci6 interna que s’identifica com a funcié de compressié. Aquesta
funcié processa cada bloc del missatge a tractar proporcionant-ne una sortida de mida igual o més petita
que el propi bloc, d’aqui la seva denominacié de compressié. La mida de la sortida d’aquesta funci6 de
compressio sera la mida de la propia funcié hash.

Depenent de com es dissenyi aquesta funci6 de compressio, les funcions hash es poden dividir en dos grups:
funcions hash basades en criptosistemes de bloc i funcions hash de disseny especific.

Funcions hash basades en criptosistemes de bloc

Una manera de construir una funcié hash és partint d’un criptosistema de bloc. Per a fer-ho, trobem diferents
tecniques que poden combinar de diferent manera les sortides del criptosistema i el mateix bloc que s’esta
tractant.

missatge | b bits | b bits | b bits [ | b bits |

valor bloc bloc bloc bloc
inicial A v A v

clau Funcié clau Funcié clau Funcié clau Funcio
m e xifrat xifrat xifrat | —> xifrat
en bloc en bloc en bloc en bloc

v ,

y

valor hash final

Figura 5.3: Funci6 hash a partir de criptosistema de bloc

En la Figura 5.3 es pot veure 1’esquema d’una funci6 hash a partir d’un criptosistema de bloc. En la figura,
el valor b indica la mida dels blocs amb el que es partira el missatge a tractar. Per tant, com que cada bloc
sera I’entrada del criptosistema de bloc, el criptosistema de bloc ha de poder treballar amb blocs de mida b.
D’altra banda, el criptosistema de bloc també treballara amb una clau. Aquesta clau té una mida / que pot
coincidir, o no, amb la mida b del bloc. En el cas que les dues mides no coincideixin, com que s’utilitza
la sortida d’un bloc com a clau del segiient bloc ens caldra una funcié g que converteixi cadenes de b-bits
a cadenes d’/-bits. En el cas que la mida del bloc sigui igual a la mida de la clau, podem prescindir de la
funcié g, simplement suposant que és la funcié identitat. Finalment, el signe & del grafic representa una
operacié XOR, fet que no representa un problema perque la mida dels dos blocs que arriben a cada XOR
sempre és la mateixa. Per dltim, el grafic també mostra que la mida de la funci6 hash és justament b, que és
la mida del valor final de la sortida de I’esquema i que també coincideix amb la mida del criptosistema de
bloc que estem fent servir.

En el cas que la mida del missatge no sigui multiple del bloc, caldra fer el padding del

missatge per forcar-ho.

De forma més analitica, podem expressar 1’esquema de la Figura 5.3 de la segiient manera. Partint d’un
missatge d’entrada m, el dividim en blocs de b bits obtenint my,my,--- ,m, i per a cada bloc m;, per a
i=1,---,n, apliquem la segiient funci6 definida de forma recursiva com:

h; = Eg(hi,1)(mi) Dhi_1
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on Ei(-) és la funcié de xifrat en bloc amb la clau k i hp = VI, on VI és un vector inicial piblicament
especificat per a la funcié hash en qiiestio.

Exemple 5.4 Exemple de funcié hash basada en un criptosistema de bloc

Definicié del criptosistema de bloc:

Definim un criptosistema en bloc que treballa sobre blocs de 4 bits i denotem per mgmmom3 un bloc de
text en clar. La mida de la clau d’aquest criptosistema sera de 2 bits, que denotarem per k = kok;. La
nostra funcié de xifrat sera una XOR del text en clar i la clau de la segiient manera:

¢ = Ex(m) = cocicpc3 = (momymams) @ kokikiko

D’aquesta manera, per exemple, si tenim m = 0111 i k = 01 el valor xifrat correspondra a ¢ = Ex(m) =
01110110 = 0001.

Definici6 de la funci6 hash:

Definirem la nostra funcié hash, &(-) de mida n = 4 bits, utilitzant el criptosistema de bloc definit
anteriorment i el vector inicial VI = 0111. La funci6 g(-) rebra 4 bits d’entrada i en retornara 2 de la
segiient manera g(xpx1xpx3) = (xo D x1) (2 D x3).

En base a aquests parametres, veiem com es calcularia el valor hash del missatge m = 11001110, és a dir
h(11001110).

En primer lloc, partirem el missatge en blocs de 4 bits. En aquest cas tenim dos blocs m; = 1100 i
my = 1110.

Apliquem la funcié de xifrat sobre m; amb la clau g(VI). En aquest cas, g(VI) = g(0111) = (0 1)(1®
1) = 10 per tant la clau que utilitzarem per al primer bloc sera k = 10 i el resultat del xifrat del primer bloc
sera ¢ = Ex(m;) = E19(1100) = (1@ 1)(1®0)(00)(0d 1) = 0101. Si ara fem la XOR amb kg tenim
h1 =0101®0111 = 0010.

Un cop processat el primer bloc podem processar el segiient utilitzant, en aquest cas, 1’expressio
Eg(h|)(m2) G h = Eg(OO]O)(l 110) ®0010 = Ep; (1110) ®0010 = 1000 0010 = 1010.

Com que ja hem processat tots els blocs, ja hem obtingut el resultat final: 2(11001110) = 1010.

En el grafic de la figura segiient es pot veure la versio grafica dels calculs:

missatge | 1100 | 1110 |
l I

valor L 110
inicial

10 1100 01 1110

om xor — > xor

1001 0110

0101 1000

) @J s

A\
ooto| %°™° 1010

Amb aquests tipus de construccions i utilitzant un criptosistema en bloc prou robust, podem crear funcions
hash. Per exemple, utilitzant un AES amb una mida de block de 256 bits podem obtenir una funcié hash
amb una seguretat de 128 bits. De tota manera, a la practica i de forma general, s’utilitzen funcions hash de
disseny especific. com les que passem a descriure en el segiient apartat.
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Exercici 5.2 Tenim un criptosistema de bloc que actua sobre blocs de 4 bits de longitud amb una mida
de clau, k, de 3 bits, és a dir k = k1kpk3 on k; € {0, 1}. La funcié de xifrat queda definida per la segiient
expressio:

E (m) =m® kex

on k., s obté a partir de la clau k amb la segiient expressio:

kext = kikoks (ki ® k3)

Construiu una funcié hash amb aquest criptosistema de bloc utilitzant la construccié de la Figura 5.3
prenent com a IV = 1111 i com a funci6 g(x1xpx3x4) = x2x3(x] Dxa).

Dibuixeu-ne I’esquema i calculeu el resultat 2(01010101).

5.2.2 Funcions hash de disseny especific

Més enlla de poder construir una funcié hash a partir d’un criptosistema de bloc, hi ha moltes funcions hash
que s’han definit especificament per a aquest proposit. A continuacio, llistem les més rellevants, donant una
breu informaci6 sobre cada una d’elles.

Les funcions MD4 i MDS5 (acronim de Message Digest) sén funcions criptografiques creades per Ronald
Rivest els anys 1990 i1 1992, respectivament. Ambdues tenen una mida de 128 bits i processen blocs de dades
de 512 bits. Les primeres vulnerabilitats de I’'MD4, definida en I’'RFC 1320, van ser provades ja el 1991 i en
el 1995 ja es podien realitzar atacs de col-lisions en pocs segons fet que posteriorment va propiciar la retirada
de la funcid, explicitada en I’'RFC 6150. La funcié MD5, definida en I’RFC 1321, va ser desenvolupada per
pal-liar les vulnerabilitats de 'MD4. De tota manera, en 1’actualitat, ’'MDS5 es considera també insegura i el
seu Us esta totalment desaconsellat ja que és facil trobar-ne col-lisions i, fins hi tot, generar certificats digitals
amb claus puibliques diferents que tinguin el mateix valor hash MDS5.

Certificats La descripci6 i ds dels certificats digitals s’inclou en el capitol: “Infraestructures de
digitals. clau publica”.

RIPEMD, acronim de RACE Integrity Primitives Evaluation Message Digest, €s una familia de funcions
hash creades pels criptografs belgues Hans Dobbertin, Antoon Bosselaers i Bart Preneel I’any 1996 basades
en la funcié MD4, incorporant un seguit de millores en base a les analisis de seguretat i atacs realitzats sobre
I’MD4. De les funcions de la familia, la més coneguda i utilitzada és la RIPEMD-160, una funci6 hash de
mida 160 bits, tot i que el conjunt de la familia inclou funcions de mida 128, 256 i 320 bits. Totes elles
processen el missatge amb blocs de 512 bits. L’ts d’aquesta funcid, malgrat no coneixer-se’n cap atac, esta
poc estes ja que té una mida igual que altres funcions estandarditzades, com ara el SHA-1.

WHIRLPOOL és una altra funcié hash criptografica creada pels criptografs Vincent Rijmen i Paulo S. L. M.
Barreto 1’any 2000. La mida d’aquesta funcié és de 512 bits, la mateixa mida dels blocs que processa i la
seva estructura esta basada en un criptosistema semblant a I’AES. Aquesta funci6 ha estat estandarditzada
per la International Organization for Standardization (ISO) i la International Electrotechnical Commission
(IEC) sota I’estandard ISO/IEC 10118-3.

La familia de funcions SHA

Els Secure Hash Algorithms sén un conjunt de funcions hash que estan estandarditzades pel National Institute
of Standards and Technology (NIST) dels Estats Units. Aquestes funcions s’agrupen basicament en tres
grans grups: SHA-1, SHA-2 i SHA-3.

En el grup SHA-1 s’hi inclou una tdnica funcié hash de mida 160 bits. Aquesta funcié va ser dissenyada per
la National Security Agency (NSA) per a la seva utilitzacié en signatures digitals amb 1’estandard DSA. Des
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del 2010, pero, a causa de les seves debilitats, no se’n recomana el seu us.

El grup SHA-2, també dissenyat per la NSA, el formen essencialment dues funcions: la SHA-256 i la SHA-
512. A partir de la definici6 d’aquestes dues funcions, que tenen una mida de 256 i 512 bits respectivament,
I’estandard de NIST també defineix un seguit de variants de diferents mides (SHA-224, SHA-384, SHA-
512/224, SHA-512/256) que s’aconsegueixen truncant els resultats del SHA-256 o del SHA-512 a més
d’utilitzar uns vectors inicials diferents.

Aquests dos primers grups, SHA-1 i SHA-2, estan detalladament descrits en 1’estandard FIPS 180-4: Secure
Hash Standard publicat pel NIST al marg del 2012.

L’dltim grup de funcions hash, el SHA-3, és el més nou i és un conjunt de funcions hash definides en
I’estandard FIPS 202, publicat a I’agost del 2015. Esta format per quatre funcions hash, SHA3-224, SHA3-
256, SHA3-384 i SHA3-512, on la numeracio indica la mida en bits de cada funcié. A diferéncia de les
funcions dels dos grups anteriors, la tria del SHA-3 es va realitzar a través d’una selecci6 publica i oberta en
la que van participar investigadors de tot el mén, de forma semblant a la que es va realitzar per a la tria de
I’ AES. En aquest cas, I’algorisme seleccionat va ser el KECCAK, proposat per Guido Bertoni, Joan Daemen,
Michaél Peeters, i Gilles Van Assche que és el que s’ha estandarditzat sota les sigles SHA-3.

L’estandard SHA-256

En aquest apartat estudiarem en detall una de les funcions hash més utilitzades en I’actualitat: el SHA-256.
Veurem quines son les seves caracteristiques i descriurem amb detall tot el seu funcionament.

Com ja hem comentat, el SHA-256 és una de les funcions hash definides en 1’estandard FIPS-180-4 publicat
pel NIST i que va ser desenvolupat al 2001 per la NSA. Com a caracteristiques generals, el SHA-256 és
una funcié hash de mida 256 bits que processa els missatges d’entrada en blocs de 512 bits. Pot processar
missatges de fins a 264 bits i utilitza un sistema de calcul iteratiu amb un total de 64 iteracions.

Lestructura del SHA-256 segueix I’esquema mostrat en la Figura 5.2 amb una funcié de compressi6 que
s’executa sobre cada bloc del missatge d’entrada, el resultat de la qual es combina amb el resultat de la
mateixa funci6 del bloc anterior.

Préviament al processat de cada un dels blocs del missatge, el SHA-256 processa el missatge a tractar per tal
d’assegurar-se que la mida del missatge coincideix amb un nombre enter de blocs. Aquest procés és coneix
com a padding i es descriu en el segiient apartat.

Padding del missatge

Quan s’utilitzen funcions que processen els missatges en blocs, pot succeir que la mida del missatge a tractar
no sigui un mdltiple de la mida del bloc, és a dir, que quan dividim el missatge en blocs ens quedi un dltim
bloc més petit que la mida del bloc amb el que treballa la funcid. En aquests casos el que es fa és un procés
de farcit (en angles padding). L’ estandard SHA-256 defineix, de la segiient manera, com s’ha de realitzar
aquest procés.

Padding Tingueu en compte que tot i que el padding és una teécnica molt utilitzada per a funcions

que tracten els missatges en blocs, la manera com es fa aquest padding pot diferir en
cada cas. Per exemple, el padding que utilitza el SHA-256 és diferent del que utilitza
el SHA-512 i també diferent del que utilitza el criptosistema de bloc AES.

Suposem un missatge M de mida [ bits, on / # 0 mod 512. En aquest cas procedirem a:

1. afegir el bit 1 al final del missatge,
2. seguit per k bits a zero, on k =448 — (I + 1) mod 512, prenent la solucié més petita i no negativa,
3. afegir un bloc de 64 bits que sigui igual al nombre [ expressat en binari.
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Exemple 5.5 Exemple de calcul de padding en el SHA-256
Suposem geu volem processar el missatge abc amb la funcié hash SHA-256.
Prenem el missatge abc, que expressat en codi ASCII de 8 bits és:

01100001 01100010 01100011
—_— Y Y

a b c
Per tant, tenim que la mida del missatge / val / = 3-8 = 24 i com que no és 512 ens cal fer padding.
En primer lloc afegim el bit 1:

01100001 01100010 01100011 1
—_— Y Y

a b @

Ara, calculem el valor k com k = 448 — (24 + 1) mod 512 = 423. Es a dir, caldra afegir 423 zeros al
missatge:

01100001 01100010 01100011 1 00---0
—_— N S——
& b © 423 zeros
1 finalment, caldra afegir els 64 bits que falten fins a completar els 512 que necessitem. Aquests 64 bits
seran el valor de / en binari, és a dir / = 2419 = 00---011000,, de manera que el missatge final amb el
padding sera:
01100001 01100010 01100011 1 00---0  00---011000
—_— Y Y S—— ———
& b © 423 zeros 64 bits

Mida maxima || Fixeu-vos que aquest mecanisme de padding implica que la mida maxima dels mis-
dels missatges || satges que pot tractar el SHA-256 és de 2% bits, ja que és el maxim valor que es pot
representar en la dltima part de la cadena de padding.

Exercici 5.3 Calculeu la cadena de bits que processara la funcié SHA256 una vegada s’ha realitzat el
padding al missatge d’entrada m = SALA, on els caracters s han codificat en ASCII amb 8 bits.

5.3.2 Funcié de compressié del SHA-256

Tal com ja hem comentat, el SHA-256 treballa amb blocs de 512 bits els quals processa a través de la funcié
de compressid. En aquesta funcié de compressié podem identificar tres fases:

1. Expansi6 del bloc (block schedule).
2. Inicialitzaci6 del buffer.
3. Procés de compressio.

En I’expansi6 del bloc és processen els 512 bits del bloc per tal d’obtenir-ne una cadena molt més llarga
de 2048 bits (64 paraules de 32 bits). En la inicialitzacié del buffer es carreguen en memoria els valors
d’inicialitzaci6 de la funcié recurrent, valors definits en 1’estandard. Posteriorment, s’aplica el procés de
compressio a la cadena de 2048 bits.

Preéviament a detallar cada un d’aquests passos, definirem algunes funcions internes que s’utilitzen en cada
un dels processos que acabem d’enumerar.
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Definicié de les funcions internes del SHA-256

En aquest apartat definirem un seguit de funcions que s’utilitzaran tant en la part d’expansi6 del bloc com en
el procés de compressié del SHA-256.

La funcié ROT R"(x) efectua una rotaci6 circular a la dreta d’n bits.

La funcié SHR"(x) és un operador 1dgic de desplacament a la dreta: SHR" (x) = x >> n,
és a dir, mou # bits a la dreta omplint els nous bits amb zeros.

Evidentment, ambdues funcions treballen a nivell de bit.

Exemple 5.6 Exemple de calcul de la funcié ROTR" (x)

Sigui x = abcdefgh una cadena de 8 bits i n = 3, aleshores
ROTR?(abcdefgh) = fghabcde

Exemple de calcul de la funcié SHR" (x)

Sigui x = abcde fgh una cadena de 8 bits i n = 3, aleshores
SHR?(abcdefgh) = 000abcde

Expansié del bloc

Per a processar un bloc de 512 bits, en primer lloc, la funci6 SHA-256 1’expandeix a un total de 2048
bits. Per fer-ho, parteix el bloc de 512 bits en 16 paraules de 32 bits. Sigui M el bloc de dades de 512
bits, el podem expressar com M = My||M;||---||M;5 on cada M; té una mida de 32 bits. A partir d’aquests
blocs, generarem 64 blocs de 32 bits, denotats per Wy, Wy, - - - ,We3 que formaran el total de 2048 bits que
necessitarem. Per fer-ho utilitzarem la segiient expressio:

M, 0<r<1s
" G1(Wa) BW, s Boo(Wi_15)BW 16 16 <1 <63

on les funcions oy i 07 estan definides de la segiient manera:

* 0p(x) = ROTR’ (x) ® ROTR'S (x) © SHR®(x)
* 01(x) = ROTR" (x) ® ROTR" (x) © SHR'’(x)

i I’operaci6 A és una suma modul 232,
Exemple 5.7 Exemple d’expansi6é d’un bloc

Suposem que volem fer I’expansié del bloc que hem obtingut en I’exemple del padding del missatge abc
expressant en codi ASCII de 8 bits. Hem vist que el bloc de 512 bits, expressat en hexadecimal amb
paraules de 32 bits és:

M = My||M, |- ||Mys = 0x61626380 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000018

Els primers 16 valors Wy, - - - ,W;5 de la cadena expandida seran aquests mateixos valors del bloc, és a dir:
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W = Wol|[Wi]|---||Wis = 0x61626380 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000018

Passem ara a calcular la segiient paraula de 32 bit, Wye.

Wie = 01(Wia) BWo B og(W)) BWp =
= 51(0x00000000) B 0x00000000 B 6, (0x00000000) FB 0x61626380 =
= (ROTR'(0x00000000) & ROT R'®(0x00000000) & SHR'®(0x00000000) )H
FB 0x0000000088
B (ROT R’ (0x00000000) & ROT R'8(0x00000000) & SHR? (0x00000000) )H
B 0x61626380 =
= 0x00000000 E 0x00000000 E 0x00000000 FH 0x61626380 =
= 0x61626380

Per tant, W5 = 0x61626380.

De la mateixa manera podem calcular el segiient element W7:

Wi7 = 01(Wis) BWioB oo(W2) BW;, =

= 61(0x00000018) B 0x00000000 H 6 (0x00000000) H 0x00000000 =

= (ROTR"(0x00000018) & ROTR' (0x00000018) & SHR'(0x00000018))H
F8 0x0000000068
H (ROT R’ (0x00000000) & ROT R'8(0x00000000) & SHR? (0x00000000) )
F3 0x00000000 =

= 0x000,£0000 EH 0x00000000 E 0x00000000 HH 0x00000000 =

= 0x000£0000

Aixi, W7 = 0x000£0000.

De la mateixa manera es calculen la resta de paraules fins a completar els 2048 bits.

Inicialitzacié del buffer

Tal com veurem en el segiient apartat, el procés de compressié és un procés recursiu. Per aquest motiu, ens
caldra definir uns valors als quals s’inicialitzaran les variables de la funci6 hash. Aquests valors, que es
detallen a continuaci6, estan definits en el propi estandard:

O — 0x6209667
0)

H,

H;” = 0xbb67ae85
H” = 0x3c6e£372
H\” = 0xabaf£53a
H\” = 0x510e527f
H” = 0x9b05688C

——
=R=)

https://www.criptografia.cat v0.2.1 04/02/2026


https://criptografia.cat

5.3 L'estandard SHA-256 121

9 _ 0x1£83d9ab

= 0x5be0cd19

Hy

A

A més d’aquests valors d’inicialitzacid, I’estandard també defineix 64 constants que s’utilitzen en cada una
de les iteracions de la funcié de compressié. Aquests constants son les segiients:

K = [ 0x428a2f98, 0x71374491, 0xb5cO0fbcf, 0xe9b5dbab, 0x3956c25b, 0x59f111f1,
0x923f82a4, Oxablcbed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72beb5d74, 0x80deblfe, 0x9bdc06a7, 0xcl9bf174, 0xed9b69cl, Oxefbed786,
0x0£fc19dc6, 0x240calcc, 0x2de92c6f, 0x4a7484aa, 0xbcb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d413,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, Oxa2bfe8al, 0xa81la664b,
0xc24b8b70, 0xc76cbla3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34bObcb5, 0x391cOcb3, Ox4ed8aada,
0x5b9ccadf, 0x682e6ff3, 0x748f82ee, 0x78ab636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, Oxbef9a3f7, 0xc67178f2 ]

Funcié de compressio

La funcié de compressi6 és I’encarregada de prendre la cadena estesa de 64 paraules de 32 bits (és a dir,
2048 bits) i reduir-la a una cadena de 256 bits, que és justament la mida de la funcié hash. Aquesta funcié6 de
compressio és un procés iteratiu en el qual s’executen 64 rondes. En la Figura 5.4 es pot veure el diagrama
de la funci6 de compressi6 del SHA-256 aplicada a un tnic bloc.

Bloc a tractar m-

16 48

U W 1
|M0 |M‘ | |M‘5|W‘5|W|7| | |W53| | K, | K | K, | .. | | Kes Valors constants
Valor estés del bloc
W Wi 62 iteracions més
0
! |
> T »1 »T] T »
,l_“_, g '|_‘q
Valor HTZ ETZ
hash
inicial
& z

[ o] — A 1 4 ™ 1 |G ool
HO% [ T b Leln —»h|@|[HO)[= [H?
— L] L | — | = —_-
ko] o] —re] | lefm(e]- [
HOH o f L et L1 - | @8|[H = [H"
ol — — — v o O Loy —
HOU Jl e EV | | le E' 1 wle| | —»|e|@m|[HO||= [HO
Ha(o)._> d > | L »|d | 1 »|d —»{d|@A HB(O) = Hs(”
HON >l ¢ L1 »{c ks —{c|@||H|= |H"
HW(O)'—’ b | P b L 1 b —» b E H|(0) = HW(‘)
HOU »f o > a > a —>|a|@|[Ho||= |HD

Valor final del hash del bloc (256 bits)
Tots els quadrats |:| representen paraules de 32 bits.
HDU) H‘(W) H2(1) Ham H4(1) H5(1) H5(1) H7(1)

Figura 5.4: Esquema de compressié d’un bloc de la funcié SHA-256

En I’esquema de la Figura 5.4 es pot veure com en cada una de les 64 iteracions es fa servir tant una de les
paraules de 32 bits, W;, com una de les constants k; del vector K, també de 32 bits, definides en I’estandard.
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També veiem que els valors del bloc a comprimir es combinen amb els valors inicials del hash, definits també
en I’estandard com H(©). El grafic també mostra com aquestes combinacions estan formades per quatre
funcions, Ch, Maj, Y31}, que es descriuen a continuacio:

* Chie,f,g) = (eNf)D(meng)

* Maj(a,b,c) = (anb)®(anc)D(bAc)

* Yo(a) = ROTR*(a) ® ROTR"3(a) ® ROTR**(a)
* Y,(e) = ROTR®(e) © ROTR" (¢) & ROTR* (e)

Noteu que les funcions Ch(e, f,g) i Maj(a, b, c) malgrat la complicacié de la seva formulaci6 tenen una
interpretaci6 forga simple. La funcié Ch(e, f, g) és una funcié de tria (Ch- choose). Si el bit del valor e és
un 1, la sortida de la funci6 és el bit del valor f i si el bit del valor e és un 0, la sortida és el bit del valor g.
La funcié Maj(a, b, c) és una funcié de majoria. El bit de sortida de la funci6 és el bit que, en cada posicid,
apareix més vegades quan comparem les tres cadenes a,b i c.

Una XOR es pot pensar com una suma modul 2 (component a compoment) 000101 &

000111 = 000010 i un AND com un producte modul 2 (component a compoment)
000101 A000111 =000101. Recordeu també I’operant de negacié =0100 = 1011. A
més, en la nostra notacid, I’operacié H és una suma modul 232,

La funcié Ch actua sobre tres paraules de 32 bits amb operacions logiques basiques.

Exemple 5.8 Exemple de calcul de la funcié Ch.

Calcul de la funci6 Ch(e, f,g) per als valors:
e = 0x510e527f, f = 0x9b05688c, g = 0x183d9ab.

e 01010001000011100101001001111111

f 10011011000001010110100010001100

eNf 00010001000001000100000000001100

—e 10101110111100011010110110000000

g 00011111100000111101100110101011

—eAg 00001110100000011000100110000000

eNf 00010001000001000100000000001100
—eNg 00001110100000011000100110000000

(eANf)PB(-eNg) 00011111100001011100100110001100

Per tant, el resultat en hexadecimal sera Ch(e, f,g) = 0x1/85¢98¢

La funcié Maj també actua sobre 3 paraules de 32 bits i, al igual que la funcié Ch, també opera utilitzant
operacions logiques basiques.

Exemple 5.9 Exemple de calcul de la funcié Maj.

Calcul de la funcié Maj(a, b, c) per als valors:
a = 0x6a09¢667,b = 0xbb67ae85,c = 0x3cbe f372.

a 01101010000010011110011001100111
b 10111011011001111010111010000101
aAb 00101010000000011010011000000101
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a 01101010000010011110011001100111
c 00111100011011101111001101110010
aNc 00101000000010001110001001100010

b 10111011011001111010111010000101
c 00111100011011101111001101110010
bAc 00111000011001101010001000000000

alb 00101010000000011010011000000101
alc 00101000000010001110001001100010
bAc 00111000011001101010001000000000

(anb)® (aAc)®(bAc) 00111010011011111110011001100111

Per tant, el resultat en hexadecimal sera Maj(a, b, c) = 0x3a6 fe667

La funci6 Y actua tinicament sobre una sola paraula de 32 bits generant tres paraules a partir de diferents
rotacions dels seus bits i realitzant una XOR d’aquestes tres paraules.

Exemple 5.10 Exemple de calcul de la funcié Y.

Calcul de la funci6 Y (a) per al valor: a = 0x6a09¢667

a 01101010000010011110011001100111
ROTRz(a) 11011010100000100111100110011001

a 01101010000010011110011001100111
ROTR13(a) 00110011001110110101000001001111

a 01101010000010011110011001100111
ROTR?*(a) 00100111100110011001110110101000

ROTR?(a) 11011010100000100111100110011001
ROTR"3(a) 00110011001110110101000001001111
ROTR?**(a) 00100111100110011001110110101000
ROTR?(a) © ROTR" (a) ®ROTR?*(a) 11001110001000001011010001111110

Per tant, el resultat en hexadecimal sera Y (a) = Oxce20b47e.

La funcié }’; és molt similar a la funcié ), i inicament es diferencia en el nimero de bits que es roten per
derivar les tres paraules.

Exemple 5.11 Exemple de calcul de la funcié Y ;.

Calcul de la funci6 Y (e) per al valor: e = 0x510e527 f

e 01010001000011100101001001111111
ROTRﬁ(e) 11111101010001000011100101001001

e 01010001000011100101001001111111
ROTR' (¢) 01001111111010100010000111001010
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e 01010001000011100101001001111111
ROTRzS(e) 10000111001010010011111110101000
ROTR(’(e) 11111101010001000011100101001001
ROTR“(e) 01001111111010100010000111001010
ROTRzS(e) 10000111001010010011111110101000

ROTR®(e) ®ROTR' (¢) ©ROTR*(¢) 00110101100001110010011100101011

Per tant, el resultat en hexadecimal sera ¥ (¢) = 0x3587272b

Exercici 5.4 Realitzeu els segiients calculs de les funcions internes del SHA256 tenint en compte els
valors de les cadenes:

mp = 00000000000000001111111111111111

my = 11110000000000001111111111110000

m3 = 11111111000000001111111100000000

Calculeu el resultat de la funcié ROTR’ (my).
Calculeu el resultat de la funcié SHR'®(m,).
Calculeu el resultat de la funcié op(m;)
Calculeu el resultat de la funci6 o (m;)
Calculeu el resultat de la funci6 Yq(m; )
Calculeu el resultat de la funcié Y (m; ).
Calculeu el resultat de la funcié Ch(my,mp,m3).
Calculeu el resultat de la funcié Maj(m;,my,m3).

2NN D=

5.3.3 SHA-256 sobre muiltiples blocs

5.4

En els apartat anteriors hem proporcionat el detall de la funcié SHA-256 quan aquesta s’aplica a un tnic bloc
de dades de 512 bits, que és la mida del bloc amb el que treballa la funcié. Ara bé, si el missatge del qual
volem calcular el hash conté més d’un bloc, aleshores cal aplicar la funcié de compressié de forma recursiva
sobre cada bloc, encadenant la sortida de cada bloc amb I’entrada del segiient. En la Figura 5.5 es pot veure
I’esquema complert per al calcul d’un hash sobre un missatge amb tres blocs, és a dir un missatge de 1536
bits de longitud.

Com es pot apreciar en la figura, per a cada bloc es realitza I’expansi6 per obtenir la cadena W de 2048 bits.
Les paraules de 32 bits que formen aquesta cadena son utilitzades en cada una de les 64 iteracions de la
funcié de compressié juntament amb els valors constants K definits en I’estandard. Fixeu-vos que en cada
bloc s’utilitzen els corresponents valors W; obtinguts del propi bloc perd en canvi, els valors K; utilitzats en
el processat de cada bloc sén sempre els mateixos. Per tdltim, cal notar que el resultat del hash de cada bloc
s’utilitza com a valor inicial per al calcul del hash del segiient bloc.

Aplicacions de les funcions hash

Un cop estudiades les caracteristiques i propietats de les funcions hash i després de veure com es poden
construir passem al darrer punt d’aquest capitol en el que veurem les multiples aplicacions on s’utilitzen les
funcions hash.
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Figura 5.5: SHA-256 mostrant el processat de 3 blocs.

Codis d’autenticacié de missatges

Un codi d’autentificacié de missatge, en angles Message Authentication Code (MAC), és
una cadena curta d’informaci6 relacionada amb el propi missatge a través d’una clau de
manera que permet la seva autenticacio.

Altres denomi- || Els message authentication codes també s’acostumen a coneixer com a cryptographic
naclons checksums o keyed hash functions.

Donat que els codis d’autentificacié permeten autentificar missatges, comparteixen algunes propietats amb
les signatures digitals com ara la propia autentificacié aixi com la integritat del missatge. Tot i aix0, els
codis d’autenticacié no ofereixen la propietat de no repudi, propietat que si que ofereixen les signatures
digitals. Ara bé, els codis d’autenticacié sén molt més rapids i eficients de calcular i és per aquest motiu que
s’utilitzen en entorns on la propietat de no repudi no és essencial.

Signatures La definici6 i funcionament de les signatures digitals la trobareu en el capitol “Cripto-
digitals grafia de clau publica”.

Com veurem a continuacid, els MAC es poden implementar de forma molt simple utilitzant conjuntament
funcions hash i una clau. Aquest tipus de funcions MAC s’acostumen a denominar HMAC, justament per la
utilitzaci6 de la funcié hash. Aquesta idea d’utilitzar una clau pot semblar contradictoria amb el que hem
comentat anteriorment, indicant que les funcions hash no incorporen cap clau ni cap element secret. La
manera, pero, com s’utilitza la clau és simplement per variar d’alguna manera la forma del missatge que es
vol autenticar. Per exemple, donada una funcié hash 4(-) podem derivar-ne dos MACs de la segiient manera:
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HMAC1(m) = h(k || m)
HMAC2;(m) = h(m || k)

on el simbol || representa la concatenacié de cadenes. La primera expressié es coneix com a secret prefix
HMAC 1ila segona com a secret suffix HMAC.

Exemple 5.12 Exemple de calcul d’'un HMAC

Veiem un exemple de com utilitzar la funcié hash definida en I’Exemple 5.4 per a calcular un secret prefix
HMAC.

El missatge sobre el que calcularem I’HMAC sera el segiient m = 11101010 i utilitzarem la clau k = 1100.
Per tant,

HMAC(m) = h(k || m) = HMAC1100(11101010) = A(1100 || 11101010) = ~(110011101010)
En aquest cas tenim tres blocs: m; = 1100, my = 1110 i m3 = 1010. Si ens hi fixem, els dos primers
blocs sén els mateixos que els de I’exemple de la funcié hash, per tant tenim que s, = 1010. Per tant, el

valor final de sortida de la funcid dels tres blocs sera h = h3 = Egy;,,)(m3) © hy = E11(1010) © 1010 =
01011010 =1111

Per tant, HMACk(m) = HMAC1100(1 1 101010) =1111.

Des del punt de vista practic, la manera com els MAC s’utilitzen per autentificar missatges es troba
esquematitzat en la Figura 5.6.

Emissor ----------| © " p--------- Receptor

Funcié \ {(

missatge
A

MAC / -
Funcio
MAC

|:M A:lC MAC

issalge WA > Tmissalge  [WAC @

Figura 5.6: Utilitzacié d’un HMAC per autentificar missatges.

Com es pot veure en la figura, emissor i receptor comparteixen una clau secreta. Cada vegada que 1’emissor
vol enviar un missatge al receptor, en calcula el seu valor HMAC utilitzant la clau secreta que comparteix
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amb el receptor i annexa al missatge el valor resultant. Quan el receptor rep el missatge pot utilitzar la clau i
la funcié hash establerta per tornar a calcular-ne el valor HMAC i comprovar que efectivament coincideix.
Fixeu-vos que un atacant que canvii el missatge que emissor i receptor s’intercanvien, ha de canviar també el
valor HMAC del missatge ja que si no ho fa, la comprovaci6 del receptor no sera correcta. Ara bé, I’atacant
no coneix el valor de la clau que intercanvien i per tant no pot calcular el valor correcte de ’'HMAC per al
missatge modificat.

Autenticacié Fixeu-vos que els codis HMAC s’utilitzen per assegurar-se que ningd no pot canviar el

VT_tc?nﬂdenm- missatge sense que el receptor se n’adoni. Ara bé, donat que no xifrem el missatge, la

dlita s o s . i
comunicacid no oferira confidencialitat i un atacant pot coneixer-ne el contingut.

Exercici 5.5 Els usuaris A i B s’intercanvien missatges. Com que A i B ja comparteixen una clau
simetrica, han decidit que calcularan un HMAC dels missatges per assegurar-ne la seva integritat, és a
dir, per assegurar-se que ningu que intercepti la informacié pugui modificar-la. Calculant un HMAC del
missatge a partir de la clau simetrica que comparteixen volen evitar que si algi modifica el missatge no
pugui modificar ’THMAC de forma correcta, ja que 1’atacant desconeix la clau. Fan servir una funcié
HMAC basada en la funci6 hash k(-) definida en ’Exemple 5.4, concretament utilitzant la clau k com
un secret prefix, és a dir HMACy (m) = h(k || m). D’aquesta manera, A envia el missatge m = 0111 a B
seguit de 'THMAC; = 0111, on k és la clau simetrica que fan servir i només ells dos coneixen.

Malauradament, no saben que la tecnica del secret prefix no és segura i nosaltres, com a atacants, podem
afegir la cadena que vulguem al missatge original i calcular ’'HMAC sense coneixer k. Podrieu calcular
I’HMAC corresponent al missatge m’ = 011111112

Resum de missatges

Una altra de les aplicacions en les que s’utilitzen les funcions hash és per obtenir una representacié compacta
d’un missatge més gran. Gracies a que el valor hash d’un missatge pot permetre identificar-lo de forma
practicament univoca, aquest resum es pot utilitzar en diferents contexts. Per exemple, quan es volen
emmagatzemar fitxers molt grans, sovint en format multimedia, en una base de dades, s’acostuma a guardar-
ne només el seu valor hash en la propia base de dades i una localitzacié externa. D’aquesta manera, es pot
referenciar el contingut i fer-ne cerques fins hi tot partint del propi contingut, també utilitzant-ne el valor
hash, per tal d’obtenir-ne informaci6 associada.

Tenir un resum d’un missatge també és molt rellevant quan les operacions que s’han de realitzar sobre el
missatge son molt costoses i ens és suficient realitzar-les sobre un resum. Aquest és el cas de les signatures
digitals. Tal com veurem més endavant, les signatures digitals son computacionalment poc eficients i per
aquest motiu, en comptes de realitzar-les sobre el missatge sencer s’apliquen sobre un resum d’aquest. La
mida reduida i fixa que s’obté amb una funcié hash permet augmentar molt I’eficiencia de les signatures
digitals.

Emmagatzematge de contrasenyes

Una altra de les aplicacions de les funcions hash és la seva utilitzacié en I’emmagatzematge d’algunes dades
sensibles, com ara les contrasenyes d’accés a un sistema informatic. La protecci6 de les contrasenyes és
altament necessaria per assegurar que cap usuari maliciés se’n pugui apoderar i pugui accedir al sistema
suplantant altres usuaris. Per aquest motiu les contrasenyes mai es guarden en clar.

L’emmagatzematge de les contrasenyes serveix per poder-les comparar amb les que els usuaris introdueixen
en el procés d’autenticacio. Si la contrasenya proporcionada per I’usuari coincideix amb la que el sistema em-
magatzema, 1’autenticacio es considera valida. Ara bé, com ja hem dit, les contrasenyes no s’emmagatzemen
en clar en el sistema siné que s’emmagatzema la imatge de la contrasenya per una funcié hash.
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Contrasenyes || Tot i que col-loquialment sovint es parla que les contrasenyes en els sistemes es guarden
no-xifrades xifrades, aquesta denominacié no és correcta ja que una informacié xifrada s’ha de
poder desxifrar i la imatge d’una funcié hash no permet “desxifrar-ne” el seu valor,
perque voldria dir invertir la funcié hash, cosa que no és possible.

Usuari Servidor

Procés de registre:

1. L'usuari genera el seu nom d'usuari,
U, i la seva contrasenya, P.

2. L'usuari envia U i P al servidor. 3. El servidor calcula el hash de la
contrasenya, h(P) i emmagatzema
el parell (U, h(P)).

Procés d'autenticacio:

1. L'usuari envia el seu nom d'usuari,

U, i la seva contrasenya, P. ) )
2. El servidor cerca l'usuari U en el

fitxer de contrasenyes.

3. Calcula h(P) i comprova que és
igual a I'emmagatzemat en el fitxer
de contrasenyes.

]

Figura 5.7: Esquema d’autenticacié amb contrasenya

El procés d’autenticacié amb contrasenyes guardades com a imatge d’una funcié hash es mostra en la
Figura 5.7. Quan un usuari vol accedir al sistema, proporciona el seu usuari i la seva contrasenya. El sistema,
a partir de la contrasenya que li ha fet arribar 1’usuari, en calcula el seu hash i el compara amb el valor que té
emmagatzemat. En el cas que els dos valors coincideixin, I’usuari queda autenticat correctament.

Recuperacié En un sistema d’accés amb contrasenya ben implementat, ni tan sols 1’administrador
de del sistema us pot dir la vostra contrasenya en cas que 1’hagiu oblidat, perque ell no la
contrasenya s . P .. . .

coneix i només en té la imatge per una funcié hash. Per aquest motiu, quan oblidem la
contrasenya el sistema ens demana que en generem una de nova.

En realitat, el sistema descrit anteriorment és una simplificacié del sistema que realment es fa servir per
emmagatzemar contrasenyes, ja que les contrasenyes emmagatzemades Ginicament amb el seu hash permeten
atacs eficients com ara el segiient. Suposem un sistema que té les contrasenyes emmagatzemades utilitzant el
hash SHA256 de la contrasenya. En aquest cas, el fitxer de contrasenyes tindra un seguit de valors de 256
bits cada un d’ells vinculat a un usuari. En el cas que un atacant pogués aconseguir aquest fitxer, podria
realitzar el segiient atac: Prenent un diccionari de contrasenyes habituals, pot anar calculant el valor SHA256
d’aquestes contrasenyes i anar-lo comparant amb cada un dels valors del fitxer. Fixeu-vos que només que
algun dels usuaris del sistema tingui una de les contrasenyes del diccionari, a 1’atacant només li caldra
calcular un sol hash i comparar-lo amb cada un dels valors del fitxer fins a trobar el correcte. A més, en el
cas que diferents sistemes utilitzessin la mateixa funci6 hash, I’atacant també podria tenir un diccionari dels
hashos en comptes del diccionari de les contrasenyes.
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Per evitar aquests tipus d’atacs, abans de calcular el hash de la contrasenya per a emmagatzemar-la, el
que es fa és afegir a la contrasenya un valor fixat, que s’anomena salt, i que és diferent per cada usuari,
de manera que encara que dos usuaris tinguin la mateixa contrasenya el hash que s’emmagatzemi sigui
diferent. Evidentment, aquest valor també s’haura d’afegir en el procés d’autenticacié quan s’esta validant la
correccio de la contrasenya proporcionada per 1’usuari. Fixeu-vos que un atacant que s’enfronta a un fitxer
de contrasenyes amb salt, tot i coneixer el salt de cada usuari, ha de calcular el hash de cada un dels valors
del diccionari de contrasenyes per cada un dels usuaris del sistema al que esta atacant.

Rainbow Les rainbow tables sén unes taules construides per optimitzar la informacié que
tables s’emmagatzema i la que calcula un atacant que fa un atac sobre un fitxer de contrasenyes
a les quals no se’ls ha afegit un salt. Tot i aixo, les rainbow tables no sén utils amb
contrasenyes desades amb salt.

Les salts acostumen a emmagatzemar-se juntament amb el hash de la contrasenya, ja que la seva funcié no
és pas impedir el calcul del hash siné evitar que 1I’atacant pugui reaprofitar calculs. Quan es vol afegir un
nivell més de proteccid, es poden fer servir salts secretes (també conegudes com a pepper) que es desen en
un altre dispositiu, diferent del que emmagatzema les contrasenyes. Aix{i, un atacant que només té accés al
fitxer de contrasenyes no pot fer 1’atac, ja que no coneix les salts que s’han fet servir per a calcular cadascun
dels hashos.

Derivacié de claus

En criptografia és habitual I’ds de claus criptografiques en diferents contextos, com per exemple per a xifrar
informacio. Ara bé, la capacitat de les persones per a generar i recordar cadenes de zeros i uns és més aviat
limitada, sobretot si aquestes cadenes son molt llargues, com podria ser una simple clau de I’AES de 128
bits. Per aconseguir que les persones puguin generar i recordar claus de forma simple, es fan servir les
contrasenyes de sempre, que els usuaris estan acostumats a utilitzar, combinades amb funcions hash. Aixi,
donada una contrasenya se li aplica una funci6 hash per derivar-ne una clau. Si sempre s’utilitza la mateixa
funci6 hash, donat que aquesta és determinista, per a la mateixa contrasenya d’entrada generara la mateixa
clau. Aquesta idea simple presenta algunes debilitats de seguretat i per aquest motiu s’han dissenyat funcions
especifiques de derivaci6 de claus que, aixo si, es basen en una funcié hash.

La funcio PBKDF2

La funci6 Password-Based Key Derivation Function (PBKDF2) és una funci6 definida
en ’RFC2898 que proporciona un mecanisme segur per obtenir una clau a partir d’una
contrasenya.

Aquesta funci6 és una funcié6 forca utilitzada en diferents aplicacions, com ara per a les claus dels accessos
a les xarxes WIFI (amb els protocols WPA i WPA2), en el xifrat amb AES en el WinZip i en mdltiples
aplicacions de programari que permeten xifrar el disc dur de 1’ordinador.

La funci6é PBKDF2 rep com a entrada cinc parametres i retorna la clau que n’ha derivat. En la segiient
expressié s’inclouen els parametres que requereix la funcio:

K = PBKDF2(PRF, Contrasenya, Salt, c, dkLen)

D’aquests parametres, el més evident és la contrasenya (codificada en UTF-8), que sera el valor que 1’usuari
proporcionara per tal d’obtenir-ne la clau. La resta de valors sén interns de cada implementacio i estaran
fixats per tal que cada contrasenya només pugui derivar una tnica clau. El valor PRF indica una funcié
pseudoaleatoria que utilitza dos parametres, una clau i un valor. Aquesta funcié proporcionara una sortida
de mida hLen. Si ens hi fixem, aquesta definicié de funci6 coincideix amb el d’una funci6 HMAC com la
que hem definit en I’ Apartat 5.4.1 i és en aquest punt on les funcions hash queden lligades a la funcié de
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derivaci6 de claus. D’altra banda, el valor Salt és una seqiiencia de bits utilitzada per afegir aleatorietat
al procés, com s’acostuma a fer amb els valors de salt en altres processos de seguretat. El valor ¢ és un
valor que determina el nombre d’iteracions que realitzara la funci6 de derivacié abans de proporcionar la
clau. Com més gran sigui aquest valor més robusta sera la clau generada perd també més trigara la funcié a
calcular-la. Es recomana que aquest valor sigui, com a minim, 1000. Finalment, el valor dkLen és la mida
de la clau K que es vol generar.

Una vegada definits cada un dels parametres que utilitza la funcid de generaci6 de claus, passem a detallar-ne
el seu funcionament. La segiient expressié proporciona el sistema per a calcular la clau utilitzant la funcié
PBKDF2:

K=Ti || T2 | - | TigkLen/hLen)

on el simbol || indica la concatenacié i els valors T; es descriuen a continuacio.

Cada valor T; el definim com T; = F(Contrasenya, Salt, c, i) on lafuncié F queda explicitada en la
segiient expressio:
F(Password, Salt, c,i)=U;®U, & --PUc

on els valors U; sén els segiients:
U; = PRF(Contrasenya, Salt | INT_32_BE(i))
U, = PRF(Contrasenya, Uj)

Uc = PRF(Contrasenya, Uc_;)
on INT_32_BE(i) és I’'index i codificat com un enter de 32 bits en notacid big-endian.

Com hem comentat anteriorment, el valor ¢ és el que determina el nombre d’iteracions que es realitzaran.
Fixeu-vos a més, que es pot donar el cas en que el valor dkLen/hLen no sigui un enter, i per tant la part
entera superior de la divisi6, és a dir [dkLen/hLen], proporcionara un nombre total de bits de la clau
superior al que s havia indicat en el valor dkLen. En aquest cas, la dltima paraula de la clau, T(dkLen /hLen]
es truncara per la dreta per tal que la clau tingui exactament dkLen bits.

Pseudonimitzacioé de dades

Actualment les dades tenen un paper clau en molts dels sectors de la societat. L’tis de dades massives ha
permes progressar en ambits tant diversos com la medicina, les telecomunicacions o les finances, perd I'ds
indiscriminat de dades personals comporta problemes de privadesa que cal adregar.

Les funcions hash s’utilitzen sovint per a pseudonimitzar identificadors en conjunts de dades, tot i que, com
veurem a continuacio, aquesta no sempre és una bona alternativa.

Informalment, la pseudonimitzacié permet dissassociar la identitat d’un subjecte de les dades d’aquest.
Normalment aquest procés es duu a terme substituint un o diversos identificadors per un pseudonim, per
exemple, una cadena generada pseudoaleatoriament. Aixi, les dades queden associades a aquest pseudonim,
i desvinculades de la identitat del seu propietari.

Una primera aproximaci6 a la pseudonimitzacié amb funcions hash consistira a substituir els identificadors
d’un conjunt de dades pel resultat d’avaluar una funcié hash sobre aquests.

Exemple 5.13 Exemple de pseudonimitzacié trivial amb funcions hash Suposem que disposem
d’un conjunt de dades amb notes d’estudiants que conté els atributs DNI (sense lletra) i nota de 1’estudiant
en una assignatura.

La pseudonimitzacié trivial d’aquest conjunt de dades substituiria el DNI dels estudiants pel resultat
d’aplicar una funcié hash al DNI. A priori, aix0 desvincularia la identitat de 1’estudiant de la seva nota.

A continuacié veurem dos dels problemes d’aquesta tecnica. D’una banda, un atacant que coneix el
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DNI d’un estudiant de 1’assignatura, podria reidentificar el registre i aconseguir saber la nota d’aquest
estudiant. Per fer-ho, simplement hauria de calcular el hash del DNI, i consultar la nota al conjunt de
dades pseudonimitzat. D’altra banda, si 1’atacant no coneix el DNI de cap estudiant, podria llancar un atac
de forga bruta per trobar els DNIs dels estudiants, aprofitant el fet que els DNIs tenen un format concret
per a reduir ’espai de cerca. Els DNIs estan formats per 8 digits, de manera que caldria calcular 108
hashos per a comprovar tots els DNIs possibles. Si assumim que I’atacant pot calcular un 10 hashos per
segon (cosa que es podria fer amb qualsevol ordinador sense hardware especialitzat), 1’atac tardaria menys
de dos segons.

Dues alternatives més robustes per a pseudonimitzar identificadors consisteixen en 1’is de MACs (Message
Authentication Code) o la incorporaci6 de salts secretes. En ambdues alternatives, a cada identificador li
corresponen diversos pseudonims, depenent de la clau o la salt utilitzada. La clau o la salf secreta es mantenen
separats de les dades, de manera que un atacant que només diposa de les dades no pot reidentificar-ne els
registres reproduint el procés que s’ha dut a terme per calcular els pseudonims.

Exemple 5.14 Exemple de pseudonimitzacié amb salt secreta o pepper

Suposem que disposem del mateix conjunt de dades que a I’exemple anterior, i que s’aplica un procés
de pseudonimitzacié substituint el DNI pel hash d’una salt secreta (generada pseudoaleatoriament)
concatenada al DNIL.

La Figura segiient mostra un exemple del procediment, fent servir SHA-256 com a funci6 hash. Les dades
originals sén dividides en dos conjunts de dades diferents, que seran desades separadament. D’una banda,
es desara la salt de cada registre, que s’haura generat pseudoaleatoriament (Taula 1.3). D’altra banda, es
desaran les notes, associades al pseudonim, que s’haura calculat com el SHA-256 de la concatenaci6 de la
salt i el DNIL

Table 1.4: Conjunt de dades pseudonimitzat
Pseudoidentificador | Nota

Ox340fFf . .. 5
—_— 0x1648da - - - 9.8
Table 1.2: Conjunt de dades original 0x40e616 - - - 7
DNI Nota 0x9d480F - - - 2
50705923 | 5
88046921 | 9.8
20091322 | 7 Table 1.3: Salts secretes
64802452 | 2 Salt
56714
— 78910
28285
92670

Aquesta tecnica permet adrecar les limitacions de la tecnica trivial. Ara, si un atacant accedeix al conjunt
de dades pseudonimitzades, i coneix un dels DNIs dels estudiants de I’assignatura, no podra reidentificar
el registre que correspon a aquest estudiant, ja que no podra recrear el hash. Analogament, un atacant
tampoc podra calcular els pseudonims de tots els DNIs existents, encara que sapiga que aquests estan
formats per 8 digits.

Ara bé, cal anar molt en compte a 1’aplicar aquest tipus de tecniques per pseudonimitzar dades. De fet, en
podriem fer una assignatura sencera només explicant com fer-ho! Per exemple, suposem que el conjunt de
dades conté les notes de diverses activitats:
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Pseudoidentificador | Act. 1 | Act. 2 | Act. 3

0x340£fff... 5 6 4
0x1648da. .. 10 9 7
0x40e616. .. 7 7 3
0x9d480f. .. 2 5 3

i que I’atacant sap quin estudiant és I’tinic que ha aprovat la tercera activitat de 1’assignatura (per exemple,
pot ser que sigui I'tinic que va sortir content de classe després de saber-se les notes d’aquesta activitat).
En aquest cas, ’atacant sera capag de reindentificar el registre de 1’estudiant, i obtenir aix{ informacié
addicional sobre aquest (en particular, les notes exactes de totes les activitats).

Generacio de cadenes de bits pseudoaleatories

La criptografia requereix sovint de 1’ds de cadenes de bits generades aleatdriament, per exemple, en la
generacié de claus, de vectors d’inicialitzacié o de valors per a reptes en protocols interactius. Per tal de
generar cadenes de bits aleatories, es disposa principalment de dues estrategies: o bé es fa servir una font
d’aleatorietat a partir d’algun procés fisic que no sigui predictible, o bé es calculen els bits de manera
determinista amb un algorisme a partir d’una llavor. Les técniques que fan servir aquesta segona estrateégia
s’engloben sota el nom de generadors de nombres pseudoaleatoris 0 PRNG (per les seves inicials en angles,
PseudoRandom Number Generator) 1, de les cadenes de bits que generen, en direm que s6n pseudoaleatories.

Els PRNG s6n algorismes deterministes que produeixen una seqiiencia de bits a partir d’una llavor, que s’ha
d’obtenir d’una font aleatoria. Quan la llavor és secreta, els bits que genera un PRNG no sén predictibles.

Es poden construir PRNG a partir de funcions hash. Aixi, per exemple, el NIST defineix un PRNG basat
en funcions hash anomenat Hash. DRBG (DRBG s6n les inicials de Deterministic Random Bit Generator,
un altre terme per referir-se als PRNG). L’algorisme Hash_ DRBG emmagatzema un estat format per una
variable i una constant (V i C, respectivament) i un comptador. Inicialment, V i C es deriven de la llavor
aleatoria. Després, el valor de la variable V es fa servir per derivar els bits pseudoaleatoris, i s’ actualitza el
valor d’aquesta variable (en aquesta actualitzacid es fa servir la constant C). Cada vegada que es generen
nous bits, s’incrementa el comptador de I’estat intern. Quan aquest comptador arriba a un llindar preestablert,
cal tornar a introduir aleatorietat a I’algorisme per tal de seguir generant bits pseudoaleatoris, procés que es
coneix com a ressembrat (de 1’angles, reseeding).

Compromis de bit

Hi ha situacions quotidianes en les que estem acostumats a fer servir alguns mecanismes molt simples que
funcionen sense cap dificultat d’execucié. Un d’aquests casos és el de ’tirar una moneda a I’aire’ per, per
exemple, decidir quin dels dos jugadors d’una partida d’escacs tindra les fitxes blanques. Ara bé, quan les
dues parts que duen a terme aquest petit protocol no es troben fisicament al mateix lloc, la simplicitat de tirar
una moneda a I’aire no ens serveix en el cas que hi hagi certa desconfianca entre els dos participants.

Si analitzem el procés de tirar una moneda a I’aire veiem que, normalment, un dels dos usuaris tria cara o
creu i I’altre, una vegada s ha decidit qui guanyara segons el revers de la moneda, tira la moneda a 1’aire. En
aquest simple esquema, 1’usuari que tria cara o creu ho fa de forma puiblica, de manera que després (quan cau
la moneda) no pot dir que ha triat una altra cosa. I ’'usuari que tira la moneda no pot fer trampa (assumint
que la moneda no esta trucada!) perque tira la moneda davant de 1’altre usuari i els dos veuen el resultat que
en surt, de manera que qui tira la moneda no pot canviar-ne el resultat.

Per emular aquest protocol de forma remota (o digital) es fa servir un esquema de compromis de bit.
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Un esquema de compromis de bit (en angles, bit commitment) és una tecnica per la qual
un usuari A es compromet, davant d’un usuari B, a un valor m per mitja d’un valor C(m),
que sera el compromis. Aquest compromis ha de tenir les segiients propietats:

1. Donat el compromis C(m), B no pot obtenir informacié del valor compromes m.

2. A ha de poder obrir el compromis C(m) mostrant el valor compromes .

3. A no pot obrir el compromis C(m) mostrant un valor diferent al valor m compromes
inicialment.

Amb un esquema de compromis de bit com el que acabem de descriure, el protocol de tirar una moneda a
I’aire es pot definir amb els segiients passos.

1. L'usuari A tria cara o creu i codifica la seva tria en el missatge m. Posteriorment, calcula el compromis
d’m, C(m),il’envia a B.

2. B genera aleatoriament un bit, on 1 correspondra al valor cara i 0 correspondra a creu. B enviara a A
el valor aleatori generat.

3. A obrira el compromis C(m) mostrant a B quin valor (cara o creu) havia triat, de manera que es veura
qui ha guanyat en el protocol de tirar una moneda a I’ aire.

Fixeu-vos que en el pas 2 del protocol, I’'usuari A ja ha triat cara o creu pero I’usuari B, tot i tenir el compromis
C(m), no pot saber quin valor ha triat (gracies a la primera propietat de ’esquema de compromis de bit). En
el pas 2, tot i que 1'usuari B no generés el bit de forma aleatoria (per intentar alterar el protocol) el fet que no
coneix si A ha triat cara o creu fa que la tria d’aquest valor aleatori sigui intrascendent. D’altra banda, en el
pas 3, A ja sap quin valor ha obtingut B i per tant B no pot desdir-se’n. A més, A obre el seu compromifs i, tot
i congixer el valor obtingut per B, no pot obrir-lo mostrant un altre valor diferent al que s’ha compromes,
gracies a la tercera propietat de I’esquema de compromis de bit.

Els protocols de compromis de bit es descriuen per mitja de dues fases: fase de generacié del compromis i
fase d’obertura del compromis i en els segiients apartats veurem dues tecniques diferents que implementen
un esquema de compromis de bit.

Compromis de bit utilitzant funcions hash

Una de les tecniques més utilitzades per implementar un esquema de compromis de bit és mitjangant una
funci6 hash.

Sigui m el missatge al qual ’usuari es vol comprometre, en la fase de generacié del compromis 1’usuari A
selecciona un valor aleatori r i calcula C(m) = h(r || m) on h és una funci6 hash criptografica.

En la fase d’obertura del compromis C(m), I’usuari A revela els valors r i m. A partir d’aquests valors,
l’usuari B pot calcular /(7 || m) i comprovar que efectivament coincideix amb el valor C(m) al qual A s’havia
compromes.

Comprovem que aquest esquema compleix amb les tres propietats d’un esquema de compromdis de bit.

1. B no pot obtenir el valor compromes m a partir el compromis C(m) ja que &(-) és una funcié hash
criptografica i per tant no es pot invertir. Fixeu-vos que el valor aleatori r s’utilitza en cas que el
missatge m se seleccioni d’un conjunt petit de missatges, per tal d’evitar que B pugui calcular totes
les imatges de la funcié hash per a tots els possibles valors diferents d’m i descobrir-ne el valor
compromes.

2. A pot obrir el compromis C(m) fent publics els valors r i m.

3. A no pot obrir el compromis, C(m), obtenint un valor m’ # m perqué aixd voldria dir que A pot trobar
(r||m) # (¢ || M) tal que h(r || m) = h(¥' || m') i aixd no €s possible per les propietats que hem
enumerat de la funci6 hash criptografica que s’utilitza.
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Prova de treball

En I’execucié d’alguns protocols criptografics, en ocasions, és necessari assegurar que un participant realitza
un cert esfor¢ de calcul abans de poder realitzar una operaci6 per tal que I’operacid en qiiesti6 no sigui facil
de realitzar de forma automatica i repetitiva. Aquests tipus de mecanismes s’anomenen prova de treball.

Una prova de treball (en angles proof-of-work), és un mecanisme que permet a 1’usuari
d’un sistema demostrar a la resta d’usuaris de forma fidedigna que ha realitzat una certa
quantitat de feina, normalment, una certa quantitat de calculs.

El concepte de prova de treball el van proposar Cyntia Dwrok i Moni Naor en un article publicat al congrés
Crypto I’any 1992 pero no va ser fins més tard, I’any 1999, que M. Jakobsson i A. Juels van formalitza-lo i
van proposar-ne el terme proof-of-work.

Les aplicacions de les proves de treball sén variades i van des de la prevenci6 de correu brossa fins al
manteniment d’integritat en els sistemes de criptomonedes.

La propietat més important d’una prova de treball és la seva asimetria, en el sentit que el cost de realitzacid
de la prova de treball s’ha de poder prefixar de forma arbitraria, pero la verificacié de la prova de treball,
independentment de la dificultat fixada en el cost, ha de ser extremadament eficient i, per tant, no ha de
requerir tornar a realitzar els calculs que s’han de realitzar per produir-la. Es per aquest motiu que les
funcions unidireccionals utilitzades en criptografia, com ara les funcions hash, sén una bona base per a la
creaci6 de proves de treball.

Una de les proves de treball més utilitzades en 1’actualitat, ja que moltes de les criptomonedes existents
la fan servir, és el Hashcash, una prova de treball proposada per A. Back I’any 1997 per tal de limitar el
correu brossa i, en general, altres atacs de denegacié de servei. Aquesta prova de treball consisteix a calcular
el valor hash d’una certa informaci6 i aconseguir que la imatge resultant sigui un valor inferior a un cert
llindar. Per a fer-ho, cal habilitar un camp aleatori en la informacid en qiiesti6 per tal de poder-lo variar per
obtenir-ne diferent valors hash.

Per exemple, una simplificaci6 del sistema anti-correu brossa basat en aquesta prova de treball seria el
segiient. Quan ’usuari A vol enviar un correu a ’'usuari B, un cop generat tot el missatge, inclosa 1’adreca del
destinatari, ’'usuari A afegeix a la capcalera un nou camp, que podra contenir qualsevol valor aleatori. Amb
tota aquesta informacid, A en calculara la imatge per una funcié hash determinada, que haura consensuat
amb B. Préviament, A i B hauran també fixat quin és I’esfor¢ (en la prova de treball) que A ha de fer per
enviar-li un correu a B. Aquest esfor¢ s’explicitara triant un valor objectiu concret d’entre totes les imatges
possibles de la funcié hash. Abans de processar el correu, I’'usuari B comprovara si el hash del missatge que
ha rebut d’A és inferior al valor objectiu. En cas afirmatiu, processara el correu, en cas negatiu el descartara.
Fixeu-vos que una vegada A ha redactat el correu, si al realitzar el calcul del hash n’obté un valor superior al
valor objectiu, no pot enviar el missatge (ja que B el descartaria). Abans de fer-ho ha de modificar el nou
camp que ha afegit a la capgalera amb un valor aleatori i tornar a calcular-ne el hash. Si és menor al valor
objectiu, ja podra enviar-lo, pero si no ho és haura de tornar a modificar el valor del camp, tornar a calcular
el hash i anar repetint aquesta operacié fins que el hash del correu sigui més petit que el valor objectiu.
Fixeu-vos que la mida del valor objectiu fixara la dificultat de la prova de treball, com més petit sigui el valor
objectiu, més feina haura de fer A per enviar el missatge a B.

Fixeu-vos que la necessitat que té I’emissor del missatge per enviar-lo fa que si aquest emissor és un
generador de correu brossa, per enviar cada correu brossa li sigui necessari realitzar un cert volum de calcul
per a cada correu (ja que el destinatari del correu forma part de la informacié que s’inclou en el hash i per
tant no pot reaprofitar els calculs d’un altre correu) i per tant es desincentiva aquest practica.
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Exemple 5.15 La dificultat de la prova de treball i les probabilitats

Les propietats estadistiques de les funcions hash criptografiques fan que la seva sortida es pugui considerar
un generador pseudoaleatori en el sentit que donada una entrada no se’n pot predir la sortida i una minima
modificacié de I’entrada provoca una modificacié significativa del valor de la sortida. Amb aquesta
premissa, suposem una funcié hash de mida 3 digits, €s a dir, el resultat d’aplicar aquesta funci6 hash
a un missatge ens pot donar un valor entre el 0 i el 999, és a dir 1000 valors. Aixi, la probabilitat que
donada una entrada m el seu valor hash siguin un nombre menor que 1000 sera 1, ja que qualsevol sortida
ens donara un d’aquests valors. Ara bé, si fixem el valor objectiu de la nostra prova de treball en 500,
la probabilitat que I’entrada d’aquesta funci6 sigui menor que 500 és de % I si el valor objectiu és 100,
la probabilitat és de %. En aquest tltim cas, fixeu-vos que un emissor del sistema Hashcash que vulgui
enviar un correu, haura de regenerar el valor aleatori i recalcular el hash 10 vegades, en mitjana, fins a
obtenir una sortida inferior al valor objectiu i per tant un correu que sigui acceptat pel receptor. Per tant,
com més petit és el valor objectiu, més dura €s la prova de treball.

Aquest mateix mecanisme de prova de treball es fa servir en moltes criptomonedes, com ara el Bitcoin, per
assegurar que un usuari no pot gastar de nou uns diners que ja havia gastat préviament.

Exercici 5.6 Tenim un sistema que utilitza una prova de treball a través d’una funci6 hash. Aquesta
funci6 hash té una mida de 64 bits i la potencia de calcul de la xarxa que I’utilitza esta fixada en 100.000
hashos per segon. Fixeu un valor objectiu de la funcié hash per tal que, amb la poténcia de calcul que
s’indica, es trobi una imatge del hash menor que valor objectiu, en mitjana, cada 10 minuts.

5.4.9 Taules hash

Les funcions hash també s’utilitzen molt sovint com a primitives en la creacié d’estructures de dades.
Aquestes aplicacions es fan servir a vegades en el context de la seguretat de la informaci6, perd també
trascendeixen a altres contextos de les ciencies de la computacié. A continuacid presentarem tres estructures
de dades basades en funcions hash: les taules hash, els arbres de Merkle, i els filtres de Bloom.

Les taules hash sén una estructura de dades utilitzada per a implementar diccionaris (també coneguts com a
arrays associatius), és a dir, estructures que emmagatzemen parells no ordenats de clau-valor, on les claus
son uniques. Les taules hash permeten inserir, buscar i eliminar elements de manera eficient.

Una taula hash és una estructura de dades que implementa un diccionari o array associatiu.

Exemple 5.16 Exemple de diccionari o array associatiu

Els diccionaris sén estructures que es fan servir sovint en programacié. A continuaci6 es llisten un parell
d’exemples de dades que es poden desar en un diccionari:

* Un diccionari pot utilitzar-se per a desar el hash de la contrasenya d’un conjunt d’usuaris d’un
sistema. Les claus del diccionari contindran els identificadors dels usuaris (de manera que no hi ha
claus repetides) i el valor associat a cada clau sera el hash de la seva contrasenya.

» Un diccionari pot emmagatzemar els prefixos telefonics de cada provincia. Les claus del diccionari
contindran el nom de la provincia (que és tnic) i el valor associat a cada clau sera el prefix telefonic
d’aquella provincia.

Les taules hash fan servir una funcié hash per calcular I’'index d’un element a partir de la seva clau. Aquest
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index indica a on esta desat I’element.

Aixi, els procesos d’afegir, eliminar o buscar un element a la taula hash consten d’una primera fase comuna,

que consisteix en calcular I’index de I’element. La segona fase és especifica per a cada procés i consisteix a
er I’accio especificada, és a dir, escriure un nou element a la taula, eliminar-ne un d’existent, o bé comprovar

fer I’ ficad d 1 t a la taula, el d tent, o b

si un element hi és.

Exemple 5.17 Exemple de taula hash

Seguint amb I’exemple de les contrasenyes, suposem que disposem del segiient diccionari:

{
"morpheus": 0x4c9a82ce72ca2519f38d0af0abbb4cecb9fcecal,
"neo": 0x356a192b7913b04c54574d18c28d46e6395428ab,
"trinity": 0x7110edad4d09e062aa5e4a390b0a572ac0d2c0220
}

i que el volem implementar amb una taula hash que fa servir com a index els 4 primers bits del SHA-256
de la clau de cada element. Procedim a calcular I’index de cada element:

SHA256(morpheus) = Oxclaledaa ...
i(morpheus) = SHA256(morpheus)p. 3 = Oxc = 12

SHA256(neo) = 73ef176d ...
i(neo) = SHA256(neo)q 3 = 0x7 =7

SHA256(trinity) = 0x934alle6 ...
i(trinity) = SHA256(trinity)p 3 =0x9 =9

on I’expressi6 X;. ; denota els bits des de la posici i a la posicié j del valor X.

Aleshores, la taula hash quedaria de la manera segiient:

morpheus

neo

> | 0x356a192b7913b04c54574d18c28d46e6395428ab |

I3

trinity

> | 0x7110eda4d09e062aa5e4a390b0a572ac0d2c0220 |

12 > | 0x4c9a82ce72ca2519f38d0afOabbbdcecb9fcecad |
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La versi6 de la taula hash que acabem d’explicar t€ perd un problema evident: no és capag de gestionar les
col-lisions d’indexs. Es a dir, si dos elements tenen el mateix index, no es podran emmagatzemar tots dos,
ja que en cada posicié només s’hi desa un element. Aixo és un problema important, que es pot adrecar de
diverses maneres.

Una alternativa per a adrecar les col-lisions en taules hash és 1’ds de llistes enllacades. Aixi, cada posicié de la
taula hash apunta al primer element d’una llista enllagada, que contindra tots els elements que comparteixin
el mateix index. En aquesta variant, els processos de cerca, inserci6 i eliminacid fan s, per tant, de dues
estructures de dades. D’una banda, calculen I’index de 1’element a la taula hash i, d’altra banda, operen
sobre la llista enllagada per tal de cercar, inserir o eliminar elements.

Exemple 5.18 Exemple de taula hash amb llista enllacada

Suposem que fem servir una taula hash amb llista enllacada per emmagatzemar els mateixos elements que
a ’exemple anterior, més la contrasenya d’un usuari nou, en cypher.

En primer lloc, calculem I’index del nou element:

SHA256(cypher) = 0xc9d22bd2
i(cypher) = SHA256(cypher)g 3 = Oxc = 12

Per tant, la taula hash quedaria ara:

o [x]
1 [x]
1
3 [<]
4 [X]
6 [ |
neo > 7 : > || neo | ox3562192b7913b04c54574d18c28d46e63954282b |
8| X
GRSy > 9 _—4>|><| trinity | 0x7110eda4d09e062aa5e4a390b0a572ac0d2c0220 |
10| %
12 __—>| | morpheus | 0x4c9a82ce72cazs19f38d@af0abbb4cecb9fceca9I
13| %
— Y
u % |><| cypher I0x78988010b890ce6f4d2136481f392787ec6d6106 |
15

Fixeu-vos que ara hem de desar tant la clau com el valor de cada element, ja que hem de poder distingir
les contrasenyes de diferents usuaris que comparteixen indexs.

Triar la funci6 hash adequada per a implementar una taula hash és una tasca complicada i, alhora, critica. Cal
tenir en compte tant la distribucié de valors com el rendiment de I’estructura de dades. Sovint es fan servir
funcions hash no criptografiques per a implementar taules hash, ja que la seva avaluacié és molt més rapida.
Aixi, la funci6 hash a utilitzar dependra dels requeriments de 1’escenari en que es desplegui la taula hash.
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Funcions hash

Arbres de Merkle

Els arbres de Merkle van ser proposats 1’any 1979 per Ralph Merkle, de qui en deuen el nom, i permeten
desar un resum d’un conjunt de dades, de tal manera que es pugui demostrar que una dada pertany a aquest
conjunt eficientment.

Una arbre de Merkle és un arbre en el qual cada fulla conté el hash d’un bloc de dades, i
els nodes interns contenen el hash de la concatenacid dels valors dels seus fills.

Habitualment, els arbres de Merkle so6n binaris, és a dir, cada node intern té com a molt dos fills.

Top Hash

Haih 0
Hash 1

hash(

)

Nodes
interns
Hash Hash
0 1
hash( =307 ) hash( (ol )
4 A S
AN
Hash Hash Hash Hash
0-0 0-1 1-0 1-1 Fulles
hash(L1) hash(L2) hash(L3) hash(L4)
Blocs de
L1 L2 L3 L4 dades

Figura 5.8: Exemple d’un arbre de Merkle. Il-lustracio original de David Gothberg, sota llicencia

CCo. 1.0.

Exemple 5.19 Exemple d’arbre de Merkle

La Figura 5.8 mostra un arbre de Merkle per a quatre blocs de dades (L, - - ,Ly).

L’arbre té quatre fulles (els nodes 0-0, 0-1, 1-0 i 1-1), que contenen el hash de cadascun dels blocs de
dades, és a dir, hgy = H(L]), ho1 = H(Lz), hip = H(L3) 1hy = H(L4).

El segon nivell de I’arbre té dos nodes: el node O conté el hash de la concatenaci6 dels nodes 0-0 i 0-1
(ho = H (hoo||ho1)) i el node 1 conté el hash de la contatenaci6 dels nodes 1-0 i 1-1 (b = H (hyol|h11)).

El primer nivell conté I’arrel de I’arbre, un tinic node que desa el hash de la concatenacié dels nodes 01 1
(hy = H(ho||h1)).
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Exercici 5.7 Calculeu el hash de I’arrel de 1’arbre de Merkle per al segiient conjunt de blocs de dades
fent servir SHA-256 com a funci6 hash.

L, = GREAT PYRAMID OF GIZA

L, = COLOSSUS OF RHODES

L3 = HANGING GARDENS OF BABYLON
L4 = LIGHTHOUSE OF ALEXANDRIA

Ls = MAUSOLEUM AT HALICARNASSUS
Le = STATUE OF ZEUS AT OLYMPIA

L; = TEMPLE OF ARTEMIS AT EPHESUS
Lg = MILFORD SOUND

Els arbres de Merkle son utilitzats per realitzar proves de pertinenca a un conjunt de manera eficient.
Suposem que tenim un conjunt d’zn blocs de dades, ¥ = {Li,...,L,}, i que volem generar-ne un resum, de
manera que posteriorment puguem demostrar que els elements L; (amb i = 1,...,n) pertanyen al conjunt
Z eficientment. En primer lloc, calculariem el resum /,, que correspondria al hash de I’arrel de 1’arbre
de Merkle amb els blocs de dades d’.Z a les fulles. Aquest resum /4, seria I’inic valor que caldria que el
verificador desés per tal de poder comprovar, posteriorment, que qualsevol dels blocs L; pertany a .. Per tal
de demostrar que un bloc L; pertany al conjunt .Z, el provador genera una prova IT que conté el bloc L; i els
hashos de tots els nodes germans que hi ha en el cami des del node L; a I’arrel de 1’arbre #,. El verificador
pot comprovar que la prova és correcta calculant el hash del bloc L; i reconstruint 1’arbre de Merkle amb els
hashos dels germans proporcionats a la prova. Si I’arrel de I’arbre de Merkle calculat és igual a I’arrel i, que
havia emmagatzemat, la prova és correcta, i el verificador queda convencut que L; € .Z.

Exemple 5.20 Exemple de prova de pertinenca amb arbre de Merkle

Seguint amb I’exemple de la figura 5.8, suposem que £, és el valor del hash de I’arrel de I’arbre, i que
volem crear una prova de pertinenga per al bloc L3. La prova de pertinenga per a L3 seria IT = (Lz, hy1,hp).

Per tal de verificar la prova de pertinenca, el verificador procediria a calcular:
hio = H(L3)
hy = H (hiol|h11)
hy = H(ho|[h1)

Si h, = h,, aleshores la prova de pertinenca seria satisfactoria. En cas contrari, es rebutjaria la prova.

Un detall a notar és que per tal de verificar la prova de pertinenca, el verificador ha de saber en quin ordre
concatenar els hashos a cada nivell. Aquesta informaci6 es pot incloure a la prova de pertinenga, afegint
un unic bit per a cada element que indiqui si és el fill dret o I’esquerra, o bé indicant explicitament la
posicié del node dins de 1’abre.

Exercici 5.8 Genereu una prova de pertinenga del bloc de dades MILFORD SOUND per a I’arbre de
Merkle de I’Exercici 5.7. Valideu la prova generada.

D’una banda, la prova de pertinenga que acabem de descriure és eficient i concisa. Independentment del
nimero de blocs de dades n i de la seva mida, el resum /4, a guardar per tal de poder verificar les proves de
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pertinenca és petit, i t€ una mida constant (que correspondra a la mida de sortida de la funci6 hash que es faci
servir). Addicionalment, la prova de pertinenca conté tinicament log, n elements de mida constant (la mida
de sortida del hash), més el bloc de dades a verificar. Finalment, el comput a realitzar per fer la verificaci6 és
també de log, n+ 1 hashos (el hash del bloc de dades i un hash per cada element de la prova).

D’altra banda, si la funcié hash que es fa servir en la construccié de 1’arbre de Merkle és una funcié hash
criptografica, aleshores un atacant no podra construir una prova de pertinenca falsa, és a dir, no podra
convencer al verificador que un bloc L; ¢ . si que pertany a .Z. Fixeu-vos que, per a crear una prova de
pertinenga falsa, I’atacant hauria de ser capag de crear un nou bloc L; ¢ . que tingués el mateix hash que
algun dels blocs L; € ., és a dir, trobar un L; ¢ £ tal que H(L;) = H(L;) peraalguni € I,...,n. Aixd no
és possible ja que una funcié hash criptografica és resistent a segones preimatges. Una altra estrategia que
podria seguir I’atacant és modificar els valors dels hashos germans que conformen la prova de pertinenca, per
tal d’intentar que el hash de I’arrel de 1’arbre de Merkle calculat coincideixi amb I’emmagatzemat, 4,. De
nou, aixo no és possible si la funcié hash és criptografica, ja que suposaria crear segones preimatges (amb
restriccions addicionals sobre el seu contingut).

Les proves de pertinenca en arbres de Merkle que hem presentat permeten a un provador demostrar a un
verificador que un determinat bloc de dades pertany a un conjunt. Ara bé, tal com les hem presentat, aquestes
proves no serveixen per a demostrar el contrari, és a dir, que un bloc de dades no pertany al conjunt. Fixeu-vos
que si la prova de pertinenca falla, el verificador no pot assegurar que el bloc no es troba present (el bloc pot
ser-hi perd en una altra posicid, o bé els hashos germans presentats poden ser erronis). Una petita variant
dels arbres de Merkle permet provar que un element no esta en un conjunt.

Una arbre de Merkle ordenat és un arbre de Merkle en el qual els blocs de dades de les
fulles es troben ordenats, de manera que L; < Lp < --- < L,.

Els arbres de Merkle ordenats es poden fer servir per a fer proves de no pertinenga. Com en el cas de les
proves de pertinenca, calcularem el hash de I’arrel de 1’arbre, £,, que sera I’tinic valor que el verificador
haura de desar per poder verificar les proves. Ara, per tal de crear una prova que demostri que un bloc de
dades L; no pertany a ., en primer lloc cal localitzar els blocs L; i L;11 tals que L; < L; < Li+1. La prova
de no pertinenca IT consistira en els dos blocs de dades, L; i L;, 1, juntament amb les proves de pertinenca de
cadascun d’ells.

A partir d’aquesta prova I1, es pot verificar que un bloc L; no pertany a .# de la segiient manera. En primer
lloc, es comprova que efectivament L; < L; < L;11. A continuacid, es calculen els hashos dels blocs de dades
L;iLi1,1es validen les proves de pertinenca de casdascun d’aquests blocs. Finalment, es comprova que els
blocs de dades L; i L s6n blocs consecutius, és a dir, que es troben un immediatament a continuacié de
I’altre en les fulles de 1’arbre de Merkle. Aquesta tltima comprovaci6 es fa validant la posicié que ocupen els
blocs de dades en I’arbre, que es pot derivar de 1’ordre en que cal concatenar els hashos per tal d’aconseguir
obtenir el hash de I’arrel esperat.

També es poden generar proves de no pertinenga per a valors L; inferior a L; o superiors a L,, amb una petita
variant del protocol que acabem de presentar.

Exemple 5.21 Exemple de prova de no pertinenca amb arbre de Merkle

Seguint amb I’exemple de la Figura 5.8, suposem que 4, és el valor del hash de I’arrel de I’arbre i que
els blocs de dades L; emmagatzemen els segiients enters: L; = 31,1, =37,L3 = 41,L4 = 43. L’arbre
de Merkle és un arbre ordenat, ja que L; < Ly < L3 < L4. En aquest exemple crearem una prova de no
pertinenca per al bloc 42.

En primer lloc, es localitzen els dos blocs de dades consecutius entre els quals es trobaria el bloc de dades
42, que sén L3 i Ly (jaque L3 <42 < L4 1314 sén consecutius).
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La prova de no pertinenga seria I1 = (42, (L3, h11,ho), (La,h10,h0))-
Per tal de verificar la prova de no pertinencga, en primer lloc el verificador comprovaria que 41 < 42 < 43.

Després, procediria a calcular:

hio = H(L3)
hy = H(hiol|h11)
hy = H (hol|h1)

hiy = H(L4)
hy = H(hio|[h11)
hy = H (hol|h1)

i validaria que els valors 4. obtinguts coincideixen amb I’h, que té emmagatzemat.
Finalment, comprovaria que les fulles en posicions L3 i L4 s6n consecutives.

Si les tres verificacions son satisfactories, aleshores el provador pot estar segur que 42 no pertany a .Z.

Els arbres de Merkle es fan servir per a fer proves de pertinenca o no pertinenga en diversos contextos.
Per exemple, es fan servir en la criptomoneda Bitcoin per a que clients lleugers (com podrien ser els que
s’executen en un dispositiu mobil) puguin validar la inclusié de transaccions en els blocs que formen la
cadena de blocs (la blockchain), sense haver d’emmagatzemar la cadena de blocs sencera (que ocupa diversos
centenars de gigabytes). Cada bloc de la cadena conté I’arrel de I’arbre de Merkle de totes les transaccions
que s’hi emmagatzemen. Quan un client lleuger necessita comprovar si una transaccié s’ha inclos en un bloc
(per exemple, per saber si ha rebut un pagament), el client demana una prova de pertinenca de la transacci6 a
la cadena de blocs. Aleshores, un servidor que si que disposa de totes les dades, genera la prova de pertinenca
per a la transacci6 i I’envia al client, que la valida reconstruint I’arbre de Merkle. D’aquesta manera, el client
pot estar segur que la transacci6 s ha inclos a la cadena de blocs, ja que el servidor no pot falsificar la prova.

Filires de Bloom

Els filtres de Bloom van ser proposats 1’any 1970 per Burton Howard Bloom. Sén estructures de dades
que permeten fer testos de pertinenga fent servir molt poc espai d’emmagatzemament pero, a diferéncia
dels arbres de Merkle, son estructures probabilistiques, que poden retornar resultats erronis (amb una certa
probabilitat).

Un filtre de Bloom és una estructura de dades probabilistica que permet fer testos de
pertinenca aproximats fent un us eficient de I’espai d’emmagatzemament.

Un filtre de Bloom pot retornar falsos positius perd mai falsos negatius. Es a dir, la resposta a una consulta
de pertinenga amb un filtre de Bloom sera o bé que 1’element no es troba en el filtre o bé que probablement si
que hi és.

Un filtre de Bloom f esta format per:

1. un vector binari V d’n bits,
2. iun conjunt de k funcions hash independents Ay, hy, - -, que tenen rang [0,n — 1].
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El procés de creacio del filtre consisteix a seleccionar els parametres del filtre (la mida del vector n, el
nombre de funcions hash k i les k funcions hash a utilitzar) i a inicialitzar el vector, assignant 0 a totes les
posicions.

Per tal d’afegir un element al filtre es procedeix de la manera segiient. Primer, s’apliquen les k funcions
hash a I’element, obtenint k valors entre 0 i n — 1 (un valor per a cada funcié hash). A continuacid, s’assignen
a 1 les k posicions del vector indicades per les sortides de les funcions hash. Definirem doncs la funcié
d’afegir un element e al filtre de Bloom com:

Vihi(e)] =1 Vi€ [,k
on V[j] és la posicié j del vector V.

Aquest procediment es repeteix per a tots els elements a afegir al filtre, procés en el qual es poden generar
col-lisions. Es a dir, es pot haver d’assignar un 1 a una posicié que ja havia estat fixada a 1 per un altre
element. La freqiiencia de les col-lisions vindra determinada per la mida del filtre i el nombre de funcions
hash utilitzades. En aquest cas, si un dels bits a assignar a 1 ja és 1, no caldra modificar-lo, i seguira sent 1.

Per tal de comprovar si un element ¢ es troba en el filtre, s’apliquen de nou les k funcions hash a I’element,
i es comprova si totes les posicions del vector binari indicades per les sortides de les funcions hash sén 1. Si
alguna de les posicions indicades conté un 0, aleshores direm amb tota seguretat que 1’element no pertany al
filtre. En canvi, si totes les posicions contenen un 1, aleshores direm que I’element pertany al filtre, tot i que
en aquest cas només podrem afirmar-ho amb certa probabilitat. Aix{, doncs, definim la funcié p que retorna
1 si ’element e es troba en el filtre f 1 0 en cas contrari com a:

o

ple.f) =[] VIhi(e)]

i=1

Es interessant notar perqué un filtre de Bloom mai no déna falsos negatius. La funcié p retornara 0 si alguna
de les posicions indicades per les funcions hash s6n 0. En aquest cas, tenint en compte que quan s’afegeixen
els elements les posicions es marquen amb 1, podem estar segurs que 1’element no hi és. En canvi, la funci6
p retornara 1 si totes les posicions indicades per les funcions hash soén 1. En aquest cas, podria ser que les
posicions estessin a 1 perque s’han modificat a 1’afegir 1’element, perd també podria ser que s’haguessin
marcat a 1 afegint d’altres elements, generant aleshores un fals positiu.

Exemple 5.22 Exemple de filtre de Bloom

En aquest exemple tenim un filtre de Bloom f que consta d’un vector binari de midan = 8 bitsi k =3
funcions hash.

Inicialment, el filtre es troba buit i, per tant, totes les posicions del vector es troben a 0:

010101010101 O0(O0

0 1 2 3 4 5 6 7

A continuaci6 s’afegeixen dos elements, e i ey, al filtre. Per fer-ho, s’apliquen les tres funcions hash a
cadascun dels elements, i s’estableixen a 1 els bits indicats. Suposem que els resultats de les funcions
hash sén els segiients:

h1(61)=1 h1(62)=7
hz(el) =3 h2(62) =4
hi(e1) =4 hi(e2) =5
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La segiient figura mostra el filtre de Bloom després d’afegir els elements e; i e;.

A partir del vector binari i les tres funcions hash, es poden fer testos de pertinenca sobre el filtre. Aixi, per
exemple, per a comprovar si I’element e pertany al filtre, calculariem:

k
pler, f) =[JVIhi(e)] = V1] x VB3] x V4] =1x1x1=1
i=1
i dirfem, per tant, que I’element ¢; es troba en el filtre.

Suposem ara que disposem de dos elements addicionals, e3 i e4 per als quals també volem comprovar si es
troben al filtre, i que els resultats d’aplicar les funcions hash a aquests elements sén els segiients:

h1(63) =1 hl (84) =7
h2(63) =0 /’12(64) =3
h3(e3) =7 h3(€4) =1

Calculem doncs si els elements es troben al filtre:

k
ples, f) =[] VIhi(es)] =V[1] x V[0] x V[T] = 1 x 0x 1 =0
i=1

k
plea, f) =[[VIhi(ea)] = V[T x V3] xV[1] =1x1x1=1
i=1

Per a e3 obtenim una resposta correcta, indicant que 1’element no es troba al filtre quan, efectivament,
no hi és. En canvi, per a e4 obtenim una resposta erronia: el filtre ens indica que I’element hi és quan,
en realitat, aquest no ha estat afegit. El filtre genera un fals positiu per a I’element e4, produit per les
col-lisions que es generen en afegir els elements e; i e;.

Exercici 5.9 Sigui f un filtre de Bloom amb el vector binari segiient:

{11y 1{o0f1ry1j1f1r(1)J1{1(0]0]0{|1
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iles 5 funcions 4; definides de la manera segiient:

hi(e) =e mod 16
hy(e)=e+1 mod 16
e+2 mod 16

on els elements e a afegir al filtre sempre son enters.

1. Digueu si els elements segiients es troben al filtre:
e1 =0,e3=1429, e3 = 1171 e4 = 15839.
2. Justifiqueu si I’eleccio de les funcions 4; és adient per al seu Us en filtres de Bloom.

Exercici 5.10 Siguin f; i f> dos filtres de Bloom de la mateixa mida n i que fan servir les mateixes k
funcions &;. Expliqueu com construirieu un dnic filtre que contingui tots els elements que hi ha en els dos
filtres.

Pel que fa a I’eficiencia de I’estructura de dades, els filtres de Bloom permeten tant afegir elements com
consultar si hi pertanyen amb complexitat temporal &'(k), ja que les dues operacions impliquen calcular k
hashos. Es a dir, afegir elements i comprovar si hi sén no depén de la mida del filtre ni del nombre d’elements
que hi pertanyen! Aquesta caracteristica dels filtres de Bloom els fa adequats per a tractar certs tipus de
problemes com els que presentem a continuacio.

Exemple 5.23 L’us de filtres de Bloom en aplicacions reals

Un dels usos més habituals dels filtres de Bloom és com a part d’un sistema de cache. Per exemple,
a ’estudiar el problema del disseny de sistemes de cache per a pagines web, es va observar que la
gran majoria de pagines només sén descarregades una Unica vegada, mentre que un conjunt petit de
pagines es descarreguen molt sovint. A partir d’aquesta observacid, els proveidors intenten crear sistemes
de cache que incloguin aquest conjunt petit de pagines que es fan servir sovint, ja que aixd permet
optimitzar la descarrega sense consumir innecessariament recursos de cache per a pagines que no tornaran
a descarregar-se més.

En aquest cas, es pot servir un filtre de Bloom per emmagatzemar les pagines que han estat visitades
alguna vegada. Quan un client fa una peticié d’una pagina, es consulta el filtre per saber si aquesta pagina
ja ha estat buscada anteriorment.

* Si la pagina no es troba al filtre, vol dir que no ha estat buscada en el passat. Aleshores, s’afegeix la
pagina al filtre i es recupera de I’emmagatzemament principal. Com que la pagina només ha estat
buscada una vegada, aquesta no s’afegeix a la cache, ja que potencialment no és d’interés per a
altres usuaris.

* Si la pagina es troba ja al filtre, vol dir que aquesta ja havia estat consultada en el passat. Aleshores,
s’intenta recuperar la pagina de la cache. Si hi és, se serveix al client aquesta versid, guanyant
velocitat de descarrega. En canvi, si la pagina no es troba a la cache, voldra dir que és el segon cop
que es busca, i aleshores s’afegira a la cache.

D’aquesta manera, la cache contindra totes les pagines que s’han buscat com a minim dues vegades.
Facebook i Akamai fan servir aquest tipus d’estratégies en les seves plataformes.

Un filtre de Bloom €s una tecnica eficient per a un sistema de cache com el que acabem de presentar: el
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nombre de possibles pagines a descarregar és immens (de manera que mantenir una llista completa amb el
nombre de descarregues de cada pagina seria costds) i un fals positiu no provoca un error en el sistema
(sin6 que simplement implica afegir una pagina addicional a la cache).

Probabilitat de generar falsos positius

El disseny del filtre de Bloom presenta un compromis entre I’espai que es vol destinar al filtre i la probabilitat
de generar falsos positius que es vol acceptar.

La probabilitat de generar un fals positiu en un filtre de Bloom (FPP o False Positive Probability) ve
determinada per la mida del vector binari (), el nombre funcions hash (k) i el nombre d’elements que conté

(m):
1 km k
FPP(n,k,m) = (1_<1_n> )

Vegem pas per pas d’on sorgeix aquesta expressio. La probabilitat que un bit especific del vector segueixi a 0
després d’haver afegit un element al filtre és (1 — 1/n)¥, ja que amb probabilitat 1/n el bit es fixara a 1 per
cadascuna de les k funcions hash. Després d’haver afegit els m elements, la probabilitat que un bit segueixi
a 0 és doncs (1 —1/n)*" (repetim m vegades el procés d’afegir un element). Finalment, la probabilitat de
generar un fals positiu és la probabilitat que les k posicions consultades per a I’element siguin 1.

Aixi doncs, donat un filtre d’una mida i nombre de funcions hash determinats, la FPP augmenta conforme es
van afegint elements al filtre. La Figura 5.9 mostra com varia la probabilitat d’un fals positiu per a un filtre
de 64 bits que fes servir dues, tres o quatre funcions hash.

FPP

0 10 20 30 40 50 60

Figura 5.9: Probabilitat de fals positiu (FPP) segons el nombre d’elements del filtre (m), per a
k =2 (blau), k = 3 (taronja) i k = 4 (verd) funcions hash.

Donat un filtre de mida n amb m elements, ens podem preguntar quin és el nombre de funcions hash & optim
per tal de minimitzar la FPP del filtre. La resposta no és immediata, doncs d’una banda, augmentar k permet
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comprovar més bits per cada element que es vulgui testejar, minimitzant aixi la FPP pero, d’altra banda,
disminuir £ permet augmentar la probabilitat de trobar un bit a 0, que és el que ens permet evitar un fals
positiu.

El valor de k optim per minimitzar la FPP ve donat per I’expressio segiient:

n
kopt = —1In2
m

Nombre optim || El lector interessat pot consultar el capitol 5 del llibre Mitzenmacher, Michael, and
de funcions Eli Upfal. Probability and computing: Randomization and probabilistic techniques
hash in algorithms and data analysis. Cambridge university press, 2017, per aprendre com
deduir I’expressié que permet calcular el nombre Optim de funcions hash a partir de
I’expressi6 de la FPP.

Aix{, el nombre dptim de funcions hash ve determinat pel factor n/m, que representa el nombre de bits per
element emmagatzemat al filtre. La Figura 5.10 mostra I’evolucié de la FPP en base al nombre de funcions
hash que s’utilitzen per a filtres amb diferents bits per element (n/m). També s’hi mostra el nombre dptim de
funcions hash a fer servir en cadascun dels casos.

1.0 A
0.8 1
0.6
o
& — n/m=16
0.4 - ® Kkopr=11.18
n/m=28
Kopt =5.55
0.2 - —_— n/m=4
® kopt=2.77
—_— n/m=2
0.0 ® Kkopr=1.39

0 10 20 30 40 50 60 70 80 90

Figura 5.10: Probabilitat de fals positiu (¥ PP) segons el nombre de funcions hash (k).

Cal tenir en compte que I’expressié que permet calcular k,,; pot retornar un nombre real, perd el nombre de
funcions hash d’un filtre sempre sera un enter, que caldra triar en el moment del disseny.
Les funcions hash dels filtres de Bloom

Els filtres de Bloom fan s de diverses funcions hash, que han de ser independents entre elles i han de tenir
una distribuci6 de sortida uniforme.

Es fan servir diferents técniques per tal de poder implementar aquestes funcions sense fer ts de funcions
hash diferents, cosa que sovint seria molt costosa. Aixi, per exemple, es poden agafar diferents parts de la
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sortida d’una mateixa funcié hash per a cadascuna de les 4;; es pot concatenar un valor inicial, diferent per
a cada h;, a ’entrada de la funcié hash; o bé es poden combinar les sortides de dues funcions hash per a
recrear-ne les k necessaries.

Exemple 5.24 Exemples de definicions per a les /;

Suposem que construim un filtre per a una cache d’n = 256 bits i k = 4 funcions hash, i que hi volem
afegir la pagina uoc.edu. Per a indexar les 256 posicions del filtre necessitem 8 bits (28 = 256), de
manera que cadascuna de les /; haura de tenir una sortida de 8 bits.

Particionar la sortida d’una funcié hash

Una manera d’implementar les quatre h; que necessitem és fer servir una tnica funcié hash que tingui
una sortida de 32 bits com a minim, i prendre blocs de 8 bits d’aquesta sortida per a cadascuna de les k
funcions hash.

Per exemple, prenem el SHA-1, que té una sortida de 160 bits, com a funci6 hash base, i calculem els 4;
de la manera segiient:

SHA1(uoc.edu) = 0xe6a62a58a28f94d745d3ea9a47163c846a065a3¢c
u) = SHA1(uoc.edu)y 7 = Oxe6 =230
)

hi(uoc.ed

hy(uoc.edu) = SHAl(uoc.edu)s ;5 = Oxab = 166
h3(uoc.edu) = SHAl(uoc.edu)i¢ o3 = 0x2a =42
ha(uoc.edu) = SHAl(uoc.edu)ys 3 = 0x58 = 88

on I’expressi6 X; ; denota els bits des de la posicio i a la posicié j del valor X.

L’avantatge d’aquest metode és que només requereix el calcul d’una tnica funcié hash. En canvi, pero, el
nombre de bits que s’obtenen queda limitat per la mida de la sortida de la funci6 hash, de manera que no
serveix per a filtres molt grans o que utilitzin moltes funcions hash.

Exercici 5.11 Sigui f un filtre de Bloom amb un vector n = 65536 posicions i k = 10. Justifiqueu
quina de les segiients tres funcions hash seria més adient per a utilitzar per definir les 10 funcions 4;
amb la teécnica de particionar la sortida i proposeu una possible definici6 de les 4;.

1. MD5
2. SHAI
3. SHA256

Us d’una llavor

Una alternativa és fer servir una llavor concatenada amb 1’element com a entrada d’una tnica funcio hash,
i variar el valor de la llavor per a cada A;. Per exemple, si prenem de nou el SHA-1 com a funcié hash base
i un comptador com a llavor, procediriem a calcular:

hi(uoc.edu) = SHA1(luoc.edu)y 7 = 0x81 = 129
hy(uoc.edu) = SHA1(2uoc.edu)y 7 = 0x87 = 135
hi(uoc.edu) = SHA1(3uoc.edu)y 7 = 0xe9 = 233
hs(uoc.edu) = SHA1(4uoc.edu)y 7 = 0x16 =22

En aquest cas, com que només necessitem 8 bits per cada 4;, hem conservat els primers 8 bits de la sortida
1 hem descartat la resta de bits.
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L’avantatge d’aquest metode respecte a 1’anterior és que no té limit en relacié al nombre de funcions hash
k a implementar ni el nombre de bits de sortida de cada 4; individual (si se’n necessiten més dels que
ofereix la sortida de la funcié hash base, es poden fer servir diverses llavors per a cada %;). No obstant
aix0, aquest metode és molt més costdés computacionalment que el metode de particionar la sortida, ja que
per cada element a afegir o comprovar caldra calcular diversos hashos.

Alternatives Per a coneixer una alternativa eficient per a derivar les k funcions hash recomanem la

eficients per al || Jectura de I’article Kirsch, Adam, and Michael Mitzenmacher. “Less hashing, same

ﬁjcrlmlgil::niehlc?ssh performance: building a better bloom filter.” European Symposium on Algorithms.
Springer, Berlin, Heidelberg, 2006.

Més enlla de com aconseguir k funcions hash per a construir filtres de Bloom, ens podem preguntar també
quin tipus de funcié hash és adient com a funci6 hash base en aquestes construccions. Hem esmentat que
és necessari que les diferents 4; siguin independents entre elles, i també que generin una sortida uniforme.
Les funcions hash criptografiques poden complir aquests requisits. Ara bé, fer servir com a funcié base
una funcié6 hash criptografica (com ara el SHA1) és costés computacionalment. Serien titils, per a aquesta
aplicacid, 1’ds de funcions hash no criptografiques, que tot i que no compleixen certs requisits de seguretat,
sén molt més rapides de calcular? La resposta no és absoluta, i dependra de 1’entorn en el qual preveiem
desplegar el filtre de Bloom. Si I’entorn no té adversaris, potser podem fer servir funcions no criptografiques,
sempre que es repecti la uniformitat de les sortides i la independeéncia entre les h; que en derivem. Alguns
exemples de funcions hash no criptografiques que es fan servir en implementacions de filtres de Bloom sén
la funci6é hash Murmur3 o la funcié Fowler-Noll-Vo (FNV). En canvi, si I’entorn en el qual despleguem el
filtre pot tenir adversaris, que tinguin un interés en fer fallar els testos de pertinenca, aleshores en general
sera preferible 1’ds de funcions criptografiques, ja que les seves propietats faran el filtre més robust a atacs.
En qualsevol cas, cal estudiar amb detall I’escenari i els possibles adversaris que s’hi poden trobar, per tal de
decidir quin tipus de funci6 hash cal implementar.

Murmur3 La funcié hash no criptografica Murmur3 deu el seu nom a les operacions en que basa
el seu funcionament: multiplicar-rodar-multiplicar-rodar. La primera versi6 d’aquesta
funcié hash (coneguda com a Murmurl) va fer-se ptiblica el 2008, i la versi6 actual té
dues variants: Murmur3A, que genera una sortida de 32 bits, i Murmur3F, que té una
sortida de 128 bits.

Fowler-Noll-Vo || La funcié hash no criptografica Fowler-Noll-Vo deu el seu nom als autors que la van
(FNV) dissenyar. La primera versi6 es va comengar a gestar al 1991. La versi6 actual d’aquesta
funcio ofereix variants amb sortides de 32, 64, 128, 256, 512 i 1024 bits.

Variants de filtres de Bloom

Els filtres de Bloom que acabem de descriure corresponen a la variant basica d’aquesta estructura de dades.
Ara bé, existeixen una gran diversitat de variants dels filtres de Bloom, cadascuna de les quals aporta alguna
nova caracteristica en relacié a la versié basica.

Aixi, per exemple, la variant basica del filtre de Bloom no permet eliminar elements del filtre. Una vegada
s’ha afegit un element ja no es pot esborrar, ja que si fixéssim a O totes les posicions indicades per les
funcions hash per a aquell element, podriem estar afectant altres elements que també haguessin modificat
aquelles posicions. Els filtres de Bloom amb comptadors (en angles, es coneixen com a Counting Bloom
filters) sOn una variant que permet eliminar elements.

Els filtres de Bloom amb comptadors canvien el vector binari per un vector d’enters, que s’inicialitza
també a 0. Per a afegir un element, s’incrementa el comptador de les posicions indicades per les funcions
hash. D’aquesta manera, es pot definir una operaci6 d’esborrat, que consisteix simplement en decrementar el
comptador de les posicions afectades.
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Exercici 5.12 Sigui f un filtre de Bloom amb comptadors d’n = 16 posicions i k = 3 funcions hash, on
hi = SHA14; 4i43.

1. Mostreu el contingut del filtre després d’afegir els tres elements segiients: uoc.edu, cv.uoc.edu,
biblioteca.uoc.edu.

2. Elimineu I’element uoc . edu del filtre i mostreu com queda el vector després d’aquesta operacio.

Un altre dels problemes que presenta la variant basica en el seu ds en aplicacions reals és que cal decidir la
mida del filtre abans de comencar a treballar-hi, en base al nombre d’elements que s’hi preveuen emmagat-
zemar i la probabilitat de falsos positius que I’aplicacio pot tolerar. Ara bé, estimar el nombre d’elements
que s’hi emmagatzemaran abans de desplegar 1’aplicaci6 pot no ser facil i les conseqiiencies d’'una mala
estimaci6 afectaran al rendiment. D’una banda, si 1’estimaci6 és superior als elements que realment s’hi
emmagatzemen, estarem desaprofitant espai de disc. D’altra banda, si I’estimaci6 és inferior, la probabilitat
de falsos positius augmentara per sobre del llindar que 1’aplicacid pot tolerar. Els filtres de Bloom escalables
permeten afrontar aquest problema, oferint la possibilitat d’augmentar la mida dels filtres a mesura que
aquests es van omplint.

Els filtres de Bloom escalables (SBF) estan formats per un o més filtres de Bloom basics. Quan els filtres
existents en un moment donat s’omplen, aleshores s’afegeix un nou filtre basic a I’'SBF. Cada nou filtre es
dissenya de manera que la probabilitat de fals positiu en I’estructura completa (I’SBF) sigui I’especificada en
el moment del disseny. D’aquesta manera, es pot desplegar una aplicacié amb un filtre de Bloom petit, i
anar-lo ampliant conforme creixen les necessitats de 1’aplicacié sens que augmenti la probabilitat de falsos
positius.

Funcions hash amb propietats addicionals

Algunes de les aplicacions que acabem de presentar es poden beneficiar de 1’ds de funcions hash amb algunes
propietats addicionals, més enlla de les necessaries per a funcions hash criptografiques que s’han presentat
a I’inici del capitol. Una d’aquestes propietats €s que siguin computacionalment costoses de calcular i/o
dificilment optimitzables en hardware especific. Aquesta propietat pot ser d’interes en les funcions hash
utilitzades per emmagatzemar contrasenyes, per derivar claus o en proves de treball.

En el cas de les contrasenyes i la derivacié de claus, augmentar el temps de comput de la funcié hash té
poc impacte en 1’ts legitim de les aplicacions, doncs I’usuari legitim que s’ha d’autenticar només necessita
calcular un dnic resultat. En canvi, aquest augment dificulta els atacs contra aquests sistemes, ja que els
atacants necessiten calcular moltes vegades la funcié hash (per exemple, per fer atacs de diccionari o de
forga bruta).

En el cas de les proves de treball, la situacié és similar en el seu s com a proteccio per a correu brossa. El
cas de les criptomonedes és una mica diferent, i té a veure amb la descentralitzacié del minat: certs tipus de
funcions hash sén facilment implementables en dispositius hardware especifics (ASICs o FPGAs) per al
calcul de la funci6 hash, perd la creaci6 i adquisicié d’aquests dispositius no es troba a 1’abast de tothom.
Aix0 fa que hi hagi un intereés en evitar utilitzar funcions hash optimitzables per hardware, ja que aquestes
porten a dificultar I’accés al minat per al public en general.
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ASICs Un ASIC (de I’angles, application-specific integrated circuit) és un circuit integrat
d’aplicaci6 especifica, és a dir, un circuit dissenyat i fabricat per a dur a terme una
funci6 especifica. Aixo es contraposa amb circuits d’ds generic, com ara les CPUs,
que estan pensades per a poder executar diverses aplicacions diferents. Els ASICs es
dissenyen fent servir llenguatges de descripcié de harware, que després se sintetizen
per produir una descripcié a nivell de portes 10giques de 1’aplicacié. El disseny i
creacié d’un ASIC té uns costos fixos molt elevats, perd en canvi sén circuits molt
eficients (en quant a velocitat i consum energetic) per a fer la tasca per la qual estan
dissenyats. A més, els costos variables son petits, de manera que sén adients per a fer
grans produccions.

FPGAs Una FPGA (de I’angles, Field-programmable gate array) és un circuit dissenyat per a
ser configurat després de la seva produccié. Les FPGAs contenen arrays de blocs logics,
que poden implementar portes logiques o altres funcions més compexes, i permeten
configurar les interconnexions entre aquests blocs. Com els ASICs, es configuren
fent servir també llenguatges de descripcié de hardware. Les FPGAs ofereixen un
rendiment menor que els ASICs, pero el cost d’una implementacié és molt més barat
que el d’'un ASIC, ja que s6n configurables després d’haver sortit de la fabrica de
produccio.

Aixi, hi ha un interés creixent en el disseny de funcions hash resistents a ASICs, és a dir, funcions hash que
no donin un gran avanatge al ser implementades en ASICs. Una de les técniques que s’utilitza és la creacié
de funcions amb un s intensiu de memoria (en angles, es coneixen com a memory-hard functions). Com
que la memoria té un cost similar, tant si es fa servir en un ASIC com des d’un dispositiu de proposit general,
les funcions que requereixen d’un s intensiu de la memoria no es beneficien molt de la seva implementacié
en ASICs.

Una funcié hash amb us intensiu de memoria (en angles, en diem memory-hard hash
Jfunction) és una funci6 hash que requereix d’un ds intensiu de memoria per a avaluar-la
de manera rapida.

Noteu que 1’ds intensiu de memoria no és un requisit indispensable per a poder avaluar la funcié hash: la
memoria és necessaria per a avaluar-la de manera rapida. Si no es disposa de la memoria, aleshores la funcié
es pot avaluar pero aquesta avaluacié €s molt més lenta.

La funcié hash scrypt és una funcié amb us intensiu de memoria feta presentada 1’any 2009 i publicada com a
RFC el 2016 (RFC 7914). Per aconseguir 1’ts intensiu de memoria, la funcié fa ds d’un vector pseudoaleatori
molt gran. Durant I’execuci6 de la funcid, cal accedir a diversos elements d’aquest vector, en un ordre
també pseudoaleatori, i recuperant una mateixa posicié diverses vegades. La generacidé d’aquest vector és un
procés computacionalment costds. Aixi, una implementacié que emmagatzemi el vector sencer sera rapida a
executar-se, ja que només calculara el vector una tinica vegada i recuperara els elements que vagi necessitant
del vector durant I’execucié. En canvi, una implementacié que no desi aquest vector, necessitara calcular els
elements cada vegada que els necessiti, un procés costds per disseny.
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Resum

Com hem pogut veure en aquest capitol, les funcions hash sén una eina criptografica extremadament
versatil que s’utilitza cada vegada més en diferents aplicacions i protocols criptografics. La seva principal
caracteristica és la impossibilitat de predir-ne la sortida, malgrat coneixer-ne 1’entrada, tot i assumint que
la definicié de la funci6 hash queda totalment determinada de forma publica. A més, aquesta prediccié no
es pot realitzar tot i congixer la sortida d’altres valors propers a I’entrada, ja que les propietats d’aquestes
funcions impliquen que un petit canvi en I’entrada provoqui un canvi significativament gran en la sortida.

Per aconseguir aquestes caracteristiques, hem vist que les funcions hash estan formades per un seguit de
subfuncions que incorporen un alt grau de no-linealitat justament per tal de fer imprevisible la seva sortida. A
més, les operacions internes d’una funci6 hash s’iteren diverses vegades perque encara sigui més complicat
realitzar-ne una analisi. Per aquest motiu, la simple definicié d’una funcié hash, com ara el SHA-256, ja
implica una complexitat forca elevada.

Gracies a aquestes propietats, les funcions hash es poden utilitzar per realitzar autenticacié de missatges
amb criptografia de clau simetrica, per obtenir resums quasi univocs de missatges, per a generar valors
pseudoaleatoris, en protocols de compromis, per a I’emmagatzemament de contrasenyes o bé per a la
derivacio de claus. A més, les funcions hash sén també un dels pilars de les noves criptomonedes, gracies a
la seva utilitzaci6 en les proves de treball, els arbres de Merkle o els filtres de Bloom.
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Solucions dels exercicis

Exercici 5.1:

Utilitzant les expressions de I’ Apartat 1.2, la probabilitat que en un grup de 50 persones triades a I’atzar, dues

d’elles tinguin I’aniversari el mateix dia és 1 — [(1 — %) -(1- %) (1= %)] = ?97 97. D’altra banda, la
probabilitat que almenys una d’elles hagi nascut el dia 1 de gener és de 1 — (1 — % )=0,12

Exercici 5.2:

El resultat de la funci6 hash és el valor 1100 i el procés de calcul es mostra en el segiient grafic:

missatge | 0101 | 0101 |
l I

valor o101 0101
inicial

110 0101 111 0101

1M xor — xor

1101 1110

1000 1011

(©
1111 —>€9 0111 "ea

\/ {7
o[ O — 1100

Exercici 5.3:

En primer lloc, cal passar el valor "'SALA’ a una cadena de bits, obtenint:
01010011010000010100110001000001.

A continuaci6 afegim un ’1” a la cadena, obtenint 010100110100000101001100010000011.

Després, hi afegim 448 — (32+ 1) = 415 zeros i els tltims 64 bits s6n la representacid en binari de la mida
del missatge 'SALA’ en bits. Com que la mida del missatge era de 32 bits, tenim que els 64 bits finals del
missatge sén: 000 - --00100000. Per tant els 512 bits de padding sén:

010100110100000101001100010000011 00---0 00---00100000
——— ———
415 zeros 64 bits

Exercici 5.4:
Els resultats de les funcions son els segiients:

ROTR’(my) = 11111110000000000000000111111111
SHR'*(m;) = 00000000000000000000000000111111
op(m;) = 11000001111111111101111000000000

o1 (m;) = 011000000000000001100000001 11111
Yo(m;)=00111100000001111100001111111000

¥ 1(m1) =00000011100111111111110001100000
Ch(my,mp,m3)=11111111000000001111111111110000
Maj(m,my,m3) = 11110000000000001111111111110000

Exercici 5.5:

La utilitzacié d’'una HMAC amb secret prefix no és segura perque la informacié secreta s’afegeix a ’inicii a
continuacio es calcula el hash. Aixo fa que en un disseny estandard de funcié hash, afegir un bloc al final
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d’un missatge tnicament requereixi continuar iterant la funcié hash amb el nou bloc sense necessitat de
coneixer el valor de la clau secreta utilitzada per calcular THMAC. Aixi, en aquest exercici, com que volem
calcular THMAC de la cadena 01111111 pero coneixem 'HMAC de la cadena més curta 0111, només caldra
utilitzar la funcié hash una iteracié més amb el valor 0111 com a vector inicial i el fragment nou, 1111, com
a missatge a calcular el hash. Si realitzem els calculs trobarem que ’'HMAC per al missatge 01111111 sera
0001.

Exercici 5.6:
Una funci6 hash de 64 bits té un nombre total de possibles imatges de 2°4. En 10 minuts, si podem provar
100.000 hashos per segon, haurem provat 100.000 - 60 - 10 = 60.000.000 valors. Per tant, el valor objectiu

Eer a la.nostra prova de treball sera % = 307445734561 que si ho expressem com una cadena de 64
1ts tenim

0000000000000000000000000100011110010101001100011001110010100001
Exercici 5.7:

En primer lloc es calculen els hashos de cadascun dels blocs de dades:

hooo = H(Ll) = eab4f9d949b9508d847c85de6a03a0db71258ee7d7b01d135c5b7c794bbb9848
hoo1 = H(Lz) — 9689£fc250b6c60ec0c5c6b6£9bc7e621c69df7febbdadleb41ccde7792b26146
ho1o = H(L3) = 876cb92390cf4b52cb3e58a48b7£221eccd99f01c1925eefc9aaldabd4c88901
hot1 = H(L4) = bb063417e4eddab0426c3cdfef9dab97af388a60690ceaal1fb15f49ce30cled
higo = H(LS) = ce9b1b67eb23b708147ac7a35cba77ecdedf9ac991e0£084d1248521918795ab
hio1 = H(Lg) — 94335c418b09a0223a6£90757209ca69f96a26£5705d6c14d132b33cdea84cde
hi10 = H(L7) = 032cf476fae7facbb766e98e7dac817e75cd29434b15108e2b10b3d9b3a68967
hi = H(Lg) = d7409ed2339ca2803e527d63ec1e4b08ae3705ebf97b8de4646911f91ee1294c

Després, es procedeix a calcular els hashos del tercer nivell de I’arbre:

hoo = H (hooo||hoo1) = H(eab4£9d9- - - 9689£c25- -+ ) =

= f4aceecdaecOb6e7702331a7d5c4d2dfd708dcdabbecc9eb6ae2ebcb55b891771
hor = H(hotol|ho11) = 344bdb1d3370£4e61c676421c048a4c9284ea5538dd678b4d2bb7ee9756c5337
hio = H(hi1po||h101) = 3dbbcce400af55f c8acdcad013550a0d76169ce584a82b802ddf 2b4a2761c897
hi1 = H(hi10]|h111) = 2988ac56ddbfed1dfae8966ef1dfald8fe31bbd52f0002afd2d4cbbel148£8e8

A continuacid es calculen els hashos del segon nivell:

ho = H (hoo||ho1) = H(f4aceecd - - -344bdbld ) =
= 04d15a9750de7caa93411a12a1d53a9672cf 1£d5213e31d4241650f4e7f34a59
hy = H(hjo||h11) = e2£528e5024516fdaaeaeb2b92f cde9b8228908£780141e936a89b6cd6dc6c0d

I finalment es calcula I’arrel de 1’arbre:

hy = H(ho||h1) = H(04d15a97 - - - e2£528e5 - - - ) =
= 3cb579c97652a53b9997027665390b£927943a1cc09b69e5a5c2518862811d37

Exercici 5.8:
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La prova de pertinenca per al bloc de dades MILFORD SOUND és:

IT = (MILFORD SOUND,A19,h10,h0) =
= (MILFORD SOUND,032cf476---,3dbbcced---,04d15a97---)

El verificador, que coneix &, = 3cb579c9- - procedira a validar la prova calculant:

hi11 = H(MILFORD SOUND) = d7409ed2- - -
hn = H(hi10]|h111) = H(032c£476- - -d7409ed2 - - - ) = 2988ac56 - - -
H(h10||h11) = H(3dbbcce4 - --2988ac56- -+ ) = e2f528e5- - -
H(ho||h1) = H(04d15a97 - - - e2£528e5+ -+ ) = 3cb579¢9- - -

Com que /. és efectivament igual a A,, el verificador donara la prova per valida.
Exercici 5.9:

1. Lelement e; = 0 no es troba al filtre, ja que el bit /5(0) = 4 és 0. En canvi, els elements ey, e3 i e4 si que
es troben al filtre, ja que totes les posicions indicades pels /; sé6n 1 al vector:

/’ll(ez) = h1(1429) = 5' hz(ez) = h2(1429) = 6; h3 (62) = h3(l429) = 7;

hy(er) = hy(1429) = 8; hs(ez) = hs(1429) = 9;

hi(es) = hi(117) = 5; hy(e3) = ha(117) = 6; h3(e3) = h3(117) =
ha(es) = ha(117) = 8; hs(es) = hs(117) =9;

( ) h1(15839)— 15 hz( 4) h2(15839)=0; h3(€4):h3(15839)= l;
ha(es) = hy(15839) = 2; hs(eq) = hs(15839) = 3;

2. La tria de les funcions 4; és nesfasta ja que les funcions 4; no només no soén independents entre elles,
sind que el resultat de qualsevol d’elles determina de forma tnica el resultat de la resta. Aixo fa que 1’ds de
diverses funcions /; sigui contraproduent i augmenta els errors.

Exercici 5.10: Podem crear un filtre f3 de la mateixa mida que fj i f> que contingui la uni6 dels elements
que hi haa f; i f> fent una OR logica de cadascuna de les posicions dels dos filtres f] i f». Aixi, a la posici
i del filtre f3 hi posarfem el resultat d’una OR entre el valor de la posici6 i del filtre f; i el valor de la posicié
i del filtre fo,perai=1...n.

Aixi, tot element que es troba a f] 0 a f es trobaria també al filtre f3, ja que les posicions que aquest element
ha fixat a 1 seguirien sent 1 al nou filtre. No obtant aix0, la probabilitat de fals positiu seria superior a f3 (ja
que hi hauria més elements per a un filtre amb la mateixa mida i mateix nombre de funcions hash).

Exercici 5.11:

Per a indexar les n = 65536 posicions es necessiten 16 bits (2!® = 65536). Com que k = 10, la sortida de la
funcié hash haura de tenir 10- 16 = 160 bits com a minim. Aix0 descarta 1’ds d’MD35, que té una sortida de
128 bits. Per tant, pel que fa a la mida de la sortida, tant SHA1 (160 bits) com SHA256 (256 bits) serien
bones candidates.

Tot i que els resultats especifics de velocitat de calcul de SHA1 i SHA256 depenen del maquinari que es faci
servir, en general SHA1 és més rapid. Per tant, si volem prioritzar la velocitat d’afegir i consultar elements,
preferirem utilitzar SHAT.

L’eina openssl permet executar testos de rendiment de les primitives criptografiques que implementa. Per
comparar les tres funcions hash, podem executar:

openssl speed md5 shal sha256
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El resultat d’executar la instruccié anterior en un Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz és:

The numbers are in 1000s of bytes per second processed.

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
md5 112326.65k  262123.46k  462351.10k 571945.30k 613750.10k
shal 123068.22k  284170.87k  593228.37k  787015.58k  865129.81k
sha256 70635.03k 158946.75k  292461.14k  359245.23k  389903.70k

En aquest cas, SHA1 és prop del doble de rapid que SHA256 a I’hora de calcular el hash.
Exercici 5.12:

Calculem h1, hy 1 h3 per a cada element a afegir al filtre:

SHA1(cv.uoc.edu) = 0x061053c6alle8cd254a35edcab6d8ab0a29765bb2b
hi(cv.uoc.edu) = SHAl(cv.uoc.edu)y 3 =0x0=0
hy(cv.uoc.edu) = SHAl(cv.uoc.edu)s 7 =0x6 =6
hi(cv.uoc.edu) = SHAl(cv.uoc.edu)g | =0x1 =1

0x37a00421948415623523179¢cc7d97877302d98d0
SHAl(biblioteca.uoc.edu)y 3 =0x3=3
SHAl(biblioteca.uoc.edu)s 7 =0x7 =7
SHA1(biblioteca.uoc.edu)g 13 = Oxa =10

SHA1(biblioteca.uoc.edu

( edu)
hi(biblioteca.uoc.edu)
hy(biblioteca.uoc.edu)
hz(biblioteca.uoc.edu)

u

u

Per tant, el contingut del filtre una vegada s han afegit els elements uoc . edu, cv.uoc.eduibiblioteca.uoc.edu
és:
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6.1

En aquest capitol ens introduirem en el moén de la criptografia de clau publica. En primer lloc, descriurem el
concepte de criptografia de clau puiblica o asimetrica, aixi com les caracteristiques més destacades d’aquest
tipus d’algorismes. Seguidament, veurem dos dels algorismes de xifrat de clau publica més utilitzats avui en
dia: 'RSA i I’ElGamal.

Seguidament presentarem el concepte de signatura digital i descriurem tres dels algorismes més populars de
signatura digital: ’esquema de signatura RSA, el d’ElGamal, i el DSA.

A continuacid, compararem els algorismes de clau publica presentats amb els algorismes de criptografia
simetrica que haviem vist en capitols anteriors, destacant-ne les seves fortaleses i debilitats.

Després, descriurem alguns detalls a tenir en compte a I’hora d’implementar els algorismes de clau ptiblica
descrits.

Finalment, presentarem una pinzellada d’altres families de criptografia de clau publica que, a diferéncia de
les presentades amb detall en aquest capitol, no estan basades en els problemes de factoritzacié d’enters i
calcul del logaritme discret.

L'origen de la criptografia de clau publica

La criptografia de clau simeétrica es caracteritza per fer servir una mateixa clau tant per xifrar com per a
desxifrar. Es a dir, en criptografia simetrica, tant I’emissor d’un missatge (que el xifrara abans d’enviar-lo),
com el receptor (que I’haura de desxifrar per poder-lo interpretar), comparteixen una unica clau.

La criptografia de clau simetrica presenta algunes limitacions:

1. La distribucié de claus s’ha de realitzar sobre un canal segur. Com que els dos usuaris comparteixen
la mateixa clau i aquesta clau pot ser utilitzada directament per xifrar i desxifrar missatges, la clau
no pot ser transmesa per un canal insegur, ja que aleshores un atacant que estigués escoltant el
canal podria capturar-la i utilitzar-la. Per tant, per aconseguir que dos usuaris, 1’Alice i en Bob,
aconsegueixin tenir una clau simetrica amb qué comunicar-se, caldra que aquests dos usuaris hagin
tingut un canal segur amb que transmetre-la amb anterioritat. Per exemple, caldra que 1’ Alice i en
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Bob s’hagin trobat presencialment o bé que ja disposin d’un canal segur per on transmetre la clau.

2. La gesti6 de claus es complica quan el nimero d’usuaris creix. Si hi ha n usuaris i cada parell
d’usuaris necessita compartir una clau, caldra gestionar n(n — 1)/2 claus, és a dir, el nimero de
claus d’un sistema creix quadraticament amb el nimero d’usuaris d’aquest. Aixi doncs, apareixen
problemes d’escalabilitat a I’hora de gestionar totes aquestes claus. La Figura 6.1 mostra un exemple
de 6 usuaris que comparteixen claus 2 a 2, necessitant per tant I’existeéncia de 15 claus.

Figura 6.1: Sis usuaris comparteixen 15 claus diferents.

3. No es disposa de la propietat de no-repudi. Diem que un criptosistema ofereix la propietat de
no-repudi si I’autor d’un missatge no en podra negar posteriorment 1’autoria. En criptografia simetrica,
com que més d’un usuari comparteixen una mateixa clau, no es pot garantir que un usuari en concret
ha realitzat una accié donada, ja que sempre hi haura algun altre usuari que podria haver-la realitzat.

La criptografia de clau piiblica o asimetrica permet superar aquestes limitacions. D’una banda, la criptografia
de clau publica proporciona metodes d’establiment de clau, és a dir, metodes per aconseguir que dos usuaris
que es comuniquen per un canal insegur puguin crear claus que els permetin comunicar-se de manera segura.
D’altra banda, la criptografia de clau piblica permet que un conjunt d’usuaris es comuniquin dos a dos de
manera segura fent servir inicament un parell de claus per cada usuari. Aixi, el nombre de claus d’un sistema
de clau publica creix linealment amb el nimero d’usuaris d’aquest sistema (en contraposici6 al creixement
quadratic que presenten els esquemes de criptografia simetrica). Finalment, a través de les signatures digitals,
la criptografia de clau publica ens ofereix la propietat de no-repudi.

Lorigen de la criptografia de clau publica és una mica discutit. L article New directions in cryptography
(1979), de Whitfield Diffie i Martin Hellman, va donar a coneixer la criptografia de clau publica a la comunitat
cientifica i va suposar I’inici d’un canvi de paradigma en la seguretat de la informacid. Posteriorment pero,
amb la desclassificacié de documents confidencials del govern Britanic I’any 1997, es va saber que James
Ellis, Clifford Cocks i Graham Williamson havien descobert el principi de clau ptblica uns anys abans que
Diffie i Hellman, perd que el descobriment no s havia fet public ja que era confidencial. Tot i aix0, es creu
que els criptografs del govern britanic no eren conscients en aquell moment del potencial del que havien
descobert.
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Intercanvi de claus de Diffie-Hellman

L’ algorisme d’intercanvi de claus de Diffie-Hellman (DHKE, de 1’angles, Diffie-Hellman Key Exchange) és
un algorisme d’intercanvi de claus basat en el problema del logaritme discret. L’algorisme va ser proposat
per Whitfield Diffie i Martin Hellman al 1976 i esta inspirat en la feina de Ralph Merkle. Va ser el primer
algorisme de criptografia asimetrica.

L'Gs del DHKE L algorisme d’intercanvi de claus de Diffie-Hellman es fa servir actualment a Internet
en els protocols TLS, SSH o IPSec.

Lalgorisme d’intercanvi de claus de Diffie-Hellman permet que dos usuaris que es comuniquen per un canal
insegur puguin aconseguir derivar una clau compartida de manera segura. D’aquesta manera, encara que un
atacant estigui escoltant el canal, 1’atacant no pot aconseguir congixer la clau derivada pels usuaris. Tot i aix{,
I’esquema no és segur davant d’atacants que puguin modificar la informacid que viatja pel canal.

L’algorisme requereix d’un procés d’inicialitzacié on es trien dos valors, p i ¢, que es fan publics:

L’algorisme d’intercanvi de claus de Diffie-Hellman entre dos usuaris, A i B, consta dels
segiients passos:

1. Es tria un nombre primer aleatori p i un enter & € [2,...,p — 2] primitiu. Es fan
publics els valors p i .

2. A tria un valor aleatori a = kpiya € [2,...,p —2] i calcula kyps = @® mod p.

3. B tria un valor aleatori b = kpiyp € [2,...,p —2] i calcula k55 = ol mod p.

4. A B intercanvien els seus valors k,;, €s a dir, A envia a B el valor k4 i B envia
a A el valor kp,pp.

5. A deriva la clau compartida kap = k;ubB mod p.

6. B deriva la clau compartida kqp = kfmb 4 mod p.

Aix{ doncs, efectivament, el valor k4p derivat per les dues parts participants en el protocol €s el mateix, ja
que, d’una banda, I’'usuari A calcula

kag = k4,5 mod p=(a®)* mod p

i, d’altra banda, 1’usuari B calcula

kap =kbpx mod p=(a®)’ modp=(a’)® modp

L’esquema descrit fa servir un element o primitiu a Z, on p €s un primer. Aquesta descripcio correspon a la
implementaci6 original de I’algorisme. Tot i aix0, I’algorisme pot ser generalitzat per fer servir qualsevol
grup ciclic finit G d’ordre 7 i un element ¢ generador a G. En aquest cas, direm que el protocol es basa en el

Problema de Diffie-Hellman generalitzat.

Logaritme A12005 es va aconseguir calcular el logaritme discret modul un primer fort de 431 bits.
discretenels || A] 2007 es va anunciar el calcul d’un logaritme discret modul un primer segur de 530
enters modul p || pits. A12014 es va aconseguir per un primer segur de 596 bits i al 2016 d’un de 768
bits.

Pel que fa a la seguretat davant d’un atacant que escolti el canal, I’atacant coneixera els dos valors intercanviats
pel canal, kp,pa 1 kpypp, @ més dels parametres publics p i o, perd calcular k4p a partir d’aquests valors és un
procés computacionalment dificil.
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Exemple 6.1 Exemple d’intercanvi de claus de Diffie-Hellman

Els usuaris A i B disposen d’un canal insegur amb el qual comunicar-se, i volen aconseguir crear una clau
compartida kyp:

1.
2.

Se seleccionen els valors publics p = 508107251 i o = 5203822.

A tria el valor aleatori a = 385641303 i calcula:

kpupa = 0 mod p = 5203822385641303  ;mod 508107251 = 421539355.

B tria un valor aleatori b = 467804164 i calcula:

kpupp = 0t? mod p = 5203822467804164 ' ;mod 508107251 = 230346411.

A i B intercanvien els seus valors k.

A deriva la clau compartida, calculant:

kap = (kpupp)® mod p = 230346411385641303 ' ,mod 508107251 = 45453571.
B deriva la clau compartida, calculant:

kag = (kpupa)? mod p = 421539355%67804164  ;m0d 508107251 = 45453571.

El protocol finalitza amb A i B compartint el mateix valor secret k4p.

Exemple 6.2 Exemple de MiM en I’intercanvi de claus de Diffie-Hellman

Un dels problemes del protocol d’intercanvi de claus de Diffie-Hellman és que no és segur davant d’atacants
que puguin situar-se al mig de la comunicaci6 entre els dos usuaris i puguin modificar la informacié que
viatja entre ells. Suposem que els dos usuaris A i B de I’exemple anterior es comuniquen per un canal
insegur, on I’usuari M pot interceptar les seves comunicacions i modificar els missatges que viatgen a
través del canal. De nou, A i B intenten establir una clau compartida k4p.

1.

Els passos 1-3 es realitzen exactament igual que a ’Exemple 6.1. Per simplicitat, farem servir
els mateixos valors, de manera que al finalitzar el pas 3, A ha calculat kj,,4 = 4215393551 B ha
calculat k,,,p = 230346411 (p = 508107251 i ov = 5203822).

A envia kj,p4 a través del canal que el comunica amb B. Alhora, B envia k,;p a través del mateix
canal.

. Mintercepta els missatges k,upa 1 kpupp, 1 procedeix a:

(a) Triar un valor aleatori ma = 361369039 i calcular:
kpupma = @™ mod p = 5203822361369039 mod 508107251 = 176105595.
(b) Triar un valor alearoti mb = 504619741 i calcular:
kpupmp = o™ mod p = 5203822°04619741 mod 508107251 = 342944530.
(c) Enviar el valor kp,pa a A i el valor kp,yp a B. Noteu que, a partir d’aquest moment, A
espera rebre k,;,p pero rebra kj, ;4 1 B espera rebre k4 pero rebra kpppp.
A deriva la clau compartida, calculant:
Kyp = (kpupma)® mod p = 176105595%83641303 ' mod 508107251 = 36322887.
A creu que el valor K, és una clau compartida amb B, pero en realitat correspon a una clau
compartida amb M.
B deriva la clau compartida, calculant:
K{p = (kpupmp)® mod p = 34294453047804164 mod 508107251 = 461525945,
B creu que el valor kj; és una clau compartida amb A, perd en realitat correspon a una clau
compartida amb M. Noteu que els valors k) 5 i K} 5 difereixen.

. M deriva les claus compartides amb A i B, calculant:

knia = (kpuba)™ mod p = 421539355%61369039 mod 508107251 = 36322887
kmg = (kpupp)™ mod p = 230346411304619741 mod 508107251 = 461525945.

A partir d’aquest moment, M comparteix una clau amb A i una amb B, i és capag de llegir i
modificar tots els missatges que s’intercanvien pel canal.

Noteu que aquest atac és possible ja que no hi ha autenticacié de les parts que participen en el
protocol.
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Xifres de clau publica

Habitualment els algorismes de xifrat de clau publica comprenen tres funcions basiques: la generacié de
claus, el xifrat i el desxifrat. L’algorisme de generacié de claus retorna un parell de claus de criptografia
asimetrica, [Kpup, kpriv]; I’algorisme de xifrat rep un missatge m i una clau publica k), i genera el missatge
xifrat c; i I’algorisme de desxifrat rep un missatge xifrat ¢ i una clau privada k,;, i permet recuperar el
missatge original m.

Les funcions basiques d’un esquema de xifrat amb clau publica sén:
Lkpub» kpriv] = generacié_claus()

¢ = ECkpyp, m)

m = D(Cc, kpriv )

Xifratge basat en la factoritzacié d’enters: RSA

’RSA és un criptosistema de clau publica basat en el problema de la factoritzacié d’enters. Va ser el
primer criptosistema de clau publica proposat: presentat el 1977, només un any més tard que el concepte de
criptografia de clau publica es fes public. RSA son les sigles formades a partir de les inicials dels cognoms
dels seus creadors, Ron Rivest, Adi Shamir i Leonard Adleman. Avui en dia, ’'RSA és encara un dels
criptosistemes de clau publica més utilitzats, tot i que els criptosistemes basats en corbes el-liptiques cada
vegada van guanyant més terreny.

L’RSA es fa servir, principalment, en dos contextos: per xifrar dades de poca mida (normalment, per xifrar
claus criptografiques) i en signatures digitals. En 1’apartat 6.5 veurem una de les construccions més utilitzades
per transmetre grans quantitats de dades fent servir 'RSA combinat amb un criptosistema de clau simetrica,
obtenint aixi els beneficis dels dos criptosistemes.

L’ algorisme de generaci6 de claus de I’'RSA consta dels segiients passos:

1. Es trien dos primers aleatoris p i g.

Escalculan=p-q.

Es calcula ¢ (n) = (p—1)(g—1).

Se selecciona un exponent public e € [1,¢(n)) tal que ged(e, ¢(n)) = 1.

Es calcula 1’exponent privat d tal que d-e = 1 mod ¢(n). Es a dir, es calcula

d=e¢"' mod ¢(n).

6. La clau publica kj,, és el parell (n,e), mentre que la clau privada k., és el valor
(d). Els valors ¢ (n), p i g també s6n valors secrets que només coneix el propietari
de la clau privada.

@ g B

La funcié ¢(n) || La funci6 totient d’Euler ¢ (n) (descrita al capitol de fonaments matematics) compta el
nimero d’enters positius menors a n que sén coprimers amb n.

Les recomanacions a data de Febrer del 2016 del NIST sén de fer servir claus d’almenys

2048 bits i augmentar la mida a 3072 bits per algunes claus d’ds més critic.

Noteu que el valor d sempre existird, ja que amb la condici6 ged(e, ¢ (n)) = 1 assegurem que e té invers a
L.

Quan parlem de la longitud de la clau RSA, parlem de la mida del modul n (normalment expressada en bits).
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Exemple 6.3 Exemple de generaci6 de claus RSA Procedim a generar una clau RSA de 32 bits
seguint els passos detallats a 1’algorisme de generacié de claus:

Seleccionem dos primers, per exemple, p = 5879 i g = 484487.
2. Calculem n:

n = pq = 5879484487 = 2848299073.

Podem comprovar com, efectivament, la clau generada és de 32 bits, ja que:

231 < 2848299073 < 2%2.
3. Calculem ¢(n)

o(n)=(p—1)(g—1)= (5879 —1)(484487 — 1) = 2847808708.
4. Seleccionem e = 1535231195.

Comprovem que, efectivament:

ged(e,¢(n)) = ged(1535231195,2847808708) = 1.
5. Calculem d:

d=e¢"' mod ¢(n) = 1437751395.

Podem comprovar que, efectivament:

de =1535231195-1437751395 =1 mod 2847808708.
6. Obtenim:

kpup = (n,e) = (2848299073,1535231195)

kpriv = (d) = (1437751395).

Exercici 6.1 Indiqueu quins dels segiients parells de claus RSA, kp,, = (n,€) i kpriy = (d) sén valids.
En cas que no ho siguin, detalleu-ne el motiu.

1. kpup = (3353361769, 1647529266), k iy = (1853372443)
2. Ky = (2660610913,700422517), kpyiy = (339543773)
3. kpup = (111086984740301, 1890731431), k,priv, = (66185553158551)

Factoritzacié L’empresa RSA Laboratories va esponsoritzar durant uns anys una serie de reptes
d’enters de factoritzacié de moduls RSA. Dins d’aquests reptes, un modul de 512 bits va ser
factoritzat amb exit al 1999, un de 704 bits al 2012, i un de 729 al maig de 2016.

Per tal de xifrar un missatge amb RSA, s’aplicara 1’algorisme de xifrat, que fa servir la clau publica del
destinatari:

A partir d’un missatge en clar 7 i la clau publica del destinatari k,;, = (n,e), es calcula el
missatge xifrat c:

c=m° modn

Quan el destinatari rebi el missatge xifrat ¢, podra desxifrar-lo fent servir la seva clau privada (que només ell
coneix):
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A partir d’un missatge en xifrat ¢ i la clau privada del destinatari k,;, = (d), es recupera
el text en clar m:

m=c* modn

Noteu que, per tal de poder desxifrar correctament un missatge, caldra que el missatge en clar original m
sigui menor que el modul #.

Podem veure com, efectivament, desxifrar un missatge que ha estat préviament xifrat resulta en I’obtencid
del missatge original m:

d

¢ modn=(m*)? modn=m™

modn=m

Per a realitzar 1’dltim pas, recordem, d’una banda, que seguint I’algorisme de generacié de claus assegurem
que:

d-e=1 mod ¢(n)

D’altra banda, el Teorema d’Euler estableix que si x i n sén coprimers, aleshores:

™ =1 modn

I, per tant:

X modn=x"" modn=x"-x*® modn=x-x*"" modn=x-1=x modn

Exemple 6.4 Exemple de xifrat i desxifrat amb RSA

L’usuari Bob és el propietari del parell de claus RSA generats en ’Exemple 6.3. Si I’ Alice vol enviar un
missatge xifrat m = 424242 a en Bob, procedira de la segiient manera:

c=m° modn

= 4242421535231195 11304 2848299073
= 1914597261

En Bob, per desxifrar ¢ i obtenir el missatge en clar original, procedira a calcular:

m=c? modn

= 1914597261'4377313%5  116d 2848299073
= 424242

Exercici 6.2 L’ Alice i en Bob s6n dos usuaris d’un sistema de clau piblica RSA. Les seves respectives
claus publiques i privades son:
kpuba = (3714176377,1471178161), kpriva = (696390481)
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kpup = (3720779831,2037827401), kprivg = (2233915321)

L’ Alice vol enviar el missatge m = 249 xifrat a en Bob. Reproduiu el procés de xifrat realitzat per 1’ Alice i
el procés de desxifrat que realitzara en Bob al rebre el missatge, comprovant que efectivament el missatge
rebut per en Bob coincideix amb el text en clar enviat per 1’ Alice.

Exercici 6.3 1’ Alice i en Bob s’intercanvien missatges xifrats amb RSA fent servir la convenci6 de
xifrar cada caracter del missatge per separat, fent servir la codificacié ASCII i utilitzant dnicament lletres
majuscules. Un atacant intercepta aquest missatge de 1’ Alice dirigit a en Bob:
[2269693817,1639486112,1818812718,2032163849,3308958529,251951562,2224890518,
1639486112,3489265165,2032163849,228316393,1818812718]

L atacant coneix la clau piblica d’en Bob (que I’ Alice ha fet servir per xifrar el missatge), aixi com les con-
vencions que fan servir I’ Alice i en Bob en els intercanvis de missatges: kp,,p = (3720779831,2037827401)
Quin és el missatge que 1’ Alice ha enviat a en Bob?

Nota: Trobeu el missatge sense calcular la clau privada d’en Bob, procés que no podrieu realitzar si les
claus utilitzades en I’exercici fossin de mida real.

6.3.2 Xifratge basat en el logaritme discret: ElIGamal

ElGamal és un criptosistema de clau publica basat en el problema del logaritme discret. En concret, ElGamal
esta basat en I’algorisme d’intercanvi de claus de Diffie-Hellman que s’ha presentat anteriorment a la
Seccid 6.2. El criptosistema deu el seu nom al seu creador, Taher ElGamal, que el va descriure el 1985.

L’algorisme de generaci6 de claus del EIGamal consta dels segiients passos:

1. Es tria un primer p i un element & d’ordre g.
2. Es tria un valor aleatori d = kpiy € [2,...,p—2] i calcula f = @ mod p.
3. Laclau publica és kp,, = (p,a, B) i1la clau privada és el valor k., = d.

No és necessari que ¢ sigui un element primitiu de Z,, pot ser-ho d’un subgrup de Zj,

d’ordre q.

Per tal de xifrar un missatge amb ElGamal, es procedira a aplicar I’algorisme de xifrat.

A partir d’'un missatge en clar m i la clau ptiblica del destinatari k,,, = (p, @, B), es calcula
el missatge xifrat c:

1. Es tria un nombre aleatori 4 i es calcula ¢; = & mod p.
2. Es recupera la clau publica del receptor i es calcula ¢c; = m- " mod p.
3. S’envia el missatge xifrat (cy,c2).

Noteu que el xifratge amb el criptosistema ElGamal és probabilistic, ja que per a una mateixa clau publica i
un mateix missatge en clar, es poden generar miltiples textos xifrats, triant diferents valors aleatoris 4 durant
el procés de xifrat.

Fixeu-vos, també que el xifrat amb ElGamal és expansiu, ja que per un missatge de mida m es generen textos
xifrats de mida 2m.

Quan un receptor rep el parell de valors que conformen un missatge xifrat, procedira a desxifrar-lo amb
’algorisme de desxifrat.
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A partir d’un missatge xifrat (cj,c;) i la clau privada del destinatari kpriy = d, es recupera
el text en clar m:

m= mod p

C
d
¢

Desxifrar amb || Per tal de calcular < mod p, es pot calcular I’invers modular de cf i multiplicar el
EIGamal “a
resultat per c.

Exemple 6.5 Exemple de generacié de claus ElIGamal Un usuari vol generar un parell de claus
ElGamal i procedeix a executar 1’algorisme de generaci6 de claus:

Es tria un primer p = 3725468627 i un element & = 150083912.

2. Es tria un valor aleatori d = 807878087 i es calcula:
B =a? mod p = 150083912807878087 mod 3725468627 = 3398986020.

3. La clau publica és k,, = (3725468627,150083912,3398986020) i la clau privada és el valor
kpriv = 807878087.

Exercici 6.4 Indiqueu quins dels segiients parells de claus ElGamal, kp, = (p, @, B) i kpyiy = d sén
valids. Per als que no ho s6n, detalleu-ne el motiu.

a) kpyy = (1474315399,79643891,269853666), k iy = 84990634
b) kpuy = (3383730189,2011758775,2122190089), ki = 2878050547
¢) kpup = (337681733, 14736556,93610277), ki = 144823569
d) kpup = (98011540216022814571886828168594180107,
73706495652936837455240336262679206568,
30382876101164794220971335754154344479),
Kpriv = 61488904351572748379732502783030097644

Exemple 6.6 Exemple de xifrat i desxifrat amb ElGamal

L’usuari Bob és el propietari del parell de claus ElGamal generats en I’Exemple 6.5. Si 1’ Alice vol enviar
un missatge xifrat m = 424242 a en Bob, procedira de la segiient manera:

1. Alice tria un nombre aleatori &z = 1052400195 i calcula:

c1 = o mod p = 1500839121052400195 104 3725468627 = 434020969.
2. Alice calcula:

¢ =m-B" mod p = 424242 -3398986020!052400195  mod 3725468627 = 2787237740.
3. Alice envia el missatge xifrat:

(c1,¢2) = (434020969,2787237740).

En Bob, per desxifrar (c¢j,c;) i obtenir el missatge en clar original, procedira a calcular:
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& 2787237740
m= g mod p = 43402096080T878087 mod 3725468627
2787237740
= SIOI Y 0d 3725468627
1565777894 mod 37254686
— 2787237740 - 1602291419 mod 3725468627
— 424242

Exercici 6.5 L’Alice i en Bob s6n dos usuaris d’un sistema de clau publica ElGamal. Les seves
respectives claus publiques i privades son:

kpupa = (3346900289,2210916257,849352893), kpriva = (713795492)

kpupp = (3575204279,1113291034,792418784), kyrivg = (2036555019)

L’ Alice vol enviar el missatge m = 424242 xifrat a en Bob. Reproduiu el procés de xifrat realitzat per
I’ Alice i el procés de desxifrat que realitzara en Bob al rebre el missatge, comprovant que efectivament el
missatge rebut per en Bob coincideix amb el text en clar enviat per I’ Alice.

6.4 Signatures digitals

Més enlla d’oferir una solucié al problema de la distribucié de claus, la criptografia de clau publica ens
permet realitzar signatures digitals.

Tradicionalment, una signatura analogica, realitzada en boligraf sobre un paper, permet demostrar que una
persona concreta ’ha generada. Aix{, per exemple, les signatures permeten donar validesa a contractes legals,
autoritzar compres amb targetes sense pin o emetre Xecs. D’una manera analoga, les signatures digitals ens
permeten demostrar que el propietari d’'una determinada clau privada ha realitzat una signatura sobre un
document, de manera que només el propietari és capag de generar una signatura valida per aquell document i
que qualsevol que conegui la clau publica associada n’és capag de validar-la.

Generalment, els algorismes de signatures digitals comprenen tres funcions basiques: la generacié de claus,
la generacid de signatures i la validacié de signatures. L’algorisme de generacié de claus retorna un parell de
claus de criptografia asimetrica, [kpyp,kpriv]; I’algorisme de signatura rep un missatge m i una clau privada
kpriv 1 genera una signatura digital s del missatge m; i I’algorisme de verificacié rep una signatura s, un
missatge m i una clau publica k,,;, i valida la correctesa de la signatura.

Les funcions basiques d’un esquema de signatura digital sén:
Lkpub» kprivl = generaci6_claus()

s = signatura( kp, m )

v = validacié (s, m, kpyp )

Ates que només el propietari de la clau privada és capag¢ de generar signatures amb aquella clau, diem que
les signatures digitals ofereixen la propietat de no-repudi.

La propietat de no-repudi s’aconsegueix quan un usuari que realitza una accié (per
exemple, signar un contracte) no pot negar posteriorment que 1’accié ha estat realitzada
per ell.
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Aix{ doncs, com que el propietari d’una clau privada n’és I’inic coneixedor, no podra negar que ha signat
algun document, ja que és 1’Unic capag de realitzar aquella signatura.

D’altra banda, cal remarcar que per validar una signatura digital només cal coneixer la clau publica i el
missatge signat, és a dir, la validacié d’una signatura digital pot ser duta a terme per qualsevol part que
conegui la clau publica.

Finalment, també cal destacar que les signatures digitals ofereixen integritat sobre els documents signats.
En efecte, si un atacant modifica el contingut del document signat, la signatura s’invalida, i el receptor pot
detectar aquesta modificaci6.

Signatures basades en la factoritzacié d’enters: RSA
L’esquema de signatura RSA esta basat en 1’algorisme de xifrat RSA que s’ha descrit a la Seccié 6.3.1 De la

mateixa manera, la seguretat de I’algorisme de signatura RSA recau en la dificultat de factoritzar productes
de dos primer grans.

A partir d’un missatge en clar m i la clau privada de I’emissor k., = (d), es calcula la
signatura digital del missatge s:

s=m‘ modn

Quan el destinatari rebi el missatge m i la seva signatura s, podra verificar la signatura fent servir la clau
publica de I’emissor (que és de domini public):

A partir d’un missatge m, la seva signatura s, i la clau piblica de I’emissor k,,;, = (n,e),
es valida la signatura calculant m':

m =s¢ modn

i validant que m’ = m. Si m’ = m, aleshores la signatura digital és valida, mentre que en
cas contrari la signatura digital és invalida.

Efectivament, si la signatura s no s’ha modificat, aleshores:

m =5 modn=(m")*=m=m modn

Exemple 6.7 Exemple de signatura i validacié amb RSA

L’usuari Bob és el propietari del parell de claus RSA que s’han fet servir en ’Exemple 6.3:
kpup = (n,e) = (2848299073,1535231195)
kpriv = (d) = (1437751395).

En Bob vol enviar a I’ Alice el missatge m = 424242 signat. Per fer-ho, procedira de la segiient manera:
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s=m? modn
= 4242421437731395 1164 2848299073
= 2060449075

Quan el destinatari, en aquest cas 1’ Alice, rebi el missatge i la signatura, podra validar la correctesa de la
signatura a partir de la clau piblica de Bob, calculant:

/
m =s° modn

= 2060449075"333231195 1164 2848299073
= 424242

I comprovant que el valor m’ obtingut és igual al missatge m.

6.4.2 Signatures basades en el logaritme discret: EIGamal

L’algorisme de signatura d’ElGamal va ser proposat al 1985 i es basa en la dificultat de calcular el logaritme
discret.

Exercici 6.6 Calculeu el logaritme discret de 12483 en base 36848 a Z4»341, és a dir, trobeu el valor x
tal que 36848* = 12483 mod 42841. Podrieu fer aquest mateix calcul per a valors de 1024 bits?

A diferéncia de ’'RSA, on els esquemes de xifrat i signatura sén molt similars, I’algorisme de signatura
d’ElGamal presenta diferencies notables amb 1’algorisme de xifratge.

A partir d’'un missatge en clar m i la clau privada de I’emissor k., = d, es calcula la
signatura digital del missatge s:
1. Es tria un valor aleatori & € [0, p —2] coprimer amb p — 1 (és adir, gcd(h,p—1) =1).
2. Es calcula el valor r = & mod p.
3. Es troba el valor s tal que m = dr+hs mod p — 1. El valor s es pot trobar calculant:
s=(m—d-r)-h~! modp—1
4. La signatura correspon al parell de valors (7, s).

El calcul del Noteu que sempre podem calcular 2~' mod p — 1 ja que al triar 4 hem assegurat que
valor s ged(h,p—1)=1.

Quan el destinatari rebi el missatge m i la seva signatura (r,s), podra verificar la signatura fent servir la clau
publica de I’emissor (que és de domini public):
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A partir d’un missatge m, la seva signatura s, i la clau publica del destinatari kp,;, =
(p,a,B), es valida la signatura calculant:

t=B"r" modp

Es comprova si:

==qa” modp

Si la igualtat es compleix, la signatura és correcta. En cas contrari, la signatura és
incorrecta.

Noteu com I’esquema de signatura de ElGamal, de la mateixa manera que amb I’esquema de xifratge, és
probabilistic: per un mateix missatge i una mateixa clau privada, es poden generar multiples signatures
valides, variant el parametre /.

Noteu també que, a I’igual que en 1’algorisme de xifrat, la mida de la signatura digital també és el doble que
la del missatge.

Exemple 6.8 Exemple de signatura i validacié amb ElGamal

L’usuari Bob és el propietari del parell de claus EIGamal que s han fet servir en I’Exemple 6.5:
kpup = (p, 0, B) = (3725468627,150083912,3398986020)
kpriv = 807878087.

En Bob vol enviar el missatge m = 424242 signat a 1’ Alice. Per fer-ho, procedira de la segiient manera:

1. Tria un valor aleatori & = 249 (comprovant que gcd(249,3725468627 —1) = 1).
2. Calcula el valor r:
r=oa" mod p=150083912>*° mod 3725468627 = 1675101370

3. Troba el valor s tal que m = dr+hs mod p— 1.

s=(m—dr)-h™" modp—1=
= (424242 — 807878087 - 1675101370) 24971 mod 3725468626 =
= 1431688902

4. La signatura correspon al parell de valors (r,s):
(r,8) = (1675101370, 1431688902)

El calcul d’s ‘ Noteu que el calcul del valor s s’efectua modul p — 1 1 no pas modul p.

Quan el destinatari, en aquest cas I’ Alice, rebi el missatge i la signatura, podra validar la correctesa de la
signatura a partir de la clau piblica de Bob, calculant:

t=B"r" modp=
= 3398986020'67°101370 . 1675101370'431688902 11,64 3725468627 = 1954079850

a™ mod p = 150083912424?42  mod 3725468627 = 1954079850

I comprovant com, efectivament, el resultat és igual al valor 7, donant la signatura per valida.

https://www.criptografia.cat v0.2.1 04/02/2026


https://criptografia.cat

172 Capitol 6. Criptografia de clau publica

Exercici 6.7 Genereu dues signatures diferents per al missatge m = 45678 fent servir I’esquema de
signatura ElGamal i valideu, després, les signatures generades. Feu servir el parell de claus:

kpup = (P, 0, B) = (797445667,386331185,505206688)

kpriv = (d) = (373845532)

L’estandard DSA

El DSA (per les seves sigles en angles, Digital Signature Algorithm) és una variant molt popular de
I’algorisme de signatura d’ElGamal que va ser proposada al 1991. Aquesta popularitat és deu, en part, a
que des de 1994 és considerada un estandard per a signatures digitals (DSS) del FIPS (de I’angles, Federal
Information Processing Standards), un conjunt d’estandards publics que desenvolupa el govern federal dels
Estats Units.

Els passos a seguir en I’algorisme de generaci6 de claus DSA sén els segiients:
1. Es tria un primer p tal que 2:-! < p < 2L,
2. Es busca un divisor g de p — 1 tal que ¢ sigui primeri 2V~! < g < 2V,
3. Es busca un element g d’ordre g a Z, (1 < g < p), és a dir, g és un generador del
subgrup de g elements.
4. Es tria un valor aleatori x = k;, tal que 0 <x < ¢
Es calcula la clau publica y = g* mod p.
6. La clau publica és k,., = (p,q,&,y) ila clau privada és el valor k., = (x).

@

L’estandard especifica quatre possibles alternatives per a 1’eleccié de la mida (en bits) dels valors p i g
(respectivament, els valors L i N).

L N

1024 160
2048 224
2048 256
3072 256

Taula 6.1: Valors per a L i N detallats a I’estandard.

A partir d’'un missatge en clar m i la clau privada de I’emissor k., = x, es calcula la
signatura digital del missatge s:

1. Es genera un valor aleatori & tal que 0 < k < g.

2. Es calcula el valor r = (g¢ mod p) modg.

3. Es troba el valor s tal que m = ks —xr mod g. El valor s es pot trobar calculant:
s=k '(m+x-r) modg

4. La signatura correspon al parell de valors (7,s).

Si durant el procés de generacié de signatura es donés el cas que s o r fossin 0, aleshores es repeteix el procés
triant un nou valor k. D’aquesta manera, s’assegura que la signatura generada mai tingui un O en cap de les
dues parts que la formen.
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A partir d’'un missatge m, la seva signatura (r,s), i la clau piblica de I’emissor k,,; =
(p,q,8,y), es valida la signatura calculant:

1. Es comprova que s # 0ir # 0.
2. Es calcula:

w=gs"!

mod g
u;y =mw modgq
up =rw modgq
v=(g"y"” modp) modgq
3. Es validaque v==r modg.

Si la igualtat es compleix, la signatura és correcta. En cas contrari, la signatura és
incorrecta.

6.4.3 Atacs als esquemes de signatura digital

En el context de les signatures digitals, existeixen tres tipus d’atacs de falsificacio:

Direm que un adversari realitza un atac de falsificacio existencial quan aquest és capag de
crear almenys una signatura s corresponent a un missatge 1.

En aquest tipus d’atacs, I’adversari no té cap control sobre el valor m, és a dir, m pot prendre qualsevol valor
(el contingut del missatge no és important). L’atacant aconsegueix el seu objectiu només pel fet d’aconseguir
una signatura valida s. Els atacs de falsificaci6 existencial son els més senzills de realitzar.

Un atac de falsificacio selectiva és un atac de falsificaci6 en que I’adversari té com a
objectiu crear una signatura valida per a un missatge m que ha triat el propi adversari amb
anterioritat a I’inici de I’atac.

Aixi, si un atacant és capag de dur a terme un atac de falsificacié selectiva, aix0 implica que és capag també
de dur a terme un atac de falsificaci6 existencial.

Direm que un adversari pot dur a terme un atac de falsificacié universal si és capac de
crear una signatura s valida per a qualsevol missatge donat m.

Un adversari capag de realitzar falsificaci6 universal pot, per tant, crear signatures valides per a missatges
triats a I’ atzar, seleccionats per ell mateix, seleccionats per una tercera part, etc.

Falsificacié existencial de signatures RSA

L’algorisme de signatura RSA explicat anteriorment és susceptible a atacs de falsificacié existencial de
signatures.

En efecte, donada una clau piblica k,;, = (n,e), un atacant pot procedir de la segiient manera:
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1. L’atacant tria una signatura s € 7Z,,.

2. Latacant calcula el missatge m = s° mod n.

3. L’atacant obté una signatura valida s per al missatge m.
4. La signatura és valida ja que s =m mod n.

Noteu que, en aquest cas, 1’atacant és capag¢ de construir signatures valides, pero no té cap mena de control
sobre els missatges que esta signant.
Falsificacié existencial de signatures EIGamal

L’algorisme de signatura d’ElGamal explicat anteriorment també és susceptible a atacs de falsificaci
existencial.

En efecte, donada una clau piiblica k,,, = (p, &, B), un atacant pot procedir de la segiient manera:

1. Tria dos enters i i j tals que ged(j,p—1) = 1.
2. Calcula la signatura:

r=a'f’ modp

s=—rj ' modp—1

3. Calcula el missatge:

m=si modp—1

4. L’atacant obté una signatura valida (7,s) per al missatge m.
5. La signatura és valida ja que la igualtat B”r* = o és manté.

Vegem perque, efectivament, la validacié de la signatura €s correcta:
B modp=a¥r modp
— o o+4Ds  mod p

— qdrglitdn(=rjh mod p

— gdr=drg(=rij ") mod p
=o modp
=0o* modp

De la mateixa manera que amb els atacs de falsificaci6 existencial de signatures RSA, en aquest cas I’atacat
tampoc té cap control sobre els missatges signats.

Vulnerabilitat en la reutilitzacié de valors EIGamal

L’algorisme de signatura de ElGamal fa servir un valor aleatori /& a I’hora de signar els missatges. Aquest
valor és el que permet que 1’algorisme sigui probabilistic i que existeixin miltiples signatures valides per a
un Unic missatge i una clau determinada. L’aleatorietat en la selecci6 del parametre h és, pero, crucial per a
la seguretat del sistema. De fet, la seva reutilitzacié permet a un atacant descobrir la clau privada feta servir
per crear les signatures digitals.

En efecte, I’algorisme de signatura d’ElGamal (aixi com algunes de les seves variants) t€ una vulnerabilitat a
través de la qual un atacant que obté dues signatures diferents, sig; i sig», realitzades amb la mateixa clau
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privada d i fent servir el mateix valor &, pot recuperar la clau privada feta servir per a signar:

sigy = (r,81)
sigy = (1,52)

s;-h=(my—d-r) modp—1
s2-h=(mp—d-r) modp—1

(s2—s1)-h=mp—m; modp—1

mp —my

h= mod p—1

2 =951

d=(m;—hsy)-r~' modp—1

Noteu que el calcul descrit només pot realitzar-se si (s, — 1) és invertible, és a dir, si gcd (s, —s1,p—1) = L.
En cas contrari, es pot realitzar el calcul descomposant p — 1 i tractant els casos concrets individualment.

Equacions Malgrat que per resoldre equacions modulars en ocasions ens aniria bé calcular inversos,
modulars amb || (3mbé les podem resoldre en cas que no poguem calcular algun invers explicitament. Per
ier:‘?::‘?'gltessno exemple, podem tenir una equacié modular del tipus 10x =4 mod 26 que clarament no

podem resoldre directament perque el 10 no té invers mddul 26, perqué gcd(10,26) # 1.
Ara bé, podem calcular el ged(10,26) = 2 i dividir tota I’equacid, incloent el modul,
per aquest valor. Si ho fem tindrem 5x =2 mod 13. Fixeu-vos que en aquest cas, 5
sempre tindra invers amb el nou modul (aquest cas 13) perque sempre sera coprimer
amb aquest valor, justament perque el nou modul €s el modul anterior al qual 1i hem
tret el propi factor 2. Si resolem I’equacié 5x =2 mod 13 obtindrem x =3 mod 13.
Si us hi fixeu, el valor x = 3 és soluci6 de la primera equacié 10x =4 mod 26, perd a
més també tenim una altra solucid, que sera x = 3+ 13 = 16. De fet, tindrem tantes
solucions com el valor del gcd(10,26), en aquest cas, aquestes dues indicades. Ara bé,
podem tenir equacions de primer grau en moduls no primers que no tinguin solucio.
Per exemple, si volem resoldre I’equacié 10x =5 mod 26, clarament aquesta equacié
no té solucid, perque és equivalent a 2x = 1 mod 26 i aix0 és calcular ’invers de 2
modul 26 que ja sabem que no existeix.

Per tant, és important que el valor 4 sigui tinic per a cada signatura.

Aconseguir una font d’aleatorietat prou bona com per garantir que el valor / sera tnic per cada una de les
signatures realitzades per un dispositiu pot ser problematic en segons quins entorns (per exemple, en telefons
mobils). Per aquest motiu, existeix una variant del DSA determinista, on el valor & queda determinat de
manera Unica per la clau privada i el missatge a signar. L’algorisme que genera el valor % actua de manera
similar a un generador pseudoaleatori, fent servir la clau privada i el hash del missatge com a llavors del
generador. Noteu que, amb aquesta versi6 del DSA, amb una mateixa clau només es podra generar una tnica
signatura per un missatge concret. Addicionalment, és important notar que la variant determinista del DSA
no modifica I’algorisme de generaci6 de claus ni la validacié de signatures, de manera que és compatible
amb sistemes que implementen el DSA probabilistic.

Criptografia simeétrica i asimeétrica

Més enlla de les propietats que ens ofereix la criptografia de clau publica, aquesta també difereix de la
criptografia simetrica en la mida de les claus i les necessitats computacionals dels seus algorismes. Pel que
fa a la mida de les claus, normalment es fa servir el concepte de nivell de seguretat per avaluar la fortalesa
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d’un algorisme criptografic amb una mida de claus concreta, i poder aixi comparar la seguretat que ofereixen
els diferents algorismes:

El nivell de seguretat d’un algorisme criptografic és el niimero de passos que necessita
el millor atac conegut per descobrir la clau. Direm que un algorisme proporciona una
seguretat d’n bits quan el millor atac necessita 2" passos.

Es important notar que el nivell de seguretat d’un algorisme pot variar amb el descobriment de nous atacs
que milloren I’eficiencia dels ja coneguts.

Tenint en compte la definici6 de nivell de seguretat, és facil veure que un algorisme de criptografia simetrica
amb mida de clau » bits ens proporciona una seguretat d’n bits. En canvi, calcular el nivell de seguretat d’un
algorisme de clau publica no és tan directe. La Taula 6.2 ens descriu els nivells de seguretat que s’assumeixen
avui en dia per als algorismes de clau simetrica i asimetrica més populars.

Nivell de seguretat

Algorisme 80 128 | 192 256
AES 80 128 | 192 256
RSA 1024 | 3072 | 7680 | 15360
ElGamal 1024 | 3072 | 7680 | 15360
DSA 1024 | 3072 | 7680 | 15360

Taula 6.2: Nivell de seguretat segons la mida de la clau.

Criptografia Els criptosistemes de clau ptblica basats en corbes el-liptiques (que queden fora de
de corbes I’abast d’aquest document) permeten obtenir el mateix nivell de seguretat que els
el-liptiques . s . . N P ..

algorismes de clau simetrica amb mides de clau superiors perd molt més similars. Aixi,

per exemple, caldra una clau ECDSA de 160 bits per aconseguir 80 bits de seguretat.

Com es pot apreciar, d’una banda com més gran €s la mida de la clau utilitzada major és la seguretat que ens
ofereix. D’altra banda, per tal d’obtenir un mateix nivell de seguretat en un criptosistema de clau publica
que en un de clau simetrica, caldra que la clau del primer sigui molt més gran que la del segon. Aixo,
unit al fet que els algorismes de clau puiblica requereixen calculs computacionalment intensius, fa que en
general els algorismes de clau publica siguin més lents que els de clau simetrica. Aquesta lentitud pot no ser
problematica per als ordinadors actuals, pero si que pot ser-ho en dispositius amb capacitats més limitades
com ara targetes intel-ligents. A continuacio, es descriuen dues de les tecniques que s’utilitzen habitualment
per accelerar el procés de xifrat i desxifrat amb RSA.

Per tal d’aprofitar els avantatges de la criptografia de clau ptiblica pel que fa a la gestié de claus i a I’hora la
rapidesa de la criptografia simetrica per xifrar, sovint es combinen els dos sistemes amb la técnica coneguda
com a sobre digital.

La tecnica del sobre digital consisteix a xifrar un missatge amb una clau simetrica aleatoria
k 1 xifrar la clau simetrica k amb una clau publica.

Exercici 6.8 L’ Alice i en Bob s6n dos usuaris d’un sistema de clau piblica RSA. Les seves respectives
claus publiques i privades son:

kpuba = (3714176377,1471178161), kpriva = (696390481)

kpupg = (3720779831,2037827401), kprivg = (2233915321)
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L’ Alice vol enviar el missatge:
m = 011235813213455891442333776109871597258441816765
xifrat a en Bob. Reproduiu el procés de xifrat realitzat per 1’ Alice.

A T’hora de realitzar signatures digitals, si volguéssim signar directament els missatges amb un sistema de
clau publica ens trobariem també amb la limitacié de la mida de la clau, que reduiria en gran mesura el
conjunt de missatges que seriem capacos de signar. En aquest cas, el que es fa és combinar les signatures
digitals amb les funcions hash, descrites en el Capitol 5. Es a dir, a I’hora de signar un missatge, I’usuari
procedeix primer a calcular-ne un resum a través d’una funcié hash, signant després aquest resum (en
comptes del missatge original). Com que les funcions hash tenen una sortida de mida fixada, aixo ens permet
assegurar que podem signar qualsevol missatge (de qualsevol mida) amb una clau d’una mida concreta (fent
ds d’una funcié hash amb una sortida de mida inferior a la clau).

El procediment a seguir per tal de signar un missatge m fent servir una funcié hash H és:

1. Calcular el hash del missatge, h = H(m).
2. Calcular la signatura del hash del missatge, s = signatura( k., h )

El receptor del missatge m podra validar la signatura s, procedint de la segiient manera:

1. Calcular el hash del missatge, h = H(m).
2. Valida la signatura s, v = validacio (s, h, kpup )

Noteu que en aquest cas emissor i receptor s’han de posar d’acord no només amb 1’algorisme de signatura
que utilitzaran sin6 també amb la funci6 hash que faran servir.

Implementacié dels algorismes de clau publica

Els algorismes de criptografia de clau publica descrits fins ara requereixen de 1’ds d’operacions computacio-
nalment costoses per funcionar. Per aquest motiu, a I’hora d’implementar aquests algorismes, es fan servir
optimitzacions que permeten millorar-ne I’eficiencia. En aquest capitol veurem algunes de les optimitzacions
més populars que s’utilitzen a I’hora d’implementar ’'RSA i I’ElGamal.

Optimitzacié del xifrat RSA

L’algorisme de generaci6 de claus RSA que hem vist a la Secci6 6.3.1 tria un exponent public e de manera
aleatoria, amb les condicions que e estigui en interval (1, phi(n)) i que e sigui coprimer amb phi(n). A la
practica per0, s’acostumen a triar valors d’e petits i amb pes de Hamming també petit, ja que aixo fa que el
xifratge sigui més eficient.

Pes de El pes de Hamming d’una seqiiencia binaria és el nimero d’uns que conté. El pes de
Hamming Hamming és equivalent a la distancia de Hamming entre una seqiiencia donada i la
seqiiencia de zeros de la mateixa longitud.

En concret, per xifrar (o per validar una signatura) amb RSA necessitem calcular x* mod n. Si fem servir
I’algorisme d’exponenciaci6 rapida de multiplicar i elevar, caldran de ’ordre de log, e + pes(e) operacions
per tal de realitzar el calcul, amb pes(e) representant el pes de Hamming de la representacié binaria d’e.
Valors d’e petits minimitzen el terme log, e mentre que valors amb pes de Hamming petit minimitzen el
terme pes(e).

Aixi, alguns dels valors que es fan servir habitualment per a I’exponent piiblic e sén 3 i 65,537 (2! + 1), que
requereixen 3 i 17 operacions per xifrar, respectivament. Aquest tltim €s el valor per omissi6 que fa servir la
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llibreria OpenSSL!. El valor 65,537 té alguns avantatges. En primer lloc és un primer de Fermat, el que fa
que calguin poques multiplicacions per elevar a aquest valor i alhora simplifica la cerca dels primers p i g
adequats. En segon lloc i a diferéncia de 3, 2!6 4- 1 és prou gran com per evitar certs atacs que es poden dur a
terme amb valors d’e petits si no es fa servir padding de manera correcta.

Primers de Els primers de Fermat s6n primers de la forma F, = 2(2") 4+ 1. Els tinics primers de
Fermat Fermats coneguts (a data de Febrer de 2016) sén Fp =3, F1 =5, F, =17, ;3 =257 i
Fy =65,537.

La selecci6 de I’exponent public fent servir aquestes consideracions fa que xifrar amb RSA sigui molt més
rapid que desxifrar, i també redueix el temps de comprovacié de les signatures RSA. Tot i aixi, aquest no és
I’tinic factor que afecta la velocitat de les implementacions d’RSA.

Tot i que I’algorisme d’exponenciacié rapida de multiplicar i elevar permet xifrar missatges amb RSA de
manera molt rapida, aquest no es fa servir per desxifrar (ni per signar) ja que és vulnerable a atacs de canal
lateral.

Els atacs de canal lateral (en angles, side channel attacks) sén atacs que es basen en
informaci6 adquirida de la implementacid fisica d’un criptosistema. Aquests tipus d’atacs
poden fer servir, per exemple, informaci6 sobre el temps d’execucid, el consum energetic,
els camps electromagnetics, el so, etc.

Un atacant que analitzi el consum energetic d’un dispositiu que implementa 1’algorisme de multiplicar i
elevar pot obtenir directament la clau. D una banda, per cada bit de la clau, I’algorisme de multiplicar i elevar
calcula una tnica potencia si el bit €s 0 o bé una potencia i una multiplicacio si el bit s 1. D’altra banda, el
consum energetic d’un dispositiu implementant aquest algorisme és elevat mentre s’estan realitzant aquestes
operacions (tant multiplicacié com exponenciacio), i baix quan no s’estan fent aquestes operacions. Aixi,
veient la traca de consum energetic del dispositiu, es pot diferenciar clarament cadascuna de les iteracions de
I’algorisme (moments de consum energetic elevat separats per instants de consum energetic baix). La durada
dels moments de consum energetic elevat ens permet distingir quan s’estan processant bits de laclaualoa
0. D’aquesta manera, només obtenint la traga de consum energetic d’una Unica operacio, es pot obtenir la
clau.

Existeixen altres algorismes d’exponenciacid rapida que ofereixen protecci6 contra atacs d’analisi del consum
energetic, com ara I’algorisme d’exponenciacié de Montgomery (en angles, Montgomery Powering Ladder).
Aquests algorismes fan que cada iteraci6, independentment de si aquesta tracta un bit de la clau fixataOo a
1, tingui un coOmput similar, de manera que el consum energetic de cada iteraci6 és similar.

Optimitzacié del desxifrat RSA

A més de triar valors d’e que permetin accelerar el xifratge i la validacié de signatures digitals, algunes de
les llibreries més populars emmagatzemen tres valors intermedis durant la generacié de claus RSA, amb
I’objectiu de reduir el temps de desxifrat i de signatura. Aquests valors sén:

* exponent 1: d, =d mod (p—1)
* exponent 2: d;, =d mod (¢ —1)
* coeficient: ¢, = (1/g) mod p

Aquests valors permeten optimitzar el calcul de ¢? mod n a través del Teorema Xines del Residu. Aixi, per

"https://www.openssl.org/docs/manmaster/apps/genpkey . html
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d

a calcular m = ¢ mod n es procedeix a calcular:

my=c% modp

my =c% mod q

h= Qinv(ml - mZ) mod p
m=my+ hq

Exemple 6.9 Exemple de desxifrat RSA

Suposem que tenim la clau privada RSA de 64 bits formada pels valors:

d =7506774701030841737

n = 10639337161500789943

i que en el moment de generar la clau hem desat també els valors:

p = 696734729

q = 15270283967

d,=d mod (p—1)=7506774701030841737 mod (696734729 — 1) = 259426577
dy=d mod (g— 1) =7506774701030841737 mod (15270283967 — 1) = 8567289973
gimv = (1/q) mod p =1/15270283967 mod 696734729 = 284277123

Aleshores, per desxifrar el missatge ¢ = 3510853621447083634, procediriem de la segiient manera:
my = c% mod p = 351085362144708363429420577 mod 696734729 = 627709010

my = c% mod g = 3510853621447083634356728973  mod 15270283967 = 11944757133

h = qipy(my —my) mod p = 284277123(627709010 — 11944757133) mod 696734729 = 27
m=my +hq = 11944757133 427 - 15270283967 = 424242424242

Noteu que aix0 és equivalent a fer directament:

m=c® modn=

= 35108536214470836347°06774701030841737 1,14 10639337161500789943 =
— 424242424242

pero, en canvi, totes les operacions implicades tenen exponents i moduls molt menors que els requerits per
a aquest calcul. D’aquesta manera, s’aconsegueix reduir el temps de calcul.

Podem veure com s’emmagatzemen aquests valors en claus RSA de mida real fent servir I’eina OpenSSL:

openssl genrsa -out private.pem 1024
openssl rsa -noout -text -in private.pem

Hem vist com s’optimitza el xifratge i la validacié de signatures a partir de la tria de I’exponent public e i
com s’optimitza el desxifrat i la realitzacié de signatures emmagatzemant uns valors auxiliars relatius a la
clau privada. Després de realitzar aquestes optimitzacions, ens podriem preguntar quin dels dos processos és
doncs més rapid. Per comprovar-ho a nivell practic podem recérrer de nou a la llibreria Openssl. En concret,
podem analitzar les diferéncies de temps necessaris per signar i validar signatures digitals en RSA amb la
senténcia:

openssl speed rsa

Els resultats de 1’execucié de I’anterior senténcia en un Intel Core i7-4770 CPU @ 3.40GH (Taula 6.3)
indiquen clarament que és molt més rapid validar signatures (i per tant xifrar) que no pas realitzar les
signatures (o desxifrar).
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Mida de la clau | Temps sign. | Temps val. Sig. per segon Val. per segon
512 bits 0.000041s 0.000003s 24317.5 328106.1
1024 bits 0.000118s 0.000008s 8485.8 131766.6
2048 bits 0.000548s 0.000024s 1825.2 41486.7

4096 bits 0.005865s 0.000088s 170.5 11299.6

Taula 6.3: Temps per signar / validar amb RSA.

Optimitzacié del xifrat EIGamal

El procés de xifrat amb ElGamal consta de tres operacions: dues exponenciacions, que permeten calcular

c1 = @’ mod p i un operand de c;, c5** = BY; i una multiplicacié que realitza el calcul final de ¢, ¢; =
aux

m:-c 7 -

Com en el cas de ’'RSA, les exponenciacions es poden calcular amb 1’algorisme d’exponenciacié rapida de
multiplicar i elevar, de manera que s’agilitza el calcul. Ambdues exponenciacions fan servir com a exponent
el parametre aleatori v, de manera que les exponenciacions poden optimitzar-se seleccionant valors v amb
propietats especials, com ara valors amb pes de Hamming petit. Si es fa servir aquesta tecnica cal anar en
compte, pero, de tenir un nimero adequat d’exponents possibles.

Ara bé, en el cas del xifrat amb ElGamal, hi ha un altre detall important a tenir en compte: les dues
exponenciacions a calcular sén completament independents del missatge a xifrar. Aixo fa que en algunes
aplicacions aquests valors puguin precalcular-se amb anterioritat al procés de xifrat, en moments quan la
carrega del sistema és baixa. A I’hora de xifrar, caldra doncs recuperar els valors precalculats i calcular
Unicament la multiplicacid, operacié que si que depen del missatge a xifrar.

Optimitzacié del desxifrat EIGamal

El procés de desxifrar amb el criptosistema ElGamal consta també de tres operacions: una exponenciacio, que
permet calcular c‘li ; una inversio, que calcula (c‘f )~!; i finalment una multiplicacié, que recupera m calculant
cy- (c‘f )~!. El desxifrat es pot optimitzar unint les dues primeres operacions en una sola exponenciacié, fent
Us del Petit Teorema de Fermat (que és un cas concret del Teorema d’Euler). El Petit Teorema de Fermat
afirma que, donat un p primer:

x»1' =1 mod p,Vx tal que ged(x,p) = 1

Aprofitant aquesta igualtat, podem reduir el calcul de (c‘f)’l a una dnica exponenciacio: ¢! ~471 s adir, el

valor ¢ elevat a I’exponent p —d — 1. Comprovem que realment les dues alternatives son equivalents:

()™ modp=(c)"-cf" modp=cl"" modp

D’aquesta manera, desxifrar un missatge amb ElGamal se simplifica i passa a consistir en una exponenciacio
i una multiplicacié.

Criptografia post-qudntica

Com hem vist, els algorismes de criptografia de clau ptiblica més populars avui en dia es basen en la dificultat
de resoldre tres problemes matematics: la factoritzacié d’enters, el logaritme discret i el logaritme discret
sobre corbes el-liptiques. Aquest problemes, pero, deixarien de ser dificils si disposéssim d’un ordinador
quantic de prou capacitat.
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L’algorisme de Shor és un algorisme quantic que permet resoldre’ls en un temps polinomial respecte a la
mida de ’entrada. L’algorisme de Shor va ser proposat per Peter Shor I’any 1994 a I’article Polynomial-Time
Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.

Hi ha tot un conjunt de families d’algorismes de criptografia de clau ptblica que es basen en altres problemes
matematics, que es creuen dificils de resoldre tant en ordinadors classics com en ordinadors quantics. A
tots ells se’ls engloba sota el nom de criptografia post-quantica. Exemples d’aquestes families en sén la
criptografia basada en hashos, en codis, en reticles o en equacions quadratiques multivariades. Aixi, per
exemple, el criptosistema de McEliece (desenvolupat per Robert McEliece el 1978) esta basat en la dificultat
de descodificar un codi lineal i I’esquema de signatura de Merkle (ideat per Ralph Merkle el 1979) es basa
en la generaci6 d’un arbre de hashos.

Ates que els algorismes de criptografia post-quantica sén segurs davant d’ordinadors quantics, hom podria
preguntar-se el motiu per el qual el seu ds no es troba molt més estes actualment que el dels algorismes que
hem descrit en aquest modul, que no sén segurs en aquesta situacié. D’una banda, I’eficiencia computacional
dels algorismes de criptografia asimetrica post-quantics €s baixa, molt pitjor que la que ens ofereixen
actualment I’'RSA o ElGamal. D’altra banda, alguns d’aquests esquemes sén molt nous, i la comunitat
criptografica encara no hi ha depositat prou confianca. Per tal de generar aquesta confianca, és necessari
que els criptoanalistes dediquin molt temps a analitzar-los. Finalment, els algorismes criptografics sovint
necessiten d’un conjunt de protocols que n’estandarditzin el seu us en diferents circumstancies. Com veurem
més endavant, aquest fet pot arribar a ser critic per la seguretat dels esquemes. La criptografia post-quantica
encara no ha arribat a la maduresa en aquest sentit.
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Resum

En aquest capitol hem apres el concepte de criptografia de clau ptblica, concepte que engloba tot un conjunt
d’algorismes criptografics que fan servir parells de claus: una clau publica coneguda per tothom i una
clau privada només coneguda pel seu propietari. En els esquemes de xifrat amb clau publica, els usuaris
poden xifrar missatges per a un destinatari utilitzant la clau publica d’aquest destinatari. Alhora, només
el destinatari del missatge, que coneix la clau privada, sera capag¢ de desxifrar els missatges dirigits a ell.
Oposadament, els esquemes de signatura digital permetran a I’emissor d’un missatge signar-lo amb la seva
clau privada (que només ell coneix), permetent que aquesta signatura sigui validada per qualsevol que en
conegui la clau publica.

També s’ha explicat ’intercanvi de claus de Diffie-Hellman, un protocol que permet a dues parts establir un
secret comu per mitja d’un canal insegur. Aixi mateix, ens hem centrat a descriure els dos criptosistemes de
clau publica més utilitzats avui en dia, ’'RSA i ElGamal.

La tecnica del sobre digital ens permet disposar dels avantatges de la criptografia de clau publica sense
trobar-nos amb les limitacions de mida i de capacitat computacional d’aquesta, combinant criptografia de
clau publica amb algorismes de criptografia simetrica.
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Solucions dels exercicis

Exercici 6.1:

La clau a no és valida ja que e-d mod ¢ (n) # 1:
1647529266 - 1853372443  mod ¢(3353361769) =
= 1647529266 - 1853372443 mod 3353239120 =
= 1499866678 # 1

La clau ¢ no és valida ja que el modul no és producte de dos primers:
n=111086984740301 =45613-41141-59197

Exercici 6.2:

Per tal de xifrar el missatge, I’ Alice fara servir la clau publica d’en Bob i procedira a calcular: ¢ = m®
mod n = 2492037827401 ' mod 3720779831 = 1920900242.

Quan en Bob rebi el missatge xifrat c, procedira a desxifrar-lo amb la seva clau privada, calculant: m = ¢¢

mod n = 19209002422233915321 11304 3720779831 = 249
Exercici 6.3:

L’atacant pot aprofitar el fet que coneix tots els possibles missatges que els usuaris s’intercanvien juntament
amb el fet que ’'RSA no és una xifra probabilistica per generar tots els possibles textos xifrats i comparar el
resultat amb el missatge intercanviat. Aixi, I’atacant procediria a calcular:

Lletra | m c

A 65 652037827301 mod 3720779831 = 3489265165
B 66 662937827301 m0d 3720779831 = 3192216487
C 67 672937827301 1mod 3720779831 = 2269693817
D 68 682037827401 1110d 3720779831 = 3031724104
E 68 692037827401 1m6d 3720779831 = 1496836939
G 71 712037827401 1m0d 3720779831 = 2224890518
H 72 722037827401 mod 3720779831 = 228316393
0 79 792037827401 1mod 3720779831 = 251951562
P 80 802037827401 110d 3720779831 = 2032163849
R 82 822037827401 110d 3720779831 = 1639486112
T 84 842037827401 164 3720779831 = 3308958529
Y 89 892037827401 11164 3720779831 = 1818812718

Taula 6.4: Calculs realitzats per I’atacant.

Descobrint que el missatge xifrat correspon a la cadena:

67,82,89,80,84,79,71,82,65,80,72,89]

que alhora codifica el missatge CRYPTOGRAPHY.
Exercici 6.4:

Les claus a i d son valides;
La clau b no és valida ja que p = 3383730189 no és primer.
La clau ¢ no és valida ja que B # alpha® mod p:

14736556!44823569 mod 337681733 = 93610276 £ 93610277
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Exercici 6.5:

Per tal de xifrar el missatge, 1’ Alice fara servir la clau piblica d’en Bob i procedira a seleccionar un valor
aleatori v, per exemple, v = 8341864 i calcular:

c1 =a’ mod p = 111329103433418%4 mod 3575204279 = 3323366879.

co =m-B" mod p = 424242 7924187843335 ' mod 3575204279 = 3166979642.

El text xifrat és el parell (c1,cz) = (3323366879,3166979642).

Quan en Bob rebi el missatge xifrat (cy,c;), procedira a desxifrar-lo amb la seva clau privada, calculant:
m= ?2, mod p = 528 s mod 3575204279 = 3166979642 - 663237018 = 424242

Noteu que la soluci6 de 1’exercici no és tnica, ja que depen de la seleccié del parametre aleatori v.
Exercici 6.6:

Podem calcular el logaritme discret proposat per forga bruta, és a dir, calculant 36848* mod 42841 per a
tots els valors possibles d’x (de 0 a 42840), fins a trobar el resultat que busquem, 12483. Aixi, trobarem que
36848428 mod 42841 = 12483. No podriem seguir aquest mateix enfocament per a valors de 1024 bits, ja
que el nimero de possibilitats a provar és massa gran.

Exercici 6.7:

Seleccionem un valor aleatori &, per exemple, 7 = 55. Calculem:

r=a" mod p=2386331185" mod 797445667 = 673983968

s=(m—d-r)-h~! modp—1= (45678 —373845532-673983968)-55"! mod 797445666 = 1042804
La signatura correspondria al parell (r,s) = (673983968, 1042804 ).

Per a realitzar una segona signatura, seleccionariem un segon valor aleatori &, per exemple, h = 77:

r=0o" mod p=386331185"7 mod 797445667 = 205790131

s=(m—d-r)-h~" mod p— 1= (45678 —373845532-205790131)-77~" mod 797445666 = 284046946
(r,s) = (205790131,284046946).

Per tal de validar les signatures, procedim a calcular:

t =B’ mod p = 50520668867398398 . 6730839681042804  mod 797445667 = 137624270
i comprovem que el valor sigui igual a ™ mod p:

a mod p = 386331185478 mod 797445667 = 137624270

Per a la segona signatura, realitzem el mateix procediment:
t =B’ mod p = 50520668820°790131.205790131284046946  mod 797445667 = 137624270
i comprovem que el valor sigui igual a ™ mod p:

o™ mod p =386331185%°7®  mod 797445667 = 137624270

Noteu que la solucié de 1’exercici no és tnica, ja que depen de les eleccions del parametre aleatori /.
Exercici 6.8:

El missatge m és major que el modul de la clau publica d’en Bob n = 3720779831. Per aquest motiu, el
missatge no es pot xifrar directament amb RSA. Una alternativa es fer servir la tecnica del sobre digital:
I’ Alice genera una clau simetrica k aleatdria i xifra el missatge amb la clau k, ¢ = E;(m), fent servir com
a algorisme de xifrat E qualsevol esquema de clau simetrica. L’ Alice xifra després la clau k amb la clau
publica d’en Bob fent servir RSA, ¢, = Ekpub (k). Finalment, I’ Alice envia en Bob els dos valors, ¢ i ¢.
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7.1

En el capitol anterior s’ha vist com 1’aparici6é de la criptografia de clau publica permetia solucionar el
problema de la distribuci6 de claus. Ara bé, quan dues entitats volen iniciar una comunicacié segura, com
poden saber quina és la clau publica que correspon a cada una?

Per cobrir aquesta necessitat, és a dir, per vincular identitats amb les seves respectives claus publiques,
apareixen els certificats digitals i, amb ells, la infraestructura de clau publica (en angles Public Key Infras-
tructure, PKI), un conjunt de processos, rols i especificacions que permeten gestionar aquests certificats.
Aixi, la infraestructura de clau ptblica permet transferir informacié de manera segura, tot oferint serveis
d’autenticacid, integritat i confidencialitat.

En aquest capitol, es detallen quines sén les principals entitats que formen part d’una infraestructura de clau
publica i la seva funcid, es descriu que son els certificats digitals i quin n’és el seu cicle de vida, s’exposen
diferents estandards que es fan servir en I’ambit de les PKIs i, finalment, es discuteix sobre els problemes
que pateixen els desplegaments de PKIs a nivell practic.

Entitats d’una PKI

Una PKI esta formada per diverses entitats que interactuen entre elles. Algunes d’aquestes entitats existeixen
en tots els desplegaments de PKI, mentre que d’altres en sén opcionals i només existiran en segons quin
tipus de desplegament. En aquesta seccid, descriurem les diferents entitats que poden formar part d’una PKI,
tot indicant si la seva existeéncia és opcional si n’és el cas.
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7.1.1 Autoritat de certificacio

Una autoritat de certificacio (CA per les seves sigles en angles, Certification Authority)
és una entitat que certifica el lligam entre un parell de claus i una identitat. Aquesta
certificaci6 es realitza mitjangant la signatura digital d’una estructura de dades que conté
tant la identitat com la clau publica corresponent. L’autoritat de certificacié també és
I’encarregada de revocar aquest lligam si n’és el cas.

L’estructura de dades que signa una autoritat de certificacié es coneix amb el nom de certificat de clau
publica. Aixi:

Un certificat digital de clau publica és una estructura de dades que vincula una clau
publica a una identitat.

Formats de Existeixen diversos formats per a certificats digitals, per exemple, els certificats X.509
certificats (que presentarem més endavant en aquest mateix capitol), els certificats PGP o els
digitals SPKI

Aquesta vinculaci6 es produeix fent que una autoritat de certificacié de confianga signi el certificat digital,
que conté tant la clau piblica com la identitat. Addicionalment, un certificat digital acostuma a contenir
altres camps com ara informaci6 sobre 1’emissor, la validesa, identificadors dels algorismes involucrats en la
signatura del certificat, etc. A la Secci6 7.3.1 es descriuen amb detall els certificats digitals X.509, un dels
formats més utilitzats avui en dia.

Figura 7.1: Abstraccid del contingut d’un certificat digital.
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Les autoritats de certificacié disposen d’un document anomenat Declaracié de Practiques de Certificacié
(CPS, de I’angles, Certification Practice Statement) que estableix les normes que regeixen 1’emissid i gestio
de certificats d’aquella CA. Alhora, la CPS deriva de la Politica de Certificacié (CP, per les seves sigles en
angles, Certificate Policy), que és un document més general que descriu I’arquitectura de la PKI en que
s’engloba la CA i els actors que hi participen, els usos permesos per als certificats que emet la CA, la politica
de generaci6 de claus, 1’ds de CRLs i diversos processos que du a terme la CA.
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Autoritat de registre

Tot i que les tasques de registre poden ser dutes a terme per les autoritats de certificacio, en certs escenaris
(com ara quan les entitats finals es troben dispersades geograficament o bé quan el nimero de entitats a
certificar és molt gran) pot ser d’interes que se separin i siguin realitzades per una altra entitat.

Una autoritat de registre (RA per les seves sigles en angles, Registration Authority) és
una autoritat que verifica la identitat de I’entitat que se certifica en un certificat digital.

Aquesta verificaci6 de la identitat pot ser duta a terme, per exemple, a través de la personificacio fisica i
mostrant el document nacional d’identitat o el passaport.

Addicionalment, 1’autoritat de registre pot dur a terme altres tasques. Per exemple, la generacié de claus o bé
la iniciaci6 del procés de revocaci6 del certificat, ambdues en nom de ’usuari final.

L autoritat de registre és una entitat opcional en una PKI, ja que les tasques que realitza poden ser fetes per
la propia CA.

Autoritat de validacio

Amb la utilitzaci6 practica de certificats digitals apareix la necessitat de poder-los revocar, és a dir, d’anul-lar-
ne la seva validesa abans de la data de caducitat del propi certificat. Aquesta necessitat pot sorgir, per
exemple, quan les claus privades corresponents s’han vist compromeses.

Una llista de revocacié de certificats o CRL (de 1’angles, Certificate Revocation List) és
una llista dels certificats que es troben revocats (perd que no estan caducats) en un moment
concret. Aquesta llista és signada per la CA (o bé per I’emissor de la CRL) i conté una
marca de temps.

Aixi doncs, la publicacié periodica de llistes de certificats revocats és una manera de donar a coneixer els
certificats que es troben revocats. A la Seccid 7.3.2 es descriu amb detall les llistes de revocacié de certificats
definides per I’estandard X.509 aixi com les diferents alternatives de publicacié d’aquestes llistes.

Una alternativa (o un complement) a 1’ds de CRLs és I’ts del protocol OSCP:

El protocol OCSP (de I’angles, Online Certificate Status Protocol) permet obtenir I’ estat
d’un certificat digital identificat de manera interactiva.

En concret, el protocol OCSP permet a un client emetre una peticié sobre I’estat d’un certificat digital a un
servidor OSCP. El servidor OCSP respondra amb una resposta signada indicant I’identificador del certificat,
el seu estat de revocacio, I’interval de temps en el qual es considera valida la resposta i informacié addicional.
L’estat del certificat pot ser bo, revocat (ja sigui permanentment o en suspensid) o desconegut.

Una autoritat de validacio (VA per les seves sigles en angles, Validation Authority) és
una autoritat que ofereix un servei que permet verificar la validesa d’un certificat digital.
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Autoritat de segellat de temps

Certes aplicacions requereixen de segells de temps segurs per operar. Dins d’una PKI, 1’autoritat de segellat
de temps és I’entitat encarregada de proporcionar aquests segells.

Una autoritat de segellat de temps o TSA (per les seves sigles en angles, Time Stamping
Authority) és una entitat que crea segells de temps que permeten demostrar que una dada o
document existia en un instant particular en el temps.

Un segell de temps és doncs una signatura digital realitzada per una TSA sobre una estructura de dades
que conté, d’una banda, el hash d’un document i, d’altra banda, una representacié d’un instant de temps
(Figura 7.2).

Es important notar que un segell de temps ens assegura que el document existia en la data esmentada en el
segell, perd no ens déna informaci6 sobre en quin moment va ser creat. Un Us habitual dels segells de temps
es troba en la verificacié que una signatura digital d’un missatge va ser creada abans que el corresponent
certificat digital fos revocat. D’aquesta manera es permet que un certificat digital revocat pugui ser utilitzat
per validar signatures digitals creades amb anterioritat a la revocacié. Un altre dels usos habituals és en el
lliurament de documents o sol-licituds que tenen una data limit: 1’ds del segell de temps permet demostrar
que el document o la sol-licitud existia en un instant de temps concret, anterior a la data limit.

Figura 7.2: Abstracci6 del contingut d’un segell de temps.
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A la Secci6 7.3.4 es descriu el protocol de timestamp definit per 1’estandard X.509.

Entitat final

Una entitat final és una entitat que disposa d’un certificat en una PKI i que no és una
autoritat de certificaci6. Les entitats finals poden ser individus, perd també organitzacions,
aplicacions o fins i tot dispositius.

Les entitats finals son titulars d’un certificat digital. S’anomenen entitats finals ja que apareixen al final de la
cadena de certificacio.
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Repositori de certificats

L’existencia d’un certificat digital emes per una entitat de confianca que vinculi una identitat amb un parell
de claus €s de poca utilitat si hom no es troba en disposici6 del certificat digital en giiesti6.

La manera més senzilla de solucionar aquest problema consisteix a deixar que siguin els propis usuaris els
que es facin arribar els certificats els uns als altres, per exemple, enviant-los per correu electronic o trobant-se
en persona i fent I’intercanvi en un suport fisic. Aquest metode es coneix com a disseminacié privada i
és viable quan el nombre d’usuaris és reduit i la majoria d’usuaris es coneixen, perd no escala bé quan el
nombre d’usuaris creix. Una de les alternatives consisteix a publicar els certificats digitals, de manera que
els usuaris en tinguin accés.

Els repositoris de certificats emmagatzemen i proporcionen accés als certificats digitals.

El terme repositori és un terme generic que es fa servir per referir-se a qualsevol base de dades centralitzada
(almenys a nivell 1ogic) capa¢ d’emmagatzemar informacio i servir-la quan aquesta és sol-licitada.

Pel que fa a la seguretat d’aquests repositoris, la integritat dels certificats queda garantida per la propia
signatura que inclouen, de manera que un atacant no pot modificar amb exit els certificats digitals del
repositori sense ser detectat. Tot i aix0, els repositoris poden ser susceptibles a altres atacs, per exemple,
atacs de denegaci6 de servei que inhabilitin 1’accés al repositori als usuaris legitims.

Repositori de llistes de revocacié de certificats

A part dels repositoris de certificats, les PKI també poden disposar de repositoris de llistes de revocacio
de certificats, on les aplicacions que necessitin validar un certificat digital puguin descarregar-se la CRL
corresponent. De la mateixa manera que amb els repositoris de certificats digitals, les CRLs garanteixen la
integritat del seu contingut a través de signatures digitals, pero els repositoris poden ser susceptibles a altres
atacs.

Els repositoris de llistes de revocacio de certificats emmagatzemen i proporcionen accés
ales CRLs.

A la Seccié 7.3.2 es descriuen les caracteristiques i format de les CRLs segons 1’estandard X.509.

Cicle de vida d’un certificat digital

En aquesta seccid es descriu el cicle de vida d’un certificat digital, és a dir, les etapes o processos per els
quals passa un certificat, des dels preparatius que cal fer per poder-lo crear fins al processos que es duen a
terme una vegada el certificat ja no esta en us.

Alguns d’aquests processos son intrinsecs a la vida d’un certificat digital i, per tant, sempre es duran a terme.
Per exemple, sempre caldra generar les claus que quedaran vinculades a un certificat generat, ja que les claus
son essencials en la utilitat del certificat. En canvi, altres processos sén opcionals, i només es duran a terme
en circumstancies concretes. N’és el cas, per exemple, de la revocacié d’un certificat.

Generacio del parell de claus

Existeixen diverses maneres de crear un parell de claus per a un usuari, totes elles amb els seus inconvenients
iels seus avantatges. Tot i que alguns metodes sén preferits a altres, no hi ha una opini6 unanime sobre quin
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és el millor metode a utilitzar de manera universal:

* L’usuari crea el seu propi parell de claus. Aquest metode té com a principal avantatge que 1’usuari €s
I’tnic que coneix la seva clau privada, ja que aquesta ha estat generada pels seus propis mitjans en el
seu propi equip. Aquest metode és especialment indicat quan les claus generades es volen utilitzar per
realitzar signatures digitals amb no-repudi, ja que en aquest cas és convenient que cap altra entitat
conegui la clau privada. Com a inconvenient, pero, I’usuari ha de ser prou competent a nivell técnic
per poder generar el parell de claus de manera segura i per gestionar-ne les copies de seguretat de
manera adequada. Aixi, per exemple, un dels problemes que es poden presentar en aquest cas és la
generaci6 de claus en sistemes informatics domestics infectats de malware.

¢ El parell de claus és generat per la CA (o 1’autoritat de registre). Tenint en compte que la CA ja és un
element de confianga dins la PKI, hi ha qui opina que s’hi pot confiar també fins al punt de deixar que
sigui aquesta qui generi les claus. El principal avantatge d’aquest metode és que les CAs acostumen a
tenir personal especialitzat, que és capag¢ de garantir la seguretat dels equips que generen les claus.
Com a inconvenients, a més del fet de tenir una segona entitat que coneix la clau privada de I’usuari,
apareix la centralitzaci6 de la generacié de claus.

 FEl parell de claus és generat per una tercera part. La tercera part genera aleshores les claus i comunica
de manera fisicament segura la clau privada a I'usuari. Després, la tercera part destrueix tota la
informaci6 relativa a la creaci6 de les claus.

* El parell de claus és generat en un dispositiu hardware especialitzat. En aquest cas, sovint les claus
privades queden emmagatzemades en una zona de seguretat del propi hardware, de manera que no
poden ser extretes.

Altres consideracions que poden influir sobre la decisi6é de qui ha de generar el parell de claus sén les
implicacions legals que comporten o la capacitat de comput necessaria per a realitzar el procés. Aquest Gltim
punt no és gaire problematic avui en dia, ja que els dispositius informatics actuals tenen recursos suficients
per generar claus de les mides que s’utilitzen en aquests moments.

Estandards de || Una de les sintaxis més utilitzades per a peticions de certificat és la que es descriu al
CSR PKCS#10.

Quan el parell de claus no és generat per la CA, sera necessari fer-1i arribar la clau publica per tal que pugui
ser inclosa en el certificat digital. La Peticié de Signatura de Certificat (o CSR, de I’angles, Certificate
Signing Request) és un missatge amb una estructura de dades coneguda que envia el sol-licitant a la CA per
tal d’informar-la de la clau publica que demana certificar. A més de la clau ptiblica, la CSR inclou informacié
addicional, com ara informacié d’identificacio del sol-licitant.

Exemple 7.1 La generaci6 de claus per a ’'idCAT

La politica de 'idCAT detalla que el ciutada ha de generar les seves propies claus per a la identificacid i la
signatura electronica en el seu ordinador personal. Aixi, el ciutada sera I’encarregat de generar les claus i
enviara a la CA la clau publica a incloure en el certificat digital.

Per tal de simplificar aquest procés i fer-lo accessible a usuaris sense coneixements teécnics, el procés de
generaci6 de claus es pot realitzar a través del navegador, de manera gairebé transparent per a 1’usuari.

Exemple 7.2 La generacio6 de claus del DNI electronic

El DNIe 3.0 conté un xip amb informacié sobre el ciutada que n’és propietari. Entre la informacié que
incorpora aquest xip, s’hi troben dos parells de claus RSA, un parell d’autenticacié i un parell de signatura.
Aquestes claus son generades dins del propi xip, amb una llibreria criptografica que porta incorporada.
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Exercici 7.1 Quin procediment s’ha de seguir alhora de generar les claus vinculades a un certificat
digital per tal de poder garantir que les signatures realitzades amb la clau privada corresponent tenen la
propietat de no-repudi?

El subscriptor ha de crear el seu propi parell de claus

El parell de claus ha de ser generat per 1’autoritat de certificaci6

El parell de claus ha de ser generat per una tercera part

El parell de claus és generat en un dispositiu hardware especialitzat

> @I =

7.2.2 Registre

El registre és el procés per el qual una entitat final, ja sigui un individu o una organitzacio,
és verificada.

El nivell de verificaci6 necessaria dependra de la Politica de Certificacié o de la Declaraci6é De Practiques de
Certificaci6. Aixi, per exemple, per a certificats amb politiques de verificacié laxes, 1’usuari pot simplement
omplir un formulari per tal de sol-licitar el registre. En canvi, per a politiques de certificat més estrictes, sera
necessari que 1’usuari es personi fisicament davant de I’ autoritat de registre amb algun document d’identitat
reconegut que incorpori una fotografia.

Exemple 7.3 El registre per a ’id CAT

L’ Agencia Catalana de Certificaci6 ofereix els certificats digitals idCAT a la ciutadania. Per tal de realitzar
el procés de registre, el ciutada ha de personar-se a qualsevol de les Entitats de Registre idCAT (per
exemple, als ajuntaments) i mostrar un document identificatiu (DNI, NIE o passaport). Préviament, el
ciutada pot omplir un formulari amb les seves dades personals, de manera que el tramit s’agilitza.

Exemple 7.4 El registre per als certificats de persona fisica de la FNMT

La Fabrica Nacional de la Moneda y Timbre ofereix diferents tipus de certificats digitals, entre els quals hi
ha els certificats de persona fisica. Per realitzar el registre d’un certificat de persona fisica de la FNMT,
cal omplir un formulari per Internet i personar-se en alguna de les oficines de registre amb el codi de
sol-licitud que s’obté al complimentar el formulari i un document d’identitat (DNI, passaport, carnet de
conduir o NIE). Entre les oficines de registre disponibles s’hi troben les oficines de la Seguretat Social i
les delegacions de 1’ Agencia Tributaria.

7.2.3 Creaci6 del certificat

Una vegada s’ha generat el parell de claus i s’ha verificat la identitat de I’entitat, es crea el certificat digital.
El certificat digital contindra, principalment, la clau publica del titular (que haura de ser enviada a la CA
si el parell de claus no ha estat generat directament per la CA), la identitat verificada durant el registre i la
signatura digital de la CA.

Exemple 7.5 La creacio del certificat id CAT

Després de comprovar la identitat i les dades incloses en el certificat, i una vegada rebuda la clau publica,
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I’ Agencia Catalana de Certificacié pot generar el certificat digital del sol-licitant. El titular del certificat el
podra obtenir mitjangant el procediment telematic d’obtencié del certificat, que també es realitza a través
del navegador.

Disseminacié i recuperacié del certificat

El procés de disseminacié del certificat dependra del cas d’dis concret i de la Politica de Certificacié. En
alguns casos, el certificat es lliura directament al seu titular, que sera 1’encarregat de distribuir-lo a terceres
parts sota la seva discrecid. En altres casos, el certificat es publica en algun repositori public, de manera que
tothom en té accés lliure.

Addicionalment, si la generaci6 de claus no ha estat realitzada per I’entitat final del certificat, caldra que la
clau privada sigui enviada també a I’usuari.

D’altra banda, quan parlem de recuperacié del certificat ens referim a 1’habilitat d’obtenir un certificat
d’entitat final quan aquest és necessari. Els casos d’uis més habituals son quan es necessita enviar informacio
xifrada a un destinatari o bé quan és necessari verificar una signatura digital rebuda d’una altra entitat.

Exemple 7.6 El repositori de claus publiques del MIT

El MIT PGP Public Key Server (bttp://pgp.mit.edu/) és un dels repositoris de claus publiques més
popular. Actualment, el repositori forma part de la xarxa SKS de servidors de claus publiques, de manera
que totes les claus que s’hi publiquen es disseminen cap al centenar de servidors que formen part de la
xarxa.

Validacié del certificat

La validacié d’un certificat digital és, en realitat, un procés constituit per un conjunt de validacions, que
caldra realitzar abans de permetre fer cap operaci6 criptografica amb la clau que aquest certifica. Aquestes
validacions passen per comprovar que:

» Lasignatura digital del certificat és valida, és a dir, la signatura ha estat realitzada amb la clau de
I’emissor del certificat i és correcta per al contingut del certificat. Noteu que aquesta validaci6 ens
garanteix la integritat de les dades del certificat.

¢ La data actual es troba dins del periode de validesa del certificat digital, és a dir, el certificat no ha
expirat.

* FI certificat no ha estat revocat.

e s que s’esta donant al certificat digital és correcte (tenint en compte les restriccions d’utilitzacid,
de nom, de politica, les extensions d’utilitzacié de la clau, etc.).

* Fl certificat ha estat emes per una entitat de confianca.

Per tal de validar un certificat digital, caldra construir la cadena de certificats entre el certificat que es vol
validar i I’entitat de confiancga.

Una cadena de certificats és una llista ordenada de certificats de clau piiblica comengant
per un certificat signat per una entitat de confianca i acabant amb el certificat que es vol
validar. Tots els certificats intermedis sén certificats de CA en els quals el titular d’un
certificat correspon amb I’emissor del segiient.

Per tal de validar doncs un certificat, caldra comprovar tots els certificats de la cadena.
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Expiracié del certificat

Els certificats digitals tenen un periode de validesa en el qual es consideren valids per a la seva funcié. Quan
aquest periode de validesa acaba, diem que el certificat digital ha expirat.

Abans que finalitzi el periode de validesa d’un certificat digital, es pot actualitzar el certificat digital, de
manera que I’entitat final certificada pugui seguir gaudint dels serveis de la PKI ininterrompudament. El
procés d’actualitzacid passa per la creacié d’un nou parell de claus i d’un nou certificat associat a les noves
claus, amb un nou periode de validesa. Aquest procés s’acostuma a dur a terme quan s’aproxima la data
d’expiraci6 del certificat original. Com que el titular del certificat ja ha passat pel procés de registre i disposa
d’un certificat valid en el moment d’actualitzar-lo, el procés d’actualitzacié no requereix que el titular del
certificat torni a passar pel procés de registre.

Una alternativa és la renovacié del certificat digital. En aquest cas, la mateixa clau publica que hi ha al
certificat que esta a punt d’expirar s’inclou en un nou certificat, amb un nou periode de validesa. Cal anar en
compte, pero, a I’hora de renovar certificats digitals, ja que pot suposar problemes de seguretat en certes
circumstancies.

Exemple 7.7 L’expiracio dels certificats del DNI electronic

Els certificats del DNIe 3.0 tenen una validesa de 60 mesos des de la data d’emissi6 (o inferior si la data de
caducitat del dni és anterior a aquests 60 mesos). Els certificats del DNIe es poden actualitzar personant-se
en un Punt d’Actualitzacio del DNIe dins d’una oficina d’expedicid. El procés d’actualitzacié és un procés
automatitzat on el ciutada s’autentica amb dades biometriques i introdueix el seu pin, i noves claus i
certificats sén creats.

Revocacié del certificat

Els certificats digitals tenen un periode de validesa indicat en el propi certificat. A vegades pero, és necessari
poder invalidar un certificat abans que finalitzi aquest periode. N’és el cas, per exemple, quan la clau privada
corresponent €s compromesa, quan es produeix un canvi de nom o quan canvia 1’associacié entre un titular
ila CA (en particular, quan un treballador es desvincula d’una empresa). En aquest casos, sera necessari
revocar el certificat digital.

Un certificat digital revocat és aquell que ha estat cancel-lat abans de la seva data d’expira-
cib.

Exemple 7.8 La revocaci6 certificats del DNI electronic

El certificat de signatura digital del DNIe pot ser revocat personificant-se fisicament en qualsevol de les
oficines d’expedici6 del DNIe.

Historia i arxivament de claus

Tot i que els certificats digitals tenen una data d’expiracid, aixd no implica que totes les dades xifrades
amb les claus d’aquests certificats hagin de deixar de ser accessibles quan el certificat caduca. Per tant, és
necessari que les claus siguin emmagatzemades, encara que el corresponent certificat digital hagi caducat.
Aquest procés es coneix amb el nom d’historia de claus i és dut a terme, principalment, per a emmagatzemar
claus privades que permetin desxifrar contingut que va ser xifrat en el passat. Normalment, la propia entitat
final realitza aquest procés de manera local.

https://www.criptografia.cat v0.2.1 04/02/2026


https://criptografia.cat

7.3

7.3.1

196 Capitol 7. Infraestructura de clau publica

En canvi, quan es parla d’arxivament de claus, normalment es parla d’un servei ofert per una tercera
part, que emmagatzema material de claus de varies entitats finals. L’arxivament de claus consisteix en
I’emmagatzemament a llarg termini de claus (ja siguin de xifratge o de verificaci6 de certificats). L’arxivament
de claus és util, per exemple, quan s’intenta validar una signatura digital creada amb una clau associada a un
certificat que ja ha expirat.

Els estandards X.509

L’estandard X.509 de I'ITU-T defineix un framework per als certificats de clau publica, incloent I’especifi-
caci6 de les dades utilitzades per representar els certificats en si, aixi com la informacié sobre revocacions
de certificats. Addicionalment, I’estandard defineix també frameworks per a certificats d’atributs i serveis
d’autenticacié. Aixi, I’estandard no ofereix la descripcié de tots els components d’una PKI, siné només
d’una part, amb la intencié de servir com a base per a I’especificaci6 i construccié de PKIs completes.

Certificats Un certificat d’atributs o AC (de I’angles, attribute certificate és una estructura
d’atributs de dades signada digitalment que vincula uns valors d’uns atributs amb informacié
d’identificaci6 del seu propietari.

D’altra banda, I'IETF dedica esforcos a 1’estandarditzaci6 de les infraestructures de clau publica basades en
X.509 a través del grup de treball PKIX. Inicialment, la feina del grup se centrava en perfilar les normes
X.509 que produia la ITU-T, perd posteriorment el grup també va comencar a desenvolupar iniciatives
independents adrecades a cobrir les necessitats de 1la PKI a Internet. La IETF publica els seus documents
tecnics en les anomenades RFC (de I’angles, Request For Comments), algunes de les quals tenen caracter
estandarditzador.

D La ITU (de I’angles, International Telecommunication Union és 1’agéncia de les
Nacions Unides especialitzada en 1’ambit de les telecomunicacions, la informacié i
les tecnologies de la comunicacié. En concret, la ITU-T és la branca de 1la ITU que
coordina els estandards sobre telecomunicacions.

IETF La IETF (de I’angles, International Engineering Task Force és una comunitat internaci-

onal que té com a objectiu millorar i evolucionar Internet, a través de la produccié de
documents tecnics que guiin aquesta evolucid.

La primera versi6 de 1’estandard internacional ITU-T X.509 va ser publicada el 1988 com a part de les
recomanacions per directori X.500 i defineix un format estandard per a certificats digitals. La versi6 descrita
en aquest estandard es coneix com a versid 1. El 1993, I’estandard va ser revisat i es van afegir dos camps
més als certificats, amb el que es coneix com la versi6 2 del format. També durant el 1993 es van publicar
les RFCs relacionades de Internet Privacy Enhanced Mail (PEM), que inclouen especificacions per a una
PKI basada en els certificats x.509 vl (RFC1422). L’experiéncia obtinguda a I’intentar fer desplegaments
d’aquesta RFC va servir per mostrar les deficiencies del format v1 i v2 dels certificats X.509. En resposta a
les deficiéncies detectades, es va crear la versio 3 del format del certificats, que exten la versi6 2 afegint la
possibilitat de crear camps d’extensions addicionals. L’estandarditzacié del format v3 va ser completada al
juny de 1996 i es considera vigent en 1’actualitat.

Certfificats de clau publica

Com hem vist, un certificat digital de clau publica és una estructura de dades que vincula una clau ptiblica amb
una identitat a través d’una signatura d’aquest vincle feta per una autoritat. En aquesta secci6, descriurem
I’estructura d’un certificat X.509.

Gestié de L’Openssl inclou I’eina x509 que incorpora tot de funcionalitats relatives als certifi-
certificats cats X.509. Aixi, per exemple, I’eina permet visualitzar el contingut dels certificats,
X.509 . . . . . . .

convertir certificats a diferents formats o signar peticions de certificat.
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La Taula 7.1 mostra els camps d’un certificat X.509 versié 3. L’estructura de dades del certificat és similar a
moltes de les estructures de dades on s’hi emmagatzema contingut signat: s’inclou un camp amb el contingut
a signar, un camp amb 1’identificador de 1’algorisme que s’ha fet servir per resumir i signar el contingut i,
finalment, el valor de la signatura.

Camp Descripcio

TBSCertificate El certificat a signar (en angles, to-be-signed certificate).

signatureAlgorithm Identificador de I’algorisme de signatura utilitzat per
I’emissor del certificat per signar-lo.

signatureValue Cadena de bits amb el valor de la signatura.

Taula 7.1: Camps d’un certificat X.509.

Lidentificador || L’identificador de I’algorisme de signatura acostuma a especificar una funcié hash amb

de l'algorisme || |3 qual es fa un resum del contingut a signar i un algorisme de signatura.
de signatura

La Taula 7.3.1 mostra els camps del certificat a signar d’un certificat X.509 versi6 3.

Els nom distingits (o DN, de I’angles, Distinguished Name) acostumen a ser representats com una cadena
de caracters, on diferents atributs i el seu valor sén llistats separats per comes. Les claus reconegudes sén
el nom comu (CN, de I’angles, CommonName); el nom de la localitat (L, de 1’angles, LocalityName); el
nom de I’estat o provincia (ST, de I’angles StateOrProvinceName); el nom de I’ organitzacié (O, de 1’angles,
OrganizationName; el nom de la unitat organitzativa (OU, de 1’angles, OrganizationalUnitName); el nom
del pais ( C, de I’angles, CountryName); i el carrer (STREET, de 1’angles, StreetAddres).

Exemple 7.9 Exemple de certificat x.509

A continuaci6 s’inclou un exemple d’un certificat x.509 emes per a un estudiant de 1’assignatura de
criptografia de la UOC.

Certificate :
Data:
Version: 3 (0x2)
Serial Number: 8793 (0x2259)
Signature Algorithm: shalWithRSAEncryption
Issuer: C=CAT, ST=Barcelona, L=Barcelona, O=UOC, OU=EIMT,
CN=Consultor Criptografia
Validity
Not Before: May 23 13:27:19 2016 GMT
Not After : May 23 13:27:19 2018 GMT
Subject: C=CAT, ST=Barcelona, O=UOC,
OU=EstudiantsCriptografia ,
CN=estudiant/emailAddress=estudiant@uoc .edu
Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Public -Key: (361 bit)

Modulus :
01:b4:50:f5:bc:50:66:5e¢:80:0f:a3:85:07:de:c5:
d0:d4:36:¢c6:54:b1:66:db:46:49:06:37:4d:85:¢e2:
e7:b3:e8:b4:39:d7:05:77:20:67:8c:68:be:f9:37:
9d

Exponent: 65537 (0x10001)

X509v3 extensions:
X509v3 Basic Constraints:

CA:FALSE
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Netscape Cert Type:
SSL Client, S/MIME
X509v3 Key Usage:
Digital Signature , Non Repudiation
Netscape Comment:
OpenSSL Generated Certificate
X509v3 Subject Key Identifier:
32:6C:46:E0:A5:7A:97:E3:EC:E6:0F:3D:23:14:13:7B:
5B:E0:97:F3
X509v3 Authority Key Identifier:
keyid:D2:D1:3D:A7:69:53:C6:B3:8A:10:D6:3A:51:87:
EB:56:4C:7C:99:7A
DirName : /C=CAT/ST=Barcelona/L=Barcelona/
O=UOC/OU=EIMT/CN=Consultor Criptografia
serial :D5:16:AD:04:20:AA:8C:26

Netscape CA Revocation Url:
http ://www.uoc.edu/criptografia/ca—crl.pem
Signature Algorithm: shalWithRSAEncryption

a4:6f:89:4e:2c:fe:85:0b:a2:7¢:02:e6:45:3f:81:79:22:fa:
2f:al:d8:bf:43:1f8:42:b9:b1:6f:6c:66:93:96:a6:2¢:af:cc:
c0:40:5f:21:69:60:77:0b:41:00:06:40:61:f7:ad:09:1a:12:
1d:55:3c:a6:f5:dc:c2:f6:39:81:57:59:d6:cc:c6:b5:ad:00:
78:be:2f:ae:d4:b6:e6:71:ab:5a:03:76:3d:0¢:55:3d:87:b7:
ab:a8:8c:2a:ef:87:09:3e:f8:50:71:b4:67:5b:a2:72:8e:a2:
3d:3¢:06:d4:09:93:¢c6:d7:df:4c:b3:2a9:6f:ba:b2:f9:3b:95:
44:e3:15:3¢c:15:¢ce:24:11:23:16:¢c9:07:72:91:90:ff:8d:e2:
c6:1¢:95:22:18:b1:d9:39:a1:31:97:4f:cb:cc:71:23:94:44d:
ef:0b:f0:64:3d:f7:a0:70:4¢c:2e¢:0f:6c:54:1f1:95:52:00:85:
62:9c:a3:b2:28:ea:f0:21:58:ba:4¢:24:38:d7:9b:9c:78:6a:
a6:fc:cc:11:62:11:9b:55:59:66:08:9d:98:11:3b:4¢c:20:¢0:
31:81:ef:1b:6d:3b:97:75:de:1f:75:6c:e5:6a:95:96:a5:9b:
2d:f9:78:1f2:31:88:f3:36:b4:21:¢d:20:d4:91:e2:b0:0b:48:
ab:fc:64:57

Extensions dels certificats de clau publica

El camp d’extensions permet afegir nous camps a I’estructura de dades d’un certificat sense haver de
modificar-ne la seva definicié en ASN.1.

ASN.1 L’ASN.1 (de I’angles, Abstract Syntax Notation One) és un llenguatge que permet
definir estructures de dades de manera indepenent del dipositius o representacions
internes que aquests facin servir.

Un camp d’extensio consisteix en:

¢ Un identificador d’extensio.
* Un flag de criticitat.
¢ Un valor codificat.

Les extensions, al ser camps addicionals, poden no ser reconegudes per totes les entitats que poden processar
el certificat digital. El valor boolea del flag de criticitat condiciona com afectara el reconeixement de
I’extensi6 a la validacié del certificat. Si el flag de criticitat conté el valor FALSE i ’entitat que ha de
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Taula 7.2: Camps del certificat a signar.

Codi Descripcio
version Indica la versio del certificat. Pot contenir els valors O (v1), 1 (v2) o
2 (v3).
serialNumber Es un valor enter designat per la CA que és Unic per cada certificat

emes per aquella CA en concret, és a dir, el parell de valors emissor
i ndmero de serie identifica de manera tnica un certificat digital de
clau publica.

signature Conté I’identificador de [I’algorisme i la funci6 de hash
fets servir per la CA per signar el certificat, per exemple,
sha-1WithRSAEncryption. Aquest valor ha de ser el mateix que
el del camp signatureAlgorithm.

issuer Conté el nom distingit de la CA que emet el certificat, que no pot ser
una cadena buida.
validity Indica el periode de validesa del certificat digital. Durant aquest

interval, la CA garanteix que mantindra informacié sobre ’estat del
certificat. El periode de validesa s’indica amb dos camps de temps:
notBefore i notAfter.

subject Nom distingit que identifica al titular de la clau publica que esta
sent certificada. EIl camp pot estar buit si es tracta d’un certificat
d’entitat final amb I’extensié subjectAltName inclosa i marcada
com a critica. En cas contrari, el camp no pot contenir una cadena
buida.

subjectPublicKeyInfo Conté dos components: algorithmisubjectPublicKey. El camp
algorithm hade contenir I’algorisme al que pertany la clau publica.
El camp subjectPublicKey ha de contenir la clau ptblica que esta
sent certificada.

issuerUniqueldentifier Camp opcional que es fa servir per identificar de forma unica I’emis-
sor en cas de reutilitzacié de noms.

subjectUniqueIldentifier Camp opcional que es fa servir per identificar de forma unica el
titular del certificat en cas de reutilitzacié de noms.

extensions Camp opcional que permet afegir nous camps a I’estructura de dades.

processar el certificat no reconeix 1’extensid, aleshores pot ignorar-la a ’hora de realitzar la validacié. En
canvi, si el flag té el valor TRUE, una extensié no reconeguda causa que el certificat es consideri invalid. Si
I’entitat que ha de processar el certificat reconeix 1’extensid, aleshores 1’estandard especifica que aquesta
hauria de processar 1’extensid, independentment del valor de criticitat que tingui.

Per tant, totes les extensions que tenen el flag de criticitat a FALSE poden causar comportaments inconsistents
entre les entitats que reconeixen 1’extensio (i que, per tant, la processaran) i aquelles que no la reconeixen (i
que, per tant, la poden ignorar).

L’estandard X.509 defineix algunes extensions. En el segiients paragrafs, es descriuen algunes d’aquestes
extensions.

L’extensi6 d’us de la clau (KeyUsage) permet descriure la intencié d’us del certificat. La Taula 7.3 descriu
els possibles usos reconeguts per I’extensid. Un mateix certificat pot indicar diversos usos, tot i que aquest
comportament pot suposar riscos de seguretat.

Concordanga || Si el boolea de cA de I’extensié BasicConstraints s’indica com a FALSE, aleshores

de les I’extensié KeyUsage no pot tenir 1’ds de keyCertSign actiu.
extensions

L’extensid de restriccions basiques (BasicConstraints) permet identificar si el titular del certificat és una
autoritat de certificaci6 i la profunditat maxima de les cadenes de certificacié que inclouen el certificat en
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Taula 7.3: Usos de clau reconeguts.

Codi Descripcio
digitalSignature Verificaci6 de signatures digitals.
contentCommitment | Verificacié de signatures digitals on el signatari
es compromet amb el contingut signat.

keyEncipherment Xifratge de claus o d’algun altre tipus d’informa-
ci6 de seguretat.

dataEncipherment Xifratge de dades d’usuari.

keyAgreement Us com a clau piiblica en un protocol d’establi-
ment de claus.

keyCertSign Verificaci6 de signatures de certificats realitzades
per Autoritats de Certificacid.

cRLSign Verificacié de signatures de CRLs realitzades per
autoritats.

encipherOnly Us com a clau publica en un protocol d’establi-

ment de claus per utilitzar tinicament xifratge de
dades (cal indicar també 1’us keyAgreement).

decipherOnly Us com a clau publica en un protocol d’establi-
ment de claus per utilitzar inicament desxifratge
de dades (cal indicar també 1’is keyAgreement).

qliestié. D’una banda, I’extensié permet incloure un valor boolea que indica si la clau publica certificada
pot ser utilitzada per verificar signatures de certificats digitals (camp cA). D’altra banda, i si el valor boolea
revela que és un certificat de CA, I’extensié inclou un enter que indica el nimero maxim de certificats
intermedis (no autoemesos) que poden seguir a aquest certificat en una cadena de certificacié valida (camp
pathLenConstraint).

L’extensi6 d’identificador de la clau de 1’autoritat (AuthorityKeyIdentifier) permet identificar la clau
privada utilitzada per signar un certificat digital. Aixo0 és particularment util quan I’emissor del certificat
disposa de diverses claus.

L’extensi6 d’identificador de la clau del titular (SubjectKeyIdentifier) permet identificar els certificats
que tenen una clau publica donada. Aixi, quan una entitat final t€ diversos certificats (per exemple, de
diferents emissors) amb la mateixa clau publica, el conjunt de certificats pot ser identificat facilment.

Exercici 7.2 Una aplicaci6 ha de validar un certificat digital que conté una extensié marcada com a
critica. Indiqueu quin hauria de ser el resultat de la validaci6 per les segiients casuistiques (suposant que
la resta de comprovacions que es realitzen per validar el certificat sén correctes).

Nota: Un resultat TRUE indica una validaci6 satisfactoria, mentre que un resultat FALSE indica que la
validaci6 no és correcta.

Resultat de processar I’extensio
TRUE FALSE

L’ aplicaci6 reconeix I’extensi6
L’aplicaci6 no reconeix 1’extensi6

Exercici 7.3 Una aplicaci6 ha de validar un certificat digital que conté una extensié marcada com a no
critica. Indiqueu quin hauria de ser el resultat de la validaci6 per les segiients casuistiques (suposant que
la resta de comprovacions que es realitzen per validar el certificat s6n correctes).
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Resultat de processar I’extensio
TRUE FALSE

L’aplicaci6 reconeix I’extensio
L’ aplicaci6 no reconeix 1’extensi6

Tipus de certificats de clau publica

Existeixen, principalment, dos tipus de certificats de clau publica:

* Certificats de clau ptiblica d’entitats finals.
* Certificats de clau publica d’autoritats de certificacié (CA).

Un certificat d’entitat final és un certificat emes per una autoritat de certificacié a una entitat que no és
emissora d’altres certificats. En canvi, un certificat de CA és un certificat emes per una CA a una entitat que
és també una CA i, per tant, també és capa¢ d’emetre certificats. Un certificat de CA ha d’incloure 1’extensio
basicConstraints amb el component cA a True.

Els certificats de CA poden ser alhora classificats en tres tipus diferents:

¢ Un certificat autoemes és un certificat de CA on el titular i I’emissor sén la mateixa CA. Aquest tipus
de certificat es pot fer servir, per exemple, per a realitzar un canvi de claus, transferint la confianca de
la clau antiga a la nova clau.

* Un certificat autosignat €s un cas especial d’un certificat autoemes on la clau privada utilitzada per
signar el certificat correspon a la clau publica que se certifica amb el certificat. Es poden fer servir
certificats autosignats, per exemple, per donar a coneixer una clau publica o altra informacid.

* Un certificat creuat és un certificat de CA on I’emissor i el titular sén autoritats de certificacié
diferents. Un certificat creuat es pot fer servir, per exemple, per a reconeixer I’existencia de la CA
titular o bé per autoritzar-la.

Llistes de revocacié de certificats

Les autoritats de certificacié s6n responsables d’informar sobre I’estat de revocacié dels certificats que
emeten. Un dels metodes per oferir aquesta informacié de revocacié €s la publicaci6 de llistes de revocacio
de certificats o CRLs (per les seves sigles en angles, Certificate Revocation List). Normalment, la propia
autoritat de certificaci6é emet les CRLs, perd també pot delegar aquesta responsabilitat a alguna altra entitat.

Una CRL és una llista dels nimeros de serie dels certificats revocats, juntament amb la signatura de la CA
(o ’emissor de la CRL) i una marca de temps. Normalment, les CRLs es publiquen periodicament, per
exemple, cada hora o un cop al dia. Quan un certificat és revocat, el seu nimero de série s’afegeix a la CRL
que s’emet després de la revocacié. El nimero de série no s’ha d’eliminar de la CRL fins que hagi aparegut
en una CRL emesa amb posterioritat a la fi del periode de validesa del certificat.

Com que les CRLs contenen una signatura de 1’entitat que les emet, la integritat del seu contingut esta
garantida. D’aquesta manera, no és necessari confiar en que els servidors o els processos que distribueixen
les CRLs no intentaran modificar-les.

Un dels inconvenients que presenta 1’ds de CRLs és 1’endarreriment que es crea a 1’hora d’informar sobre la
revocaci6é d’un certificat. Entre la revocacié d’un certificat i I’addicié del seu nimero de serie a la propera
CRL que es publica passa un interval de temps, que podra ser menor o major en funcié de la periodicitat
de la publicacié de la CRL. Durant aquest periode, tot i que el certificat es troba revocat, la informacié de
revocacio no estara disponible. Aquest problema es pot minimitzar amb I’ds de protocols interactius que
consulten I’estat d’un certificat digital en un moment concret.

Un altre dels inconvenients que presenta I'tis de CRLs és que son susceptibles a atacs de denegacid de
servei. Un atacant pot evitar que la informacié de revocacié d’un certificat arribi a les aplicacions blocant la
distribucié de la CRL. Aixi, mentre que un atacant no podra modificar el contingut de la CRL (degut a la
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signatura sobre aquest), si que pot atacar la disponibilitat del servei.

Generacié de || L’Openssl inclou I’eina ca, que incorpora funcionalitats per gestionar una autoritat de
CRLs certificacid, entre les quals hi ha la creacié de CRLs.

Aixi doncs, quan un sistema necessita validar un certificat digital, a més de comprovar-ne la seva signatura
i el periode de validesa, també sera necessari que es descarregui una CRL prou recent i comprovi que el
nimero de serie del certificat no hi figura. La definicié del que es considera prou recent dependra de la
politica de cada sistema.

Els certificats poden contenir informacié sobre com obtenir informaci6 de revocacié a través de CRLs fent
servir ’extensié crlDistributionPoint.

Tipus de CRLs

Cada llista de revocaci6 de certificats té un abast, és a dir, un conjunt de certificats que poden apareixer en
aquella CRL. Per exemple, 1’abast d’'una CRL poden ser tots els certificats emesos per una determinada CA
o bé tots els certificats emesos per una CA per un motiu concret.

Una llista CRL completa enumera tots els certificats no expirats dins del seu abast que han estat revocats per
alguna de les raons cobertes per 1’abast. D’altra banda, direm que una CRL és plena i completa quan conté
tots els certificats no expirats emesos per la CA que s’han revocat per qualsevol rad.

Els termes En angles, es fan servir els termes complete i full and complete per diferenciar entre
plenai CRLs que contenen tinicament certificats revocats per un dels motius indicats a 1’ abast
completa L .

o bé independentment del motiu.

Una CRL indirecta és una CRL amb un abast que inclou almenys un certificat emes per una entitat de
certificaci6 diferent de I’emissor de la CRL. Una CRL indirecta pot incloure en el seu abast certificats emesos
per diverses autoritats de certificacid. A més, si I’emissor de la CRL és una CA, aleshores 1’abast de la CRL
pot incloure també els certificats emesos per aquesta CA.

Una delta CRL només enumera els certificats dins del seu abast que han canviat d’estat de revocacié des
de I’emissi6é d’una CRL completa referenciada. La CRL completa referenciada s’anomena CRL base. Es
considera que I’estat d’un certificat ha canviat si aquest esta revocat, si ha deixat d’estar suspes o si la rad
per la qual el certificat ha estat revocat ha canviat. L’abast de la delta CRL ha de ser el mateix que la CRL
base que referencia. A més, la clau privada utilitzada per signar la delta CRL també ha de ser la mateixa que
la feta servir per signar qualsevol CRL completa que pugui actualitzar. Generalment, les delta CRLs sén
més petites que les CRLs que actualitzen, de manera que fer servir delta CRLs pot ajudar a reduir el consum
d’ample de banda d’un sistema que faci servir CRLs.

Una aplicaci6 que fa servir delta CRLs ha de ser capag¢ de construir una CRL completa combinant una CRL
completa emesa amb anterioritat i la delta CRL més recent. Addicionalment, 1’aplicacié també pot construir
una CRL completa a partir de la delta CRL més recent i d’una CRL construida localment que és completa
per aquest abast.

Es considera que una delta CRL és actual si el temps actual es troba en el periode comprés entre els camps
thisUpdate i nextUpdate. Per tant, podria passar que I’emissor de CRLs emetés més d’una delta CRL
abans del nextUpdate, existint aleshores més d’una delta CRL considerada actual. En aquests casos,
I’estandard recomana (pero no exigeix) que es faci servir la CRL que té el thisUpdate més actual.

Contingut d’una CRL

Una CRL és una llista de certificats revocats signada per una autoritat. Aixi, els camps que defineixen una
CRL segons I’estandard X.509 es descriuen a la Taula 7.4.

La llista de certificats revocats és alhora una seqiiencia de diversos camps. La Taula 7.5 descriu els camps
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Taula 7.4: Camps d’una CRL.

Camp Descripcio
tbsCertlist La llista de certificats revocats (en angles, fo-be-signed
certificate list).
signatureAlgorithm Identificador de I’algorisme de signatura utilitzat per 1’emis-
sor de la CRL per signar-la.
signatureValue Cadena de bits amb el valor de la signatura.

que la componen.

Taula 7.5: Camps de la llista a signar.

Camp Descripcio
version Opcional, descriu la versié de la CRL codificada.
signature Identificador de I’algorisme de signatura utilitzat per 1’emis-

sor de la CRL per signar-la. El valor d’aquest camp ha de
coincidir amb el valor del camp signatureAlgorithm.

issuer Nom de I’entitat que ha emes i signat la CRL.
thisUpdate Data d’emissi6é d’aquesta CRL.
nextUpdate Opcional, data d’emissi6 de la propera CRL. La propera

CRL pot ser emesa abans de la data indicada pel camp
nextUpdate, perd no hauria de ser emesa més tard d’a-
questa.

revokedCertificates Opcional, la llista amb els certificats revocats. Si no hi ha
certificats revocats, aleshores la llista no s’inclou. En cas
contrari, els certificats revocats s’enumeren en base al seu
nimero de serie, i s’especifica la data en la qual han estat
revocats.

crlExtensions Opcional, extensions que poden contenir atributs addicio-
nals.

Extensions de les CRLs

El camp d’extensions és un camp opcional que pot apareixer a partir de la versid 2 i que conté una seqiiencia
d’una o més extensions, que permeten afegir atributs addicionals a les CRLs. De manera analoga a les
extensions dels certificats X.509, cada extensié d’una CRL pot ser marcada com a critica o com a no critica.
Les aplicacions que no siguin capaces de reconeixer o processar una extensié marcada com a critica en una
CRL no han de fer s d’aquella CRL. En canvi, si I’extensi6 esta marcada com a no critica, les aplicacions
poden ignorar-la. En els segiients paragrafs, descriurem algunes de les extensions més populars que es fan
servir en CRLs a Internet.

De la mateixa manera que als certificats de clau publica, I’extensié d’identificador de la clau de 1’autoritat
(AuthorityKeyIdentifier) és una extensio que permet afegir informacié sobre la clau publica correspo-
nent a la clau privada utilitzada per signar la CRL. Aquesta extensi6 és especialment 1til quan un mateix
emissor té varies claus de signatura.

El nimero de CRL (CRLNumber) és una extensié que permet incloure un nimero de seqiiéncia a la CRL.
Donats un emissor de CRL i un abast concret, els niimeros de seqiiencia s6n valors estrictament creixents.

L’indicador de delta CRL permet indicar que una CRL és una delta CRL. Per fer-ho, 1’extensié inclou el
nimero de CRL de la CRL base (BaseCRLNumber) que va ser utilitzada per crear aquesta delta CRL.
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El codi de motiu (CRLReason) és una extensié que permet identificar el motiu per el qual s’ha revocat el
certificat. La Taula 7.6 mostra els codis reconeguts. Exceptuant el codi removeFromCRL, la resta de codis
indiquen que el certificat ha estat revocat.

Taula 7.6: Codis per especificar el motiu de revocacid de certificats digitals.

Codi Descripcié

unspecified Es pot fer servir per revocar certificats per algun motiu
diferent als que tenen un codi especific.

keyCompromise Es fa servir per revocar un certificat d’una entitat final i
indica que la clau privada del titular del certificat ha estat
compromesa.

cACompromise Es fa servir per revocar certificats d’autoritats de certificacié
iindica que la clau privada de la CA ha estat compromesa.

affiliationChanged Indica que el nom del titular o bé alguna altra informacié

del certificat ha estat modificada (perod que no hi ha motiu
per sospitar que la clau privada ha estat compromesa).

superseded Indica que el certificat ha estat substituit (perd que no hi ha
motiu per sospitar que la clau privada ha estat compromesa).
cessationOfOperation Indica que el certificat ja no és necessari per a 1’objectiu pel

qual va ser emes (perd que no hi ha motiu per sospitar que
la clau privada ha estat compromesa).

certificateHold Indica que el certificat es troba suspes temporalment.

removeFromCRL Aquest codi només pot apareixer en delta CRLs i permet
indicar que el certificat s’ha d’eliminar de la CRL, ja sigui
perque ha expirat o perque ja no es troba suspes.
privilegeWithdrawn Indica que el certificat (de clau ptblica o d’atributs) es troba
revocat perque un privilegi contingut al certificat ha estat
retirat.

aACompromise Es fa servir per revocar certificats d’autoritats d’atributs i
indica que la clau privada de I’autoritat d’atributs ha estat
compromesa.

Altres models || A I’exemple es mostra el model d’emissié de delta CRLs tradicional. Existeixen
d’emissio de altres models, com ara el model de finestres lliscants (en angles, sliding windows) que
delta CRLs . £ .

permeten estalviar més ample de banda en alguns escenaris.

Exemple 7.10 Exemple d’us tradicional de CRLs

La segiient taula es mostra un exemple de la manera tradicional d’emetre delta CRLs. En aquest exemple,
s’emeten CRLs completes cada dues hores i delta CRLs cada 30 minuts. L’abast de la CRL compren tots
els certificats emesos per 1’autoritat de certificacié C per qualsevol motiu excepte superseded.

La notaci6 Cy indica el certificat emes per 1’autoritat C amb nimero de serie x. Es fa servir ’hora amb
precisié de minuts per indicar el temps, perd en un cas real es faria servir la data i I’hora completa. A la
llista de certificats revocats s’inclou el nimero de série del certificat i el motiu de la revocacié. S’omet la
data en la qual ha estat revocat el certificat per simplificar-ne la visualitzacio6.

El certificat Cy s’ha revocat per compromis de la clau privada en algun instant anterior a les 8:00. Quan
s’emet la CRL completa de les 8:00, C; hi apareix amb motiu keyCompromise. Les delta CRL que tenen
com a base la CRL 1 no inclouen aquest certificat, ja que ja apareix a la CRL base.
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En algun moment entre les 8:30 i les 9: 00, C33 es revoca amb motiu privilegeWithdrawn, i apareix
per tant a la primera delta CRL que es publica després de la revocacid, la CRL 3. Entre les 9:00 i les 9:30
I’estat de revocacié de C33 canvia a affiliationChanged, i aquest canvi es veu reflectit a la segiient
delta CRL que es publica, la CRL 4. En el mateix interval de temps el certificat C,5 es revoca amb motiu
superseded, pero aquest certificat no apareix en cap de les CRLs ja que esta fora de I’abast definit.

Entre les 9:30 1 les 10:00 el certificat Cy; es posa en espera. Aquest canvi es veu reflectit tant a la CRL
completa com a la delta CRL que es publica a les 10:00.

Entre les 10:00 i les 10: 30 Css és revocat per compromis de la clau privada, i apareix per tant a la delta
CRL de les 10:30. Tot i que el certificat expira a les 10:45, Css segueix apareixent a les delta CRL fins
que apareix en una CRL completa (la CRL 9).

En I’interval de temps entre les 10:30 i les 11:00, s’aixeca la suspensié sobre el certificat Cy;. Per tant,
a partir de la CRL 7, les delta CRL indiquen que es pot eliminar el certificat de la CRL amb el codi
removeFromCRL. A partir de la CRL 10 aquesta notificacié ja no s’inclou en les delta CRLs, ja que ja
s’ha publicat una CRL completa on no hi apareix C, (la CRL 9). Es important notar que la CRL no
inclou el certificat C;, amb codi removeFromCRL siné que simplement no s’inclou el certificat a la llista
de certificats revocats. El codi removeFromCRL no apareix en CRLs completes.
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Temps Estat d(?'ls certificats en Contingut de Ta CRL Claretibamis 6 e, Dl CIAL
actual ¢ I’instant ¢ completa
8:00 {C\ : keyCompromise} CRLNumber : 1 CRLNumber : 1

thisUpdate: 8:00 thisUpdate: 8:00
nextUpdate: 10:00 nextUpdate: 8:30
revokedCertificates: BaseCRLNumber: 1
{C) : keyCompromise} revokedCertificates: {}
8:30 {Ci : keyCompromise} CRLNumber : 2
thisUpdate: 8:30
nextUpdate: 9:00
BaseCRLNumber: 1
revokedCertificates: {}
9:00 {C\ : keyCompromise, CRLNumber : 3
Cs3 : privilegeWithdrawn} thisUpdate: 9:00
nextUpdate: 9:30
BaseCRLNumber: 1
revokedCertificates:
{Cs3 : privilegeWithdrawn}
9:30 {C\ : keyCompromise, CRLNumber : 4
Cs3 : af filiationChanged, thisUpdate: 9:30
Cys : superseded} nextUpdate: 10:00
BaseCRLNumber: 1
revokedCertificates:
{Cs3 : af filiationChanged }
10:00 {C\ : keyCompromise, CRLNumber : 5 CRLNumber : 5
Cs3 : af filiationChanged, thisUpdate: 10:00 thisUpdate: 10:00
Cys : superseded, nextUpdate: 12:00 nextUpdate: 10:30
Cy, : certificateHold} revokedCertificates: BaseCRLNumber: 1
{C) : keyCompromise, revokedCertificates:
Cs3 : af filiationChanged,, {Cs3 : af filiationChanged,
Cy : certificateHold } Cy : certificateHold}
10:30 {C\ : keyCompromise, CRLNumber : 6
C33 : af filiationChanged, thisUpdate: 10:30
Cys : superseded, nextUpdate: 11:00
Cyy : certificateHold, BaseCRLNumber: 5
Css : keyCompromise} revokedCertificates:
{Css : keyCompromise}
11:00 {C\ : keyCompromise, CRLNumber : 7
C33 : af filiationChanged, thisUpdate: 11:00
Cys : superseded} nextUpdate: 11:30
Css expired on t = 10:45 BaseCRLNumber: 5
revokedCertificates:
{Css : keyCompromise,
Cy : removeFromCRL}
11:30 {C\ : keyCompromise, CRLNumber : 8
Cs3 : af filiationChanged,, thisUpdate: 11:30
Cys : superseded} nextUpdate: 12:00
BaseCRLNumber: 5
revokedCertificates:
{Css : keyCompromise,
Cy : removeFromCRL}
12:00 {C\ : keyCompromise, CRLNumber : 9 CRLNumber : 9
C33 : af filiationChanged, thisUpdate: 12:00 thisUpdate: 12:00
Cys : superseded} nextUpdate: 14:00 nextUpdate: 12:30
revokedCertificates: BaseCRLNumber: 5
{C1 : keyCompromise, revokedCertificates:
Cz3 : af filiationChanged,, {Css : keyCompromise,
Css : keyCompromise} Cy : removeFromCRL}
12:30 {C) : keyCompromise, CRLNumber : 10

Cz3 : af filiationChanged,,
Cys : superseded}

thisUpdate: 12:30
nextUpdate: 13:00
BaseCRLNumber: 9

revokedCertificates:

7.3.3 Online Certificate Status Protocol

El protocol OCSP (de I’angles, Online Certificate Status Protocol) permet determinar 1’estat de revocacid
actual d’un certificat digital a través d’un protocol interactiu. L’OCSP es pot fer servir ja sigui com a substitut
o com a complement de les CRLs.

En el protocol hi participen dues parts, el client OSCP (que esta interessat en saber 1’estat d’un certificat

digital) i el servidor OCSP (que respondra a les consultes del client).

Quan un client necessita validar I’estat d’un certificat digital, aleshores envia una peticié al servidor OCSP i
suspen I’acceptacio del certificat fins que arriba la resposta. Una peticié OCSP conté els segiients camps:
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* Versi6 del protocol.
* Identificador del certificat o certificats per als quals es demana I’estat de revocacio.
* Opcionalment, extensions.

Una resposta OCSP (de tipus basic) conté la segiient informacio:

* Versi6 de la sintaxi de la resposta.

* Instant de temps en que s’ha generat la resposta.

* Conjunt de respostes (per cada un dels certificats que s’han demanat a la peticio).
Identificador de I’algorisme de signatura.

* Valor de la signatura.

L]

Cada una de les respostes conté alhora quatre camps: 1’identificador del certificat a la qual fa referéncia,
I’estat del certificat, I’interval de validesa de la resposta i, opcionalment, les extensions.

Implementacié || L’Openssl inclou 1’eina ocsp que incorpora funcionalitats per interactuar amb un
de 'OCsP servidor OCSP i, fins i tot, per operar com un petit servidor OCSP.

L’especificacié d’OCSP de 1a RFC6960 defineix tres alternatives per indicar I’estat del certificat: bo (good),
revocat (revoked) o desconegut (unknown). Cal anar amb compte, pero, a I’hora d’interpretar aquestes
respostes, ja que els noms utilitzats per designar-les poden generar confusié sobre els detalls del seu significat.

Una resposta bona indica que no hi ha cap certificat amb el nimero de serie especificat a la petici6é que es
trobi revocat (i que estigui dins del seu periode de validesa). Aixo no implica necessariament que el certificat
existeixi (podria ser que mai hagués estat emes) ni que el certificat sigui valid en aquell moment (podria ser
que la resposta del servidor OCSP no estigui compresa en I’interval de validesa del certificat). Una resposta
de certificat revocat indica que el certificat ha estat revocat, ja sigui temporalment (especificant el codi de
motiu certificateHold) o bé permanentment. Tot i aix0, un servidor OCSP també pot retornar aquesta
resposta si la CA corresponent no ha emes mai un certificat amb aquest nimero de serie. Una resposta d’estat
desconegut indica que el servidor no coneix el certificat.

Exercici 7.4 Indiqueu quines de les segiients afirmacions sén certes:

Per tal de comprovar la data de caducitat d’un certificat digital, podem utilitzar el protocol OCSP.
Per tal de comprovar la data de caducitat d’un certificat digital, podem utilitzar CRLs.

Per tal de comprovar la data de caducitat d’un certificat digital, només ens cal el propi certificat.
Una resposta OCSP good sempre indica que el certificat no esta revocat.

Una resposta OCSP revoked sempre indica que el certificat esta revocat.

s W D =

Time Stamp Protocol

Com hem vist, les autoritats de segellat de temps o TSA son les autoritats d’una PKI encarregades de crear
segells de temps. Per fer-ho, la TSA signa els segells que emet amb una clau especificament reservada per
a aquest proposit. En concret, el certificat digital corresponent ha de tenir una tnica instancia del camp
extended key usage amb keyPurposeld id-kp-timeStamping i I’extensié marcada com a critica.

El TSP (Time-Stamp Protocol) és el protocol que es fa servir per interactuar amb una TSA. El procediment
per aconseguir un segell de temps és el segiient. En primer lloc, el sol-licitant envia una peticié de segell de
temps a la TSA. Després, la TSA respon a la peticié amb un missatge de resposta. Per acabar, el sol-licitant
hauria de comprovar I’estat d’error de la resposta. Si no hi ha errors, caldria validar el segell de temps
retornat.

Un nonce (de I’angles, number used once) és un nombre arbitrari que es fa servir una

Unica vegada en un protocol criptografic.
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La petici6 de segell de temps que el sol-licitant envia a la TSA conté, entre d’altres:

El hash de la dada que es vol segellar.

L’identificador de I’algorisme de hash utilitzat.

Opcionalment, un nonce. El nonce és un valor aleatori que té una probabilitat alta de ser generat una
tinica vegada pel client. El nonce és opcional perd, si s’inclou, la resposta de la TSA ha de contenir
aquest mateix valor. El nonce permet detectar el reenviament d’un segell de temps, ja sigui realitzat
de manera involuntaria per errors en la transmissié o bé com a conseqiiencia d’un atac.
Opcionalment, un boolea certReq que permet indicar que es desitja que la TSA inclogui el certificat
corresponent a la signatura en la resposta. Si no s’inclou el camp o aquest és False, aleshores la

resposta de 1la TSA no ha de contenir el certificat.

La resposta de la TSA conté I’estat de la peticid i, en alguns casos, el segell de temps demanat.

L’estat esta format per tres camps: un codi que I’identifica i que sempre es troba present i, opcionalment, un
text i una explicacid del motiu per el qual la peticié ha fallat (si n’és el cas). Els codis d’estat reconeguts son:

* concedit: el segell de temps demanat s’adjunta a la resposta.

* concedit amb modificacions: s’adjunta un segell de temps, perd aquest conté alguna modificaci6.
* rebutjat: es rebutja la petici6 de segell de temps.

* en espera: la creacio del segell de temps es troba en espera.

* en alerta per revocacio: el missatge conté un avis que la revocacié és imminent.

* notificacio de revocacio: s’ha revocat el certificat.

La resposta ha de contenir el segell de temps només si I’estat és concedit o concedit amb modificacions.
En cas contrari, caldra indicar el motiu de la fallada. Els motius de fallada poden ser diversos, com ara per
exemple, que 1’algorisme de hash indicat no es reconegui, que el format de la petici6 sigui incorrecte, o que
la font utilitzada per la TSA per aconseguir el temps no estigui disponible en aquell moment.

Sintaxi dels L’explicaci6 sobre el contingut dels segells de temps abstrau els detalls reals de la

segells de sintaxis d’aquests. Els segells de temps sén informaci6 signada, que segueix la sintaxi

temps CMS (Cryptographic Message Syntax).

El camp de La codificaci6 del temps en una resposta de la TSA sempre acaba en Z, el que indica

temps que representa el temps Zulu. El temps Zulu és un sinonim del Temps Universal
Coordinat que es fa servir en aviacié civil.

Per la seva banda, el segell de temps estara format per la signatura de la TSA (a la que s’adjuntara
I’identificador del certificat utilitzat per realitzar-la) i el contingut del segell de temps, que tindra, entre
d’altres, els segiients camps:

* El hash de la dada que s’ha rebut.
* L’identificador de I’algorisme de hash utilitzat.

Un nimero de serie, que sera assignat per la TSA a cada segell de temps i que sera Unic entre els
segells emesos per aquesta TSA.

El temps, indicant el moment en que la TSA ha generat el timestamp expressat en UTC (Temps
Universal Coordinat).

Opcionalment, la precisid, que ens permet determinar I’interval de temps exacte en el qual s ha creat
el segell de temps. Si el camp no s’inclou, la precisié es pot anunciar d’altres maneres, com ara a
partir de la politica de la TSA.

Opcionalment, el nonce. Si la peticié contenia nonce, aleshores la resposta cal que també la contingui
i que el valor sigui igual que el de la peticio.

Opcionalment, el nom de la TSA, que permet ajudar en la identificacié de la TSA.

Implementacié
del TSP

L’Openssl inclou I’eina ts que incorpora les funcions basiques de client i servidor de
TSA.
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Finalment, quan es rep la resposta de la TSA, caldria validar-la. Per fer-ho, en primer lloc es comprova
I’estat d’error i, si no s’ha produit cap error, aleshores es valida el segell de temps: es comproven els camps,
es valida la signatura digital, es comprova que el segell de temps correspongui al que es va demanar (revisant
tant el valor del hash com I’identificador de 1’algorisme fet servir), I’estat del certificat de la TSA i el temps.
El temps pot ser validat a partir de la referencia d’un servei de temps local de confianca, o bé comprovant
que el nonce inclos en la peticid es troba també en la resposta.

Exercici 7.5 Un ciutada esta recollint signatures digitals per a recolzar una proposta. Per tal que les
signatures digitals siguin considerades valides, cal que estiguin realitzades en un interval de temps concret
(@aess tf,-), és a dir, que s’hagin més tard de f;,;c; i abans de #;. Quin d’aquests segells de temps seria valid
per demostrar que el conjunt de signatures s’han creat en el periode establert?

1. Un segell de temps sobre totes les signatures realitzat en 5 < tjpjci
2. Un segell de temps sobre totes les signatures realitzat en #; > 7
3. Un segell de temps sobre totes les signatures realitzat en tjic; <ty <1ty

Estructures de PKI

Potser el model d’estructura de PKI més simple és el model de CA tnica. En aquest model, hi ha una
unica autoritat de certificacid, que emet certificats per a totes les entitats finals que participen de la PKI. La
Figura 7.3 mostra un exemple d’aquest model.

Figura 7.3: Estructura amb CA tunica.

CA arrel

»® ® o

Una PKI amb un model jerarquic amb arrel dnica té una una tinica CA arrel, pero pot tenir altres CAs. Les
diferents CAs es troben estructurades seguint una jerarquia, on la CA arrel certifica a un conjunt d’autoritats
de certificaci6, que alhora poden crear certificats per a altres CAs (o per a entitats finals), creant els diferents
nivells de la jerarquia. Les CAs intermedies també sén conegudes amb el nom d’autoritats subordinades. El
model de CA unica pot ser vist com un cas especific del model jerarquic, on la inica CA existent és la CA
arrel. La Figura 7.4 mostra un exemple d’aquest model.

Una variant d’aquesta estructura és el model jerarquic amb llista de confianca, que disposa d’una llista
amb varies CAs arrel. Cadascuna de les CAs arrel pot tenir autoritats subordinades seguint una jerarquia.
L’ds més conegut d’aquest model és en els navegadors web, que contenen una llista amb uns centenars de
CAs arrel. La Figura 7.5 mostra un exemple d’aquest model.

Existeixen altres estructures de PKI, com ara I’estructura de malla, on les autoritats de certificacié emeten
certificats creuats, o la interconnexio a través de bridge CAs, on una autoritat fa de nexe entre les diferents
PKIs.
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Figura 7.4: Estructura jerarquica amb arrel dnica.

CA arrel
CA CA CA
subordinada subordinada subordinada

EF CA CA
subordinada subordinada
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7.4 Les normes PKCS

Les normes PKCS (de I’angles, Public Key Cryptography Standards) sén un conjunt d’especificacions sobre
criptografia de clau publica. Les especificacions les publica I’empresa RSA Laboratories i s6n elaborades
conjuntament amb altres empreses del sector, com ara Apple, Microsoft, DEC, Lotus, Sun i MIT. Algunes
d’aquestes especificacions han acabat esdevenint estandards d’organismes internacionals com ara la IETF.
L’ objectiu d’aquestes publicacions és fomentar I’is de la criptografia de clau publica i accelerar-ne el seu
desplegament.

Actualment, hi ha 10 normes PKCS. Addicionalment, els PKCS#13 i #14, que cobreixen el xifrat i signatura
fent servir criptografia de corbes el-liptiques i la generacié de nombres pseudo-aleatoris, respectivament, no
estan encara publicats. Els PKCS#2 i #4 es troben retirats des de 2010, quan van ser incorporats al PKCS#1
(tots dos descrivien també detalls sobre 1’ts de I’'RSA). El PKCS#6 descrivia la versié 1 dels certificats
X.509 i esta sent eliminat en favor de la versié 3 de X.509.

e PKCS#1: defineix mecanismes per xifrar i signar dades fent servir el criptosistema de clau ptiblica
RSA.

» PKCS#3: defineix el protocol d’establiment de claus de Diffie-Hellman.

* PKCS#5: descriu un metode per xifrar una cadena amb una clau secreta derivada d’una contrasenya.

* PKCS#7: defineix una sintaxis general per missatges que inclouen atributs criptografics com ara
signatures digitals o xifrat.

o PKCS#8: descriu un format per informacié sobre claus privades, que inclou la clau privada per alguns
algorismes de clau publica i, opcionalment, un conjunt d’atributs.

* PKCS#9: defineix tipus d’atributs per fer servir en altres estandards PKCS.

* PKCS#10: descriu una sintaxi per peticions de certificacid.

o PKCS#11: defineix una interficie de programacié anomenada Cryptoki per a dispositius criptografics
com targetes intel-ligents.

* PKCS#12 especifica un format portable per a emmagatzemar o transportar claus privades d’usuari,
certificats, secrets, etc.

e PKCS#15 és un complement al PKCS#11 proveint un estandard per credencials criptografiques
emmagatzemades en tokens criptografics.
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Figura 7.5: Estructura jerarquica amb llista de confianca.

CA arrel CA arrel CA arrel
CA CA CA
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En aquest capitol, es detallen tres d’aquestes especificacions, els PKCS#1, #5 i #12.

PKCS#1

En el capitol anterior hem vist el funcionament basic de ’'RSA. A la practica, pero, no es fa servir ’'RSA
directament com s’ha descrit al capitol, ja que aixo resultaria insegur. Dos dels problemes més coneguts que
té ’'RSA amb la formulacié que hem vist al capitol de Criptografia de Clau Publica sén els atacs per 1’ts
d’exponents petits i el determinisme de 1’algorisme.

D’una banda, fer servir exponents petits en combinacié amb missatges m també petits fa que I’esquema sigui
vulnerable. En concret, si m® < n, aleshores podem desxifrar el missatge directament sense necessitat de
coneixer la clau privada, calculant I’arrel e-€sima d’m sobre els enters. Esa dir,sic=m° modnim® <n,
aleshores ¢ = m® i per tant m = /c.

Exemple 7.11 Exemple d’atac per I’Gs d’exponents petits

Suposem que tenim un parell de claus RSA de 64 bits formada pels valors:
PubK = (e, n) = (3, 18230703860219055503)
PrivK = (d, n) = (616012317821603203, 18230703860219055503)

Si volem xifrar un missatge m = 55, procediriem a elevar el missatge a I’exponent puiblic, com s ha vist al
capitol anterior:
¢ = m® modn=>55 mod 18230703860219055503 = 166375

Noteu com 553 = 166375 i, per tant, 553 <n.

Aleshores, un atacant que captura el missatge c i que coneix la clau publica, pot procedir a desxifrar el
missatge, fent:
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m = c!/¢=166375!/3 =55

Dr’altra banda, I’'RSA és un algorisme determinista: el resultat de xifrar un text pla m amb una clau ptblica
puby. és sempre un mateix valor xifrat c. Si repetim el xifrat del mateix missatge amb la mateixa clau, el
resultat és sempre el mateix valor ¢. Aix0 fa que un atacant tingui un cert avantatge a 1’hora d’intentar
esbrinar el text pla m corresponent a un cert text xifrat c.

Suposem que un missatge m s’ha xifrat amb la clau puiblica puby, fent servir RSA, donant com a resultat el
valor xifrat c. Un atacant que coneix el valor xifrat ¢ i la clau puiblica puby pot intentar desxifrar el missatge
xifrant repetidament diversos valors m; i anar comprovant si el resultat correspon al valor ¢ que vol desxifrar.
Si el conjunt de possibles missatges €s petit, aquest atac sempre tindria exit ja que 1’atacant seria capag de
provar tots els possibles textos plans.

Exemple 7.12 Exemple d’atac pel determinisme de I’algorisme

Suposem que un elector que participa en unes eleccions on hi ha 4 candidats ({c3,c3,c4,¢5}) ha d’enviar
el seu vot xifrat amb la clau publica de la mesa electoral, indicant I’identificador del candidat votat.

Suposant que la mesa electoral té el segiient parell de claus RSA també de 64 bits (on els exponents no
son petits per evitar I’atac de I’exemple anterior):

PubK = (e, n) = (7387905850005970831, 16517425874601317047)

PrivK = (d, n) = (6515200225287789487, 16517425874601317047)

i que I’elector vol votar al candidat 4, el vot a enviar seria el valor:

vot = m¢ mod n = 47387905850005970831 134 16517425874601317047 =
8163478232469599798

Un atacant que capturi el vot i vulgui coneixer-ne el seu contingut, només cal que generi ell mateix tots els
possibles vots xifrats. Com que la clau publica de la mesa electoral és coneguda per tothom, 1’atacant pot
aconseguir aquesta informacié i calcular:

vy = 27387905850005970831 11154 16517425874601317047 = 11673347059272354770
vy = 37387905850005970831 11144 16517425874601317047 = 10980320764598560840
vy = 47387905850005970831 11144 16517425874601317047 = 8163478232469599798
vs = 57387905850005970831 11364 16517425874601317047 = 3701559658846578058

Aleshores, I’atacant descobreix que 1’elector ha votat al candidat 4, sense necessitat d’haver de desxifrar el
vot.

Addicionalment, ’'RSA ofereix xifratge homomorfic. Donats dos missatges en pla, m; i my i els seus
corresponents textos xifrats ¢; i ¢, (amb la mateixa clau), el resultat de multiplicar els dos textos xifrats
(c1cp) és precisament el mateix valor que s’obté al multiplicar els dos textos plans m; i my i xifrar-los
posteriorment.

En efecte, si tenim que:

c1 =E(m)=m° modn

2 =E(my) =my® modn

aleshores:

E(my)«E(my) =cy*cp = (m1°)(my®) modn = (my+xmy)® modn=E(m)*my)

La propietat d’homomorfisme de I’RSA pot ser utilitzada per construir esquemes amb propietats interes-
sants, pero, d’altra banda, també pot suposar problemes de seguretat en segons quins escenaris. A partir
d’un missatge xifrat ¢; = E(m; ), un atacant podra construir un segon missatge xifrat c; = ¢ * E(at) que
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correspondra al missatge en pla m * ¢ sense coneixer la clau de xifratge ni el missatge en pla original m;.

Aix{ doncs, mentre que la propietat d’homomorfisme és titil per construir esquemes que manipulin dades
mentre en preserven la seva confidencialitat, també pot ser una debilitat en segons quins desplegaments i
depenent de 1’ds que se’n faci.

Per tal de solucionar aquests problemes que apareixen amb la utilitzaci6 de I’'RSA en la seva definici
basica, s’acostuma a afegir un conjunt de bits aleatoris com a padding al missatge en pla abans de xifrar-lo.
D’aquesta manera, s’aconsegueix que el mateix missatge m pugui correspondre a diversos textos xifrats
¢, s’eviten els missatges m vulnerables per la seva representacié i, alhora, es pot eliminar la propietat
d’homomorfisme que presenta I’'RSA.

Noteu que amb la introduccid de bits aleatoris, ’'RSA passa a ser un criptosistema probabilistic, on un mateix
missatge xifrat amb una mateixa clau pot donar lloc a diversos textos xifrats. En canvi, el criptosistema
d’ElGamal ja és probabilistic per definicio.

L’estandard PKCS#1 defineix tot un conjunt de recomanacions per implementar ’'RSA. En concret, 1’estan-
dard descriu primitives criptografiques, esquemes de xifrat, esquemes de signatura i detalls de codificacid.

La versi6 2.1 de I’estandard PKCS#1 va ser republicada com a RFC 3447, amb unes petites correccions.

Esquemes de xifrat

Seguint la definicié de I’estandard, un esquema de xifrat consisteix en una operacio de xifrat i una operacié
de desxifrat.

El PKCS#1 defineix dos esquemes de xifrat: RSAES-OAEP i RSAES-PKCS1-v1_5. En aquest capitol,
veurem la descripcié de I’esquema RSAES-OAEP. Lesquema RSAES-PKCS1-v1_5 s’inclou només per
mantenir la compatibilitat amb les aplicacions ja existents, ja que actualment es coneixen atacs que fan que
el seu ds no sigui recomanable. Abans perd de descriure I’'RSAES-OAEDP, definirem i veurem un exemple de
funcié de generaci6 de mascara, una construccié que es fa servir en RSAES-OAEP.

Funcions de generacié de mascara

RSAES-OAEP Tot i incloure les sigles AES, aquest esquema no te res a veure amb el criptosistema de
bloc.

L’esquema de xifrat RSAES-OAEP fa ts d’una funci6 de generacié de mascara en dues ocasions per tal de
generar el valor EM a xifrar.

Una funcié de generacié de mascara (MGF per les seves sigles en angles, Mask Genera-
tion Function) és una funcié que rep com a parametres una cadena de mida variable i la
mida de sortida desitjada i retorna una cadena de la mida especificada a I’entrada.

Es a dir, una funcié MGF és una funcié que rep una entrada de mida m; bits i un valor de mida de sortida m,
i retorna una sortida de mida m,, bits:

MGF ({0,1}" m,) — {0,1}™

Les funcions de generacié de mascara son deterministes, ja que la sortida de la funcié queda determinada de
manera dnica per la seva entrada. A més, la seva sortida ha de ser pseudoaleatoria, de manera que coneixent
una part de la sortida no se’n pugui generar la resta.

L’MGF]1 és una funcié de generacié de mascara basada en una funcié hash. Donada una funci6 hash H amb
sortida de mida hLen, ’MGF1 es defineix de la segiient manera:
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definicid mgfl(seed, maskLen)
si maskLen > 2732xhLen aleshores
retornar "Error: mascara massa llarga"

fi si
T = "
per iteracio = 0 fins a ceil(maskLen/hLen) - 1 fes

comptador = I20SP(iteracio, 4)
T=T || H( seed || comptador )
fi per
retornar maskLen octets més significatius de T
fi definicid

La funcié La funcié I20SP (x,y) retorna el valor x representat fent servir y octets.
120SP

Es a dir, la funci6 va concatenant el resultat d’aplicar una funci hash a la concatenacié del valor que rep com
a llavor (seed) i un comptador d’iteracions que es va incrementant d’un en un. Aquest procés es repeteix
fins a tenir prou octets com per generar una sortida de la mida especificada com a parametre (maskLen).
Finalment, com que maskLen pot no ser multiple de la mida del hash (hLen), es possible que s’hagin de
descartar els octets menys significatius del resultat acumulat. A ’hora de concatenar el comptador amb la
llavor, es concatena la seva representacié en quatre octets.

La funcié ceil ‘ La funcié ceil (x) retorna el menor enter major o igual que x.

Exemple 7.13 Exemple d’ds de PMGF1 Suposem que volem fer servir 'MGF1 amb la funci6 hash
sha-1 amb els segiients valors d’entrada:

maskLen = 45

seed = 0x5307

La funcié6 sha-1 produeix una sortida de 160 bits, és a dir, 20 octets. Per tant,
hLen = 20

En primer lloc, es comprova que la mida de sortida desitjada no sigui superior a 23?4Len. Com que no ho
és (maskLen < 232hLen), es continua 1’execucié normalment, calculant el valor maxim que assumira el
comptador en el bucle:

ceil(maskLen/hLen) - 1 = ceil(45/20) - 1 =3 -1 =2
Després, es procedeix a calcular el valor T a cada una de les iteracions del bucle:

Iteracié 0:

comptador = 0x00000000

seed || comptador = 0x530700000000

H(seed || comptador) = 0xc5230b3bcb615dbc0b9a63f6e975b0£327£c576¢

T || H( seed || comptador ) = 0xc5230b3bcb615dbcOb9a63f6e975b0f327fc576¢

Iteracié 1:

comptador = 0x00000001

seed || comptador = 0x530700000001

H(seed || comptador) = 0x12f189b1d17e5b688d856fc700ffd2b20aabblle

T || H( seed || comptador ) = 0xc5230b3bcb615dbcOb9a63£6e975b0£327£c57
6c12f189b1d17e5b688d856fc700ffd2b20aabblde
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Iteracié 2:

comptador = 0x00000002

seed || comptador = 0x530700000002

H(seed | comptador) = 0x62f2e51fe23fdbfc3d200346£30157d5985d24ef

T || H( seed || comptador ) = 0xc5230b3bcb615dbcOb9a63£6e975b0£327£c57
6c12£189b1d17e5b688d856£c700ffd2b20aabbl4e62f2e51fe23fdbfc3d2003
46£30157d5985d24ef

Finalment, es retornen els 45 octets més significatius, de I’dltim valor T calculat:
¢c5230b3bcb615dbc0b9a63f6e97500£327fc576c12f189b1d17e5b688d856fc700ffd
2b20aabbl4e62f2eb51fe?2

L’esquema de xifrat RSAES-OAEP

Figura 7.6: Esquema de ’'RSA-OAEP.

L
H
hLen$ | k-mLen-2hLen-2 i 1 ‘\;mLen;‘
seed DB =| IHash PS=0x0...0 0x01 M
hLen k-hLen-1
) 4
MGF >
Pe MGF
};1
0x00 maskedSeed maskedDB = EM

(e,n) — E

L’esquema de xifrat RSAES-OAEP defineix com xifrar un missatge M amb RSA afegint padding i introduint
aleatorietat. L’esquema rep com a entrades tres valors, i retorna un valor xifrat:

C = RSAES-OAEP(M, (e,n), L)

on M és el missatge a xifrar; (e,n) és la clau piblica RSA; i L és una etiqueta opcional (si no s’inclou, es
pren com a valor la cadena buida).

https://www.criptografia.cat v0.2.1 04/02/2026


https://criptografia.cat

216 Capitol 7. Infraestructura de clau publica

A més de la funci6 de xifratge amb RSA que hem vist al capitol anterior, I’esquema també fa ds de dues
funcions addicionals: H, una funci6 hash i MGF, una funci6 de generaci6 de mascara

Octet Un octet son 8 bits. En alguns estandards es fa servir la paraula octet en comptes de
byte per definir conjunts de 8 bits ja que, en realitat, la mida d’un byte depen de la
plataforma. Tot i que actualment gairebé tots els sistemes interpreten un byte com a 8
bits, en certs contextos el seu s podria provocar ambigiiitats.

Per descriure I’esquema, farem servir els termes mLen i hLen per referir-nos, respectivament, a la mida en
octets del missatge mi de la sortida de la funci6 hash H. A més, el valor k representa la mida (també en octets)
del capitol de la clau RSA utilitzada.

La Figura 7.6 mostra I’esquema de xifratge de ’'RSA-OEAP. Com es pot apreciar, el primer pas de I’esquema
és construir el padding per al missatge M. Aix0 es fa concatenant quatre valors: 1Hash, el resultat d’aplicar
la funci6 hash a I’etiqueta L (1Hash = H(L)); PS, una cadena d’octets fixats a zero; un octet representant el
valor 1; 1 M, el missatge a xifrar. La longitud de la cadena PS és variable, i dependra de la mida del missatge i
de la sortida de la funci6 hash. De fet, es podria donar el cas que la cadena PS tingués longitud zero.

Aixi doncs,
DB = 1lHash || PS || 0x01 || M
En segon lloc, es genera una llavor aleatoria de mida hLen, representada com a seed a I’esquema.

En els segiients passos hi entren en joc, d’una banda, la funcié xor i, d’altra banda, la funcié de generaci6 de
mascara MGF triada. Utilitzant aquestes dues funcions es calculen els valors maskedDB i maskedSeed:

maskedDB = DB @& MGF(seed, k-hlLen-1)
maskedSeed = seed © MGF(DB, hLen)

i es calcula el valor EM com la concatenaci6 d’un octet de zeros amb maskedSeed i maskedDB:
EM = 0x00 || maskedSeed | maskedDB

Aquest valor EM t€ ara exactament k octets, i és el que es fara servir com a entrada de la funci6 de xifrat
de ’RSA que hem vist al capitol anterior. Noteu que fent servir I’esquema RSAES-OAEP per xifrar se
solucionen els problemes de I’RSA comentats anteriorment ja que, d’una banda, els valors a xifrar tenen ara
sempre k octets i, d’altra banda, el xifrat deixa de ser determinista amb la inclusi6 del valor aleatori seed.

Per desxifrar un valor C xifrat amb RSAES-OAEP, es procedeix a desfer el cami realitzat a I’hora de xifrar-lo:
en primer lloc, es desxifra el valor rebut fent servir la funcié de desxifrat de I’RSA vista al capitol anterior.
En segon lloc, assignarem el resultat del desxifrat a EM, i desfarem els passos realitzats a I’hora de xifrar fins
a obtenir el valor original del missatge M.

Exemple 7.14 Exemple de xifratge fent servir RSAES-OAEP

En aquest exemple farem servir RSAES-OAEP per xifrar un missatge amb una clau de 512 bits i fent
servir la funcié shal com a funci6 hash. La clau publica que farem servir és:

n = 121745231563782351101796726796023575630699986274537835886656686101963
66749040999892914856387609002413925126564321873531644179310315470260
085900075427092633

e = 65537

El missatge a xifrar sera:
message = 0x484f4c41l

Deixarem 1’etiqueta buida (L=¢ ) i farem servir com a llavor el valor:
seed = 0000000000000000000000000000000000051ead
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Aix{ doncs, la clau ptblica a utilitzar t€ 512 bits de manera que k = 64 octets. Alhora, la funci6 shal té
una sortida de 160 bits, pel que hlen = 20. El missatge a xifrar t¢ mida mLen = 4 octets. Per tant, la
mida de PS sera:

k-mLen-2hLen-2 = 64-4-2%20-2 = 18 octets.

Sabent la mida de PS, podem calcular el valor DB:

1Hash = H(¢’) = da39a3eeb5e6b4b0d3255bfef95601890afd80709
DB = 1Hash || PS || 0x01 || M = da39a3ee5e6b4b0d3255bfef95601890afd807090000
0000000000000000000000000000000001484f4c41

Ara, procedim a aplicar la funcié de generacié de mascara:

dbMask = MGF(seed, k-hlLen-1) = MGF(seed, 43) = e68e82475a8216e69b2ac31ab2
0b60a168c155da68b1e64c8972335£90ebd96d57905b0ffed49ae92b14f3f

maskedDB = DB @& dbMask =
da39a3eeb5e6b4b0d3255bfef95601890afd80709000...001484f4c41 &
e68e82475a8216e69b2ac31ab20b60a168c155da68b...9ae92b14£3f =
3cb721a904e95deba97£f7c£5276b7831c71952d368b1e64c8972335£90ebd96d5790
5b0ffe49afdafe037e

seedMask = MGF (maskedDB, hlLen) = MGF (maskedDB, 20) =
9e883239d0bc279884730611a7£f07b5e65£17474

maskedSeed = seed @ seedMask =
0000000000000000000000000000000000051ead ¢
9e883239d0bc279884730611a7f07b5e65f17474 =
9e883239d0bc279884730611a7f07b5e65f46ad9

Per tant, el valor que xifrarem amb la primitiva basica de xifratge RSA sera:

EM = 0x00 || maskedSeed || maskedDB = 009e883239d0bc279884730611a7f07b5e65f
46ad93cb721a904e95deba97f7c£5276b7831c71952d368b1e64c8972335£90ebd96
d57905b0ffe49afdafe037e

Per acabar, es procedeix a realitzar el xifratge. Com que tenim la clau publica expressada en enters en base

decimal, una alternativa per a realitzar el calcul és convertir préviament la representacié d’EM a base 10:

c = E(e’,,) (EM) = m® modn = 53621703820891685515791899885533450958741320241
39077634594003538315944764911270805494744162555266564406433789864671
246348638999851571397862373399515115506

Finalment, convertim de nou el resultat del xifratge a la representacié hexadecimal de k octets:
C = 6661be2c1357ba21cbc074362ae9e8e08898779e7df987d4ae2993e1e02ab051cf9f7
a109£fc3389c96779e6206c49e695da846efa3945ba0c9e43adaddcc2ff2

7.4.2 PKCS#5

La norma PKCS#5 proveeix recomanacions per a la implementacid de criptografia basada en contrasenyes.
En concret, la norma descriu funcions de derivacié de claus, esquemes de xifrat, esquemes d’autenticacié de
missatges i la sintaxi ASN.1 que identifica les diferents teécniques.

La versi6 2.0 de I’estandard PKCS#5 va ser republicada com a RFC 2898.

Sal criptografica i nimero d’iteracions
Avui en dia, I’Gs de contrasenyes és un metode molt freqiient per protegir accessos a sistemes o secrets. Les

contrasenyes escollides pels usuaris, perd, acostumen a no ser adequades per a ser utilitzades directament
com a claus d’esquemes criptografics segurs. D’una banda, solen ser massa curtes i, d’altra banda, poden ser
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susceptibles a atacs per diccionari.

L’expressi6 bits de sal prové de la idea que la sal altera el gust dels aliments, de la

mateixa manera que aquests bits modifiquen les contrasenyes.

L’ds d’una sal en criptografia basada en contrasenyes s’ha utilitzat tradicionalment per produir conjunts de
claus grans a partir d’una dnica contrasenya. La clau corresponent a una contrasenya se selecciona de dins
d’aquest conjunt de manera aleatoria a partir del valor de sal. Una clau individual se selecciona aplicant una
funcié de derivaci6 de claus (KDF per les seves sigles en angles, Key Derivation Function).

L’ds de bits de sal té, principalment, dos beneficis:

1. Es dificulta que un atacant pugui precalcular totes les claus corresponents a un diccionari de con-
trasenyes. Amb I’tis de n bits de sal, cada contrasenya té 2" possibles claus, pel que el cost de
precalcular-les augmenta considerablement.

2. S’aconsegueix que la probabilitat que la mateixa clau sigui seleccionada dues vegades sigui molt
baixa. Aix0 soluciona alguns dels problemes que apareixen quan es reutilitzen claus.

A més de fer servir uns bits de sal, una altra técnica que s’utilitza habitualment en criptografia basada en
contrasenyes €s incrementar deliberadament el temps de calcul necessari per calcular cada clau, de manera
que aquest increment no sigui significatiu per a un usuari que necessita calcular una clau pero si que ho
sigui per a un atacant que es troba fent una cerca exhaustiva. Aquest increment del temps de calcul es fa
augmentant el nimero d’iteracions que realitza la funcié de derivaci6 de clau. La norma PKCS#5 recomana
fer servir com a minim 1.000 iteracions. De totes maneres, moltes de les implementacions actuals ja superen
amb escreix aquest valor.

Exemple 7.15 Emmagatzemament de contrasenyes en sistemes basats en Unix

Els sistemes basats en Unix tradicionalment fan servir sal criptografica per emmagatzemar les contrasenyes
dels usuaris del sistema. Aix{, normalment les contrasenyes dels usuaris es troben emmagatzemades en el
segiient format:

$id$salt$hashed

on id és I’identificador de I’algorisme de hash utilitzat, salt és el valor de sal i hashed és el valor del
hash contrasenya aplicant la sal.

Per exemple, les segiients tres entrades serien valides per emmagatzemar la informacié necessaria per
validar un usuari que faci servir la contrasenya criptografia per entrar al sistema:

$6376YTAMSmbETXZY1 .D7qaIPbzKcQX8yBXuhwTr4D9u3vpctvU7XFcqPkUzgK3.z.93DTJV
6.zzoMf9GaoDIugnJuY99CC1

$6$86YTAM$qGO . v6FvNTz9 j4RKAXB5TMh 1t wEGhGPxvN1£ZiCkpNhBYv4B4MBOYmUkdFUKIR
IEB.Qfs2Gyqv2ohmxLtgN170

$1$86YTAM$VD8sYNaSgNCoEzF1£20hK.

Les dues primeres correspondrien a representacions de la mateixa contrasenya fent servir sha-512 com a
funci6 hash i dos valors de sal diferents. Es important notar com un petit canvi en el valor de sal (76YTAM
en comptes de 86YTAM) canvia radicalment el valor resultant.

En canvi la tercera entrada correspondria a I’emmagatzematge de la mateixa contrasenya amb la segona
sal, pero fent servir MD5. En aquest cas, podem veure com canviar la funcié de hash també fa variar el
resultat, encara que la contrasenya i la sal coincideixin.

Funcions de derivacié de clau
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Una funcid de derivacié de claus produeix una clau derivada a partir d’una clau base i
d’altres parametres.

Una funci6 de derivaci6 de claus basada en contrasenyes és un cas especific d’una funcié de derivacié de
claus on la clau base és la contrasenya i els altres parametres sén un valor de sal i un niimero d’iteracions.

La norma PKCS#5 defineix dues funcions de derivacié de claus basades en contrasenyes: PKKDFI i
PBKDF?2. La funcié PBKDF1 s’inclou només per mantenir la compatibilitat amb aplicacions ja existents i es
recomana I’ds de PBKDF?2 per a les noves aplicacions.

PKCS#12

L’estandard PKCS#12 especifica un format per emmagatzemar i transportar informacié sobre I’identitat de
persones, com ara claus privades, certificats i secrets, entre d’altres dades criptografiques.

Un dels usos més habituals d’aquest format és I’emmagatzemament d’una clau privada i del seu corresponent
certificat digital x.509 o bé per emmagatzemar tots els certificats d’una cadena de confiancga.

La versi6 1.1 de I’estandard PKCS#12 va ser republicada com a RFC 7292.

L’estandard suporta diferents modes de privacitat i integritat per a la transferéncia d’informacié personal. En
concret, I’estandard suporta quatre combinacions, dos modes de privacitat i dos d’integritat:

* Mode de privacitat de clau publica: la informacié personal s’empaqueta i es xifra amb una clau
publica de la plataforma de desti. Es poden recuperar les dades amb la clau privada corresponent.

* Mode de privacitat amb contrasenya: la informaci6 personal es xifra amb una clau simetrica derivada
del nom d’usuari i d’una contrasenya.

* Mode d’integritat amb clau ptblica: la integritat es garanteix amb una signatura digital sobre el
contingut, realitzada amb la clau privada de la plataforma d’origen. La signatura €s verificada a la
destinacid, fent servir la clau publica corresponent.

* Mode d’integritat amb contrasenya: la integritat s garanteix a través d’un Codi d’ Autenticacié de
Missatge (MAC) derivat d’una contrasenya.

Formats de representacié de dades

L’ ASN.1 (per les seves sigles en angles, Abstract Syntax Notation number One) €s un estandard que descriu
una notaci6 formal utilitzada per descriure dades en protocols de comunicacions. Aquesta notacié permet
representar dades de manera independent de les codificacions especifiques de cada maquina, del sistema
operatiu o del llenguatge de programaci6 utilitzat. Les normes PKCS fan servir aquest estandard per descriure
com emmagatzemar i transmetre claus i altres tipus de material criptografic.

Organitzacions || L”ASN.1 és un estandard conjunt de la ISO (International Organization for Standardi-
darrere 'ASN.1 || »4tion), 'IEC (International Electrotechnical Commission) i de I'ITU-T (International
Telecommunication Union Telecommunication Standardization Sector).

L’estandard permet definir tipus de dades i valors. Un tipus de dades és una categoria d’informaci6 (per
exemple, numerica o textual). Un valor és una instancia d’un tipus concret. La sintaxi ASN.1 defineix tres
categories de tipus de dades: tipus simples, que sOn atdmics; tipus estructurats, que tenen components; i
tipus etiquetats, que son derivats d’altres. Es pot assignar un nom als tipus i valors ASN.1, de manera que
aquest nom es pot fer servir per definir altres tipus i valors.

Aixi, per exemple, els enters (INTEGER), les cadenes de bits (BIT STRING) o el valor null (NULL) sén tipus
simples. En canvi, la seqiiencia (SEQUENCE), una col-lecci6 ordenada d’un o més valors d’altres tipus, i el
conjunt (SET), una col-lecci6 desordenada d’un o més valors d’altres tipus, son tipus estructurats.
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La notacié ASN.1 es complementa per 1’especificacié d’un conjunt d’algorismes anomenats regles de
codificacio (en anglés es coneixen com encoding rules) que determinen la representacié exacta de cada
missatge en octets. Tres de les families de regles de codificacié estandarditzades sén: Basic Encoding Rules
(BER), Packed Encoding Rules (PER) i XML Encoding Rules (XER).

Codificacions || De la mateixa manera que la codificaci6 DER ens ofereix una codificacié tnica

canoniques dins de BER, existeixen representacions canoniques de les regles PER (anomena-
des CANONICAL-PER) i XER (conegudes com a Canonical XML Encoding Rules o
CXER).

En criptografia sovint necessitem una representacié unica d’una certa dada. Els estandards de codificaci6
comentats ofereixen perd diverses maneres de codificar un mateix valor, pel que no sén adients per fer
servir en criptografia. Les regles de codificacié DER (de I’angles, Distinguished Encoding Rules) sén un
subconjunt de les regles BER que ofereixen una codificacié tnica a cada valor ASN.1. En concret, les
regles DER especifiquen, per a cada valor a codificar, quin dels possibles metodes de codificacié BER
s’ha d’utilitzar en aquell cas, assegurant aixi una codificacié Unica. Aixi doncs, codificar fent servir les
regles DER ens permet garantir que els processos criptografics que realitzem no es veuen alterats per I’ds de
diferents representacions d’una mateix valor.

Exemple 7.16 Exemple del resultat de codificar en BER i DER

Fent servir la codificacié BER, el valor boolea Cert pot ser codificat de 255 maneres diferents, que
corresponen als 255 valors diferents de zero que es poden representar amb un byte (28 — 1 = 255). La
sintaxi DER ens indica quina d’aquestes 255 maneres hem de triar per tal de codificar el boolea Cert.

Aixi, molts estandards relacionats amb la criptografia fan servir DER per codificar dades. Per exemple, les
dades que s6n signades dels certificats X.509 que hem vist a la Secci6 7.3.1 o les de les llistes de revocaci6
de certificats descrites a la Secci6 7.3.2 es codifiquen en DER. Aix0 permet que les comprovacions de les
signatures digitals retornin els resultats esperats.

A vegades per0, fer servir fitxers binaris per transmetre contingut criptografic no és el més adient. PEM és
una codificaci6 printable que fa servir 64 caracters que s6n universalment representables: les lletres de la a a
la z en mindscula i majiscula, els digits del 0 al 9 i els simbols + i /. Aix{, cada caracter permet codificar 6
bits d’informacié (2° = 64). Addicionalment, el caracter = es fa servir com a caracter especial per a indicar
com tractar el padding de cada missatge. El text resultant d’una codificacié PEM consisteix en un conjunt de
linies de 64 caracters, exceptuant I’dltima linia que pot contenir un nombre de caracters menor.

L'origen del El protocol Privacy-enhanced Electronic Mail (PEM) va ser el primer estandard en
format PEM proposar 1’tis d’una codificacié en base 64 amb caracters printables i linies curtes. Tot
i que el protocol va caure en desus, la codificacié encara es fa servir per transferir
material criptografic de manera printable. Actualment, es fa servir el nom fitxer PEM
per indicar fitxers amb material criptografic codificats en base 64 (inspirats amb la
codificacio original de I’'RFC PEM), perd que van més enlla del que s’especifica a
I’estandard. Per exemple, I’is de les etiquetes --BEGIN CERTIFICATE-- i --END
CERTIFICATE-- no es troba especificada a I’estandard.

Aix{ doncs, el sistema de codificacié PEM ens permet representar una cadena d’octets qualsevol en un
conjunt de caracters printables representats en linies curtes, la majoria de les quals tenen la mateixa mida. La
cadena de caracters representant el material criptografic codificat en base 64 es troba emmarcada dins d’unes
etiquetes que n’indiquen ’inici i el final. Per exemple, un certificat digital representat en PEM es trobaria
emmarcat entre les etiquetes --BEGIN CERTIFICATE--i--END CERTIFICATE--:

--BEGIN CERTIFICATE--

MIIBOTCCATqgAwIBAgIQUq+2SdEKLr5K6xqjSEvRsDANBgkqhkiGOwOBAQUFADAU
MRIWEAYDVQQDEw1sb2NhbGhvc3QwHhcNMTIwODAOMDAOOTEyWhcNMTcwODAOMDAW
MDAwW j AUMRIwEAYDVQQDEw1sb2NhbGhvc3QugZ8wDQYJKoZThvcNAQEBBQADEYOA
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[...]
Y2nd44bYEpmaBy7XJ5UIGEkuD3VIxT2S+2bCwkRR+9/+7vggR2q717YEktM2mFBI
yqOMOroAw+5cdc06c/B7UimwKF czsyhi9LUIr3rXI42FdXBHWw==

--END CERTIFICATE--

Els problemes de la PKI en desplegaments reals

Tot i que la PKI semblava que hauria de resoldre molts dels problemes de seguretat als quals ens enfrontem,
el seu desplegament no ha arribat a complir amb les expectatives que s’hi havien dipositat: avui en dia les
PKIs no sén tant populars com es creia que arribarien a ser i les garanties de seguretat que ofereixen les
infraestructures de clau publica no sempre estan a 1’alcada del que, a nivell teoric, haurien d’oferir.

Aixi, per exemple, I'is del protocol HTTPS es troba molt estés avui en dia. L’'HTTPS fa servir una
infraestructura de clau publica per autenticar els servidors web, normalment a través del seu domini. A més,
la clau publica del certificat del servidor es fa servir per establir un canal de comunicacié segur entre el
servidor i el client.

Qui controla Un estudi publicat ’any 2013 sobre I’estat de 1’ecosistema HTTPS reporta que només

les CAs de un 20% dels certificats d’autoritats de certificacié de confianca dels principals nave-

confianca dels . > :

navegadors? gadors corresponen a CAs comercials. La resta d’autoritats es troben controlades per
empreses, institucions financeres, institucions religioses, museus i biblioteques.

Per tal de poder validar els certificats dels servidors, els navegadors tenen una llista d’autoritats de certificacié
de confianga en les quals confien. Aquesta llista acostuma a tenir uns pocs centenars de certificats arrel, el
que porta a confiar en uns pocs milers de certificats de CA. Depenent de la configuraci6 del sistema, la llista
pot provenir del sistema operatiu o del navegador, i hi ha diferéncies notables en les llistes de certificats de
les diferents configuracions.

Els sectors més critics amb aquest model defensen que un dels principals problemes que hi ha és que qualsevol
CA de confianca té el poder de signar qualsevol domini. Certament, amb el model actual, una CA d’algun
pais remot que tingui el seu certificat arrel en el navegador d’un usuari gaudira de la mateixa confianga que
una CA espanyola a I’hora d’emetre un certificat per a una pagina web amb un domini del govern espanyol.
Perd no només aixo, les CAs arrel tenen també el poder de crear autoritats de certificacié intermedies que,
excepte en entorns molt especifics, també tindran el poder d’emetre certificats per a qualsevol domini. En
aquesta linia, en els tltims anys hi ha hagut diversos incidents de seguretat relacionats amb la PKI de la Web.

Al 2012, I’autoritat de certificacié Trustwave (en la qual confien els principals navegadors) va emetre un
certificat de CA i va incloure la clau privada corresponent dins d’un dispositiu hardware segur, que va llogar
auna empresa amb 1’objectiu que aquesta pogués espiar les connexions xifrades amb TLS dels seus empleats.
La propia CA va reconeixer que havia dut a terme aquesta practica. Aquest incident va alertar d’una practica
que es rumoreja que €s habitual entre les autoritats de certificacid, i que posa en perill la seguretat d’Internet.

Google ha detectat en nombroses ocasions certificats fraudulents afectant a algun dels seus dominis. Aixi, al
2014 va denunciar el National Informatics Centre (NIC) de 1'India (una autoritat subordinada de 1’Indian
Controller of Certifying Authorities) estava emetent certificats no autoritzats que afectaven alguns dels seus
dominis, algun domini de Yahoo i altres dominis. Al desembre de 2013, Google ja havia detectat certificats
fraudulents per als seus dominis emesos per I’entitat de certificacié francesa ANSSI i, uns mesos abans, al
gener del mateix any, per 1’entitat turca Tiirktrust.

Google és capac de detectar aquests atacs gracies a varies mesures que ha anat desplegant amb el temps.
Aixi, per exemple, el navegador Chrome porta incorporat pinning de certificats per a alguns dels dominis de
google.

El pinning és un procediment pel qual s’associa un host a una identitat criptografica (una o varies claus
publiques o certificats en una cadena de certificats X.509). La validaci6 d’un pin consisteix a comprovar que
almenys una de les claus publiques especificades es troba en la cadena de certificaci6 del host.
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Exemple 7.17 Pinning de certificats en el navegador Chrome

El navegador Chrome inclou un conjunt de claus publiques per a dominis de Google, fet que permet als
seus usuaris detectar, per exemple, quan es troben davant d’un certificat de gmail que aparenta ser valid (es
troba dins d’una cadena de certificacié valida atenent als certificats de confianca del navegador) perd que
no inclou cap de les claus publiques especificades, com es donaria en els casos comentats anteriorment.

Aixi, per exemple, suposem una instancia del navegador Chrome que té quatre certificats a la seva llista de
confianca, com es mostra a la figura segiient. Si no hi ha més restriccions, qualsevol certificat signat amb
la clau privada corresponent a algun dels certificats de la llista confianga (o alguna autoritat de certificacié
subordinada) sera considerat com a valid (si totes les comprovacions esmentades a la Secci 7.2.5 s6n
satisfactories).

Ara bé, si s’afegeix un pin que vinculi el certificat de la CA subordinada; ; amb els dominis google.com i
gmail.com, caldra que la cadena de certificacid dels certificats d’aquests dominis passi pel certificat amb
el pin per donar el certificat per valid. Aixi, els certificats de gmail.com i google.com emesos per la CA
subordinada; | s6n valids, mentre que el certificat de gmail.com emes per la CA subordinadas | no ho sera.
En canvi, un certificat d’un altre domini que no tingui cap pin (com ara uoc.edu) emes per la mateixa CA
subordinaday 1, sera considerat com a valid.

Noteu que I’existéncia d’un pin no elimina el requeriment de validar la cadena de certificacid, és a dir, el
pin afegeix comprovacions a 1’hora de validar un certificat, perd no n’elimina.

Cert CA, Cert CA, Cert CA, Cert CA,

google.com
Cert CA ﬂgma"-com Cert CA
11

subordinad subordinada, ;

Cert Cert Cert Cert
gmail.com google.com gmail.com uoc.edu

Altres dels problemes que sorgeixen amb els desplegaments practics de les infraestructures de clau publica i
que no estan limitats a I’https sén fruit dels conflictes d’interes entre els diferents actors que participen de la
PKI, la falta d’incentius per a segons quines accions critiques per al bon funcionament de la infraestructura,
la confusié que generen certes especificacions o la falta d’usabilitat. Aixi, per exemple, si analitzem les
alternatives de consulta de I’estat de revocacié d’un certificat, trobem que el protocol OCSP comporta
dificultats alhora d’interpretar les seves respostes (com es comentava a la Secci6 7.3.3), mentre que 1’emissio
de CRLs és un procediment costds per a la CA per al qual no en té un incentiu directe. Pel que fa la usabilitat,
potser un dels exemples més clars de sistemes que no arriben a ser utilitzats en tot el seu potencial és el DNI
electronic: mentre que gairebé tota la ciutadania espanyola disposa de certificats digitals en el seu document
d’identitat, la necessitat de tenir un dipositiu hardware capac de llegir el DNI i la dificultat d’instal-lar-lo,
configurar-lo i fer-lo servir en un equip domestic, fan que en molts casos aquests certificats no es facin servir.
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Resum

En aquest capitol, s’ha presentat la infraestructura de clau publica, tot repassant les entitats que hi participen
i el seu paper dins de la infraestructura, les fases per les quals passa un certificat digital des de la seva creaci6
fins a la finalitzaci6 del seu s i els estandards més importants que detallen diferents processos de la PKI.
Finalment, s’han repassat els formats més habituals per codificar informacio criptografica i s’ha discutit
sobre els problemes que presenten els deplegaments reals de les infraestructures de clau piblica, més enlla
dels conceptes teorics detallats als estandards.
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Solucions dels exercicis

Exercici 7.1:

aid: Per tal de garantir el no-repudi, la clau privada no pot ser coneguda per ningt, a part del subscriptor
del certificat. Per tant, caldra que les claus s’hagin generat o bé pel propi subscriptor, o bé en un dispositiu
hardware segur.

Exercici 7.2:

c: Les afirmacions a i b sén falses, ja que tant ’OCSP com les CRLs ens permeten comprovar ’estat de
revocacié d’un certificat digital, perd no la seva validesa (que es troba explicitada en el propi certificat). Les
respostes d i e també sén falses, ja que podem obtenir també aquestes respostes en altres situacions, per
exemple, preguntant per certificats que no hagin estat mai emesos.

Exercici 7.3:

El resultat de la validacio del certificat és:

Resultat de processar 1’extensi

TRUE FALSE

L aplicaci6 reconeix I’extensié TRUE FALSE
Laplicaci6 no reconeix I’extensio FALSE FALSE

Exercici 7.4:

El resultat de la validacio del certificat és:

Resultat de processar 1’extensi6

TRUE FALSE

L aplicaci6 reconeix I’extensié TRUE FALSE
L’aplicaci6 no reconeix 1’extensié TRUE TRUE

Exercici 7.5:

Cap dels segells de temps proposats ens permetria demostrar que les signatures han estat recollides en el
periode de temps indicat. El segell de temps a demostraria que les signatures han estat creades abans de
I’inici del periode establert. El segell de temps b no podria garantir que no s’han creat signatures ni abans ni
després del periode de temps establert. El segell de temps ¢ no garantiria que les signatures no han estat
creades abans de I'inici del periode. Un segell de temps només permet garantir que una dada existeix en un
instant de temps concret.
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8.1

En capitols anteriors s’ha vist com la criptografia de clau publica permetia solucionar alguns dels problemes
presentats per la criptografia simetrica (com ara la distribuci6 de claus) i alhora oferia propietats addicionals
més enlla del xifratge (com ara el no-repudi a través de signatures digitals). Ara bé, la criptografia de clau
publica requereix de recursos computacionals més elevats que la criptografia simetrica, cosa que en dificulta
la seva execucid en dispositius amb poc recursos i en limita el nivell de seguretat com a conseqiiencia del
compromis amb el temps d’execucid. De fet, en el cas del xifratge, sovint es combina 1’ds de la criptografia
de clau publica amb criptografia simétrica a través de la tecnica del sobre digital, cosa que permet xifrar
continguts de gran mida amb claus ptibliques més petites.

En aquest capitol es presenta la criptografia de corbes el-liptiques. Entre els seus principals avantatges hi
trobem que la criptografia de corbes el-liptiques ofereix el mateix nivell de seguretat que la criptografia
de clau publica tradicional perd amb claus més petites. D’aquesta manera, s’aconsegueix també que les
operacions criptografiques siguin més rapides d’executar i requereixin de menys recursos computacionals,
fent-les possibles en dispositius amb recursos limitats. A més, la criptografia de corbes el-liptiques permet la
definici6 de pairings, amb els quals es poden crear construccions criptografiques amb propietats addicionals
a les que ens oferia la criptografia de clau publica basica.

Aixi doncs, en primer lloc aquest capitol detalla els beneficis de la criptografia de corbes el-liptiques. A
continuacid, es presenten les corbes el-liptiques, la seva aritmetica, i es descriu com es fan servir les corbes
el-liptiques en criptografia. Després s’explica el problema del logaritme discret sobre corbes el-liptiques i es
detallen els algorismes criptografics més populars basats en aquest problema.

L'origen de la criptografia de corbes el-liptiques

Com hem vist, la criptografia de clau puiblica es va donar a coneixer a la decada dels 70, amb el protocol
d’intercanvi de claus de Diffie-Hellman, que permet a dues parts establir un secret compartit sense necessitat
d’haver-se intercanviat cap informacié preéviament. La seguretat del protocol de Diffie-Hellman es basa en la
dificultat de calcular el logaritme discret en el grup dels enters modul un primer. Poc després, Rivest, Shamir,
1 Adleman van proposar ’'RSA, un sistema de xifratge de clau piblica que es basa en un altre problema,
la factoritzaci6 d’enters. Aixi doncs, aquests primers algorismes de clau piblica es basaven en problemes
computacionalment dificils de resoldre que es definien sobre els enters o sobre grups d’enters modul un
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primer.

L’ds de corbes el-liptiques en el disseny de criptosistemes de clau ptiblica va ser proposat per primera vegada
I’any 1985 per Neal Koblitz i Victor Miller, de manera independent. Ambdds van proposar fer servir el
grup de punts d’una corba el-liptica definida sobre un cos finit en criptosistemes basats en el problema del
logaritme discret, donant llum aixi a la criptografia de corbes el-liptiques (o ECC, de les seves sigles en
angles, Elliptic Curve Cryptography).

Més d’una decada després, els primers estandards que descrivien algorismes de criptografia de corbes
el-liptiques i parametres per a les corbes sobre les quals construir-los es van comencar a publicar.

Primers El primer estandard publicat sobre corbes el-liptiques va ser ’ANSI X9.62: The Elliptic
estandards Curve Digital Signature Algorithm (ECDSA) I’any 1999. Un any després, al 2000, el
dECC NIST també incloia 'ECDSA a1’ara obsolet NIST FIPS PUB 186-2: Digital Signature
Standard (DSS).

L’adopci6 de la criptografia de corbes el-liptiques no ha estat, pero, lliure de polemica. L algorisme
Dual_EC_DRBG (Dual Elliptic Curve Deterministic Random Bit Generator) va ser estandarditzat pel
NIST I’any 2006, juntament amb uns altres tres algorismes, per a la generaci6é de nimeros pseudoaleatoris.
L’estandard explicitava no només I’algorisme de generacié de nimeros pseudoaleatoris, sind també la corba
el-liptica concreta i els punts de la corba a fer servir per 1’algorisme. Altres organismes d’estandarditzacié
també van incloure aquests mateixos parametres als seus estandards. Ja durant el procés d’estandarditzacio,
alguns investigadors van comengar a mostrar preocupacions per les possibles vulnerabilitats de I’algorisme.
En particular, els investigadors se’n van adonar que el coneixement d’un cert secret podia permetre recuperar
I’estat intern del generador a partir de només 256 bits de la sortida. A més, també van notar que era possible
generar els parametres de 1’algorisme de manera que qui ho fes conegués aquest secret. Dit d’una altra
manera, els investigadors van advertir que I’algorisme podia incorporar una porta del darrere (o backdoor).
Tot i aix{, diverses implementacions de llibreries criptografiques comercials van incorporar 1’algorisme amb
els parametres recomanats pel NIST i, en alguns casos, fins i tot van configurar-lo com a algorisme per defecte.
Anys després, les sospites dels investigadors van quedar confirmades quan les revelacions d’Edward Snowden
apuntaven que I’NSA havia introduit intencionadament una porta del darrere a 1’algorisme Dual EC_DRBG.
Aquests fets van precipitar que 1’algorisme fos retirat de I’estandard del NIST 1’any 2014.

La historia del || Per a coneixer amb més detalls els fets que van portar a I’estandarditzacid de I’algorisme
Dual ECDRBG || Dual_EC_DRBG i el paper que les diferents institucions i investigadors hi van jugar,
us recomanem la lectura de 1’article Dual EC: A standardized back door, de Daniel
Bernstein, Tanja Lange i Ruben Niederhagen.

Nombres En angles es fa servir I’expressio nothing-up-my-sleeve numbers (literalment, nombres
"O’h'fg'”p' sense res tret de la maniga) per designar els nombres que es troben lliures de sospita de
m{;'a;e ve tenir propietats ocultes. Aquests nombres s’utilitzen com a constants en els algorismes

criptografics, per exemple, per a la inicialitzacié o la definicié de parametres, amb 1’ob-
jectiu d’assegurar que no han estat triats intencionadament per a debilitar I’algorisme o
incorporar-hi portes del darrere. Per aconseguir-ho, els nombres se seleccionen usant
fonts conegudes que deixin poc marge de maniobra per a manipular I’algorisme, com
ara els primers digits decimals de pi.

Tot i aquests daltabaixos amb les agencies d’estandarditzacio, la criptografia de corbes el-liptiques s’ha anat
fent lloc en la societat, oferint esquemes de signatura digital, de xifratge hibrid, d’intercanvi de claus, i de
generacié de nimeros pseudoaleatoris, tots ells basats en el problema del logaritme discret sobre corbes
el-liptiques.

Actualment, la criptografia de corbes el-liptiques es fa servir ampliament en protocols com ara I’'IPsec o
el TLS. L’empresa americana F5 (especialitzada en xarxes de lliurament d’aplicacions, gesti6 del nivol i
seguretat a la xarxa) publica informes anuals sobre 1’tis que se n’esta fent del protocol TLS a Internet. El seu
informe de 2019 (The 2019 TLS Telemetry report) reporta que del milié de pagines web millor situades al
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ranquing Alexa, prop d’un 20% estan fent servir claus basades en corbes el-liptiques. En concret, un 18.23%
fan servir una clau de 256 bits sobre una corba el-liptica. Tot i aix{i, encara predomina 1’ds de I’'RSA (un
73.57% de les pagines fan servir claus RSA de 2048 bits).

La criptografia de corbes el-liptiques també s’ha popularitzat per ser utilitzada en esquemes de signatura
digital en algunes criptomonedes basades en cadena de blocs (blockchain). Aixi, per exemple, Bitcoin fa
servir ECDSA (Elliptic Curve Digital Signature Algorithm) com a algorisme de signatura; i Ethereum 2.0 fa
servir signatures BLS (Boneh—Lynn—Shacham).

Beneficis de la criptografia de corbes el-liptiques

El principal avantatge de la criptografia de corbes el-liptiques és que utilitza claus més petites per arribar
als mateixos nivells de seguretat que els algorismes de criptografia de clau publica tradicionals. Aquesta
disminucié en la mida de la clau comporta una millora en la velocitat d’execucié d’algunes de les primitives
basiques (per exemple, en la generacié de la clau) i, alhora, un estalvi de recursos, de manera que es pot
utilitzar en dispositius amb recursos limitats.

El nivell de seguretat d’un algorisme és una mesura creada per comparar la seguretat que ofereixen diferents
algorismes criptografics quan es fan servir amb diverses mides de clau.

El nivell de seguretat d’un algorisme és n quan el millor atac conegut contra 1’algorisme
requereix 2" passos. El nivell de seguretat d’un algorisme també es coneix com a la mida
efectiva de la clau i, en conseqiiencia, és habitual veure’l expressat en bits.

La Taula 8.1 detalla el nivell de seguretat ofert per diferents algorismes criptografics en funcié de la mida de
la clau utilitzada. Tant el nivell de seguretat com les mides de les claus estan expressades en bits. La mida de
la clau correspon a la mida del modul per als algorismes basats en el problema de la factoritzacié d’enters; a
la mida de la clau publica per als algorismes basats en el logaritme discret; i a I’ordre del punt base per als
algorismes basats en corbes el-liptiques.

Aixi, per exemple, I’AES amb una mida de clau de 128 bits ofereix un nivell de seguretat de 128 bits (en
general, en els algorismes simetrics la mida de la clau coincideix amb el nivell de seguretat). Per aconseguir
aquest mateix nivell de seguretat fent servir RSA, caldra utilitzar un modul de 3072 bits. En canvi, el mateix
nivell de seguretat requereix només d’una clau de 256 bits per a ’ECDSA.

Taula 8.1: Comparativa del nivell de seguretat proporcionat per diferents mides de clau (en bits)
depenent de 1’algorisme criptografic.

Algorismes criptografics
Clau simetrica  Factoritzacié d’enters Logaritme discret Corbes el liptiques
Nivell de seguretat AES, 3DES RSA DSA, DH, ElGamal ECDSA, ECDH
80 80 1024 1024 160
112 112 2048 2048 224
128 128 3072 3072 256
192 192 7680 7680 384
256 256 15360 15360 512

Es interessant destacar no només la diferéncia en la mida de la clau, sin6 també en el creixement d’aquesta
mida en funci6 del nivell de seguretat. El creixement de la mida de la clau és molt més rapid per a algorismes
basats en la factoritzacié d’enters i el logaritme discret que en algorismes basats en corbes el-liptiques,
de manera que les diferéncies en les mides de clau entre aquests grups d’algorismes s’incrementen amb
I’augment del nivell de seguretat.

També cal remarcar que el nivell de seguretat d’un algorisme criptografic es calcula en base a la complexitat
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del millor algorisme que es coneix en un moment donat per a trencar-lo. Per tant, els nivells de seguretat
detallats en aquesta taula reflecteixen el coneixement que es té actualment sobre possibles tecniques de
factoritzaci6 i/o calcul del logaritme discret. Amb els avengos en la investigacié criptografica es poden
descobrir noves maneres d’atacar aquests problemes, que facin variar aquests nivells de seguretat.

El cost de bullir || La definicié que acabem de proporcionar del nivell de seguretat d’un algorisme cripto-
Clielie grafic és poc intuitiva, en tant que és dificil valorar I’esfor¢ necessari per trencar un

criptosistema d’un determinat nivell de seguretat.

Arjen K. Lenstra i altres van proposar fer servir com a mesura més informal de la
seguretat d’un algorisme la quantitat d’aigua que s’aconseguiria fer bullir amb 1’energia
necessaria per trencar 1’algorisme. Aixi, I’energia necessaria per a trencar una clau
RSA de 242 bits és I’equivalent a la necessaria per a fer bullir I’aigua que hi cap en una
cullereta de cafe. Trencar ’RSA de 745 bits és I’equivalent a fer bullir ’aigua d’una
piscina, i per trencar ’'RSA de 2380 bits caldria tanta energia com la necessaria per fer
bullir tota I’aigua del planeta Terra!

Tot i aix0, I’Us de la criptografia de corbes el-liptiques té també alguns inconvenients en relacié als algorismes
de clau publica basats en els problemes tradicionals. D una banda, certs aspectes legals poden dificultar-ne
la seva adopci6. Algunes empreses tenen patentats diferents aspectes de la criptografia de corbes el-liptiques,
cosa que pot dificultar-ne el seu desplegament. D’altra banda, el fet que siguin algorismes més recents fa
que els estandards estiguin menys desenvolupats, i també genera dubtes sobre possibles vulnerabilitats no
conegudes. Aixi, per exemple, encara hi ha poca recerca en aspectes com ara els atacs de canal lateral.
Finalment, la complexitat de les matematiques rere de les corbes el-liptiques també en dificulta la seva
comprensio i accessibilitat, cosa que pot afectar a la seguretat de les implementacions.

Corbes el liptiques

La criptografia de corbes el-liptiques proporciona algorismes de clau publica basats en 1’estructura algebraica
de les corbes el-liptiques definides sobre cossos finits.

Definicié 8.1 La corba el'liptica E/Z, (amb p > 3) és el conjunt de tots els parells (x,y) € Z,, tals
que:
VY =x+ax+b modp

juntament amb un punt imaginari a I'infinit &, amb a,b € Z, i A = —16(4a® +27b%) #0 mod p.

L’expressi6 que defineix la corba el-liptica tal com 1’acabem d’exposar es coneix com la forma curta de
Weierstrass.

El valor A correspon al discriminant de la corba. Geometricament, la condicié que el discriminant sigui
diferent de zero assegura que la corba no té cap vertex ni es creua amb si mateixa, és a dir, no té cap punt que
tingui dues o més rectes tangents. Aixo faria que la corba no fos adequada per al seu us en els algorismes
criptografics que descriurem a continuacio.

Exemple 8.1 Exemple de punts sobre una corba el-liptica

La corba el-liptica E/Z1; : y* = x> —5x+5 té 17 elements:

[67 (0’4)7(077)’ (1’ 1)’ (1’ 10)’ (2’5)’ (2’6)’ (4’4)’ (477>7 (672')7 (679)7(774)7(777)7
(8,2),(8,9),(10,3),(10,8)]

Podem comprovar que aquests punts efectivament pertanyen a la corba verificant que compleixen I’equacid
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que la defineix. Aixi, per exemple, per al punt (0,4), tenim que:

y2:x3—5x+5 mod 11
42=0°—0x+5 modll
16=5 modll

També podem verificar que la corba té discriminant diferent de zero:

—16(4a’ +27b*) mod p = —16(4(—5)*+27(5)>) mod11=5#0 mod 11

I Exercici 8.1 Calculeu tots els punts de la corba el-liptica E /Zs : y* = x> —4x + 1.

En criptografia es fan servir principalment corbes el-liptiques sobre cossos finits, tal com les acabem de
definir. Ara bé, la representacié geometrica de les corbes sobre els reals ens permet obtenir una visualitzacid
més intel-ligible d’aquestes. Aixi, en els propers paragrafs presentarem les corbes el-liptiques sobre els reals,
per tal d’apropar-nos a la seva descripcio i les seves propietats.

Corbes el-liptiques sobre els reals

Les figures segiients mostren tres exemples de corbes el-liptiques definides sobre els nombres reals, és a dir,
corbes de la forma y?> = x> +ax+b on (x,y) € R:

Figura 8.1: Exemples de corbes el-liptiques sobre R.

y?=x3-5x+5 y2=x3+3x+5 . y?=x>-5x+4
4 4 3
2
2 2
1
0 0+ 0
-1
-2 -2
-2
-4 -4 -3
-4

Com podem observar, les corbes son simetriques respecte a I’eix de les abscisses. Aixo és aix{ ja que y és el
resultat d’una arrel quadrada, de manera que per cada valor d’x avaluat, obtindrem dos valors per a y, que
correspondran al valor positiu i al negatiu de I’arrel (sempre que aquesta sigui diferent de 0).

D’altra banda, les corbes de la figura anterior no es creuen amb si mateixes ni tenen cap vertex, ja que
el discriminant de totes elles és diferent de zero. En canvi, la corba de la Figura 8.2 té discriminant zero
(a=—3,b =21, per tant, A = 4(—3)3 4+27(2)? = 0) i es creua amb si mateixa en el punt (1,0):

La criptografia de corbes el-liptiques treballa sobre un grup. Per tant, a més dels punts de la corba, que seran
els elements d’aquest grup, necessitem definir una operacié de grup.

Tal com s’ha presentat al capitol de Fonaments matematics, un grup és una estructura

algebraica en que I’operacié definida compleix la propietat associativa i, a més, el
conjunt sobre el qual esta definida 1’operacié conté I’element neutre i I’element invers
d’aquesta operacio.
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Figura 8.2: Exemple de corba el-liptica amb discriminant zero.

y?=x3-3x+2

Siguin P; = (x1,y1) i P» = (x2,y2) dos punts sobre una corba el-liptica, definirem una operacié suma de la
manera segiient.

Si els dos punts s6n diferents (és a dir, P; # P»), per calcular el punt resultant de la suma, S = P + P,
tragarem la recta entre Py i P»; trobarem el tercer punt d’interseccid S’ d’aquesta recta amb la corba el liptica;
i buscarem el punt simetric d’S’ respecte a I’eix de les x, S. Aquest punt simetric S sera el resultat de la suma.

La Figura 8.3 mostra un exemple d’una suma de dos punts diferents, P; i P». La linia blava correspon a la
recta que passa pels dos punts. El tercer punt d’intersecci6 de la recta amb la corba el liptica és el punt §’. La
linia taronja és una recta vertical que passa pel punt 8, i que ens permet calcular el punt simetric S respecte a
I’eix de les x. Aquest punt simetric S és el resultat de la suma Py + P».

Figura 8.3: Suma de dos punts diferents.

y?=x3-5x+5

Si els dos punts s6n iguals (és a dir, P| = P»), per calcular el punt suma, S = P; + P;, caldra fer una petita
modificacié al procediment: la linia a tracar en el primer pas del procediment sera la recta tangent a la corba
el-liptica en el punt P;. Després, es procedeix analogament a 1’operacié de suma de punts diferents: es
troba el punt d’interseccié S’ de la recta tangent amb la corba el liptica i, de nou, es busca el punt simétric S
respecte a I’eix de les x.

La Figura 8.4 mostra un exemple d’una suma d’un punt P; amb ell mateix. La linia blava correspon a la
recta tangent a la corba el-liptica en el punt P;. El punt d’interseccié de la recta amb la corba és el punt .
De nou, la linia taronja és una recta vertical que passa pel punt S’ i que permet calcular el punt simétric S,
que és el resultat de la suma Py 4 P;.

El meétode que acabem de descriure per a sumar punts d’una corba és coneix amb el nom de metode de la
corda i la tangent.

Ja tenim doncs el conjunt d’elements del grup (els punts de la corba) i una operacié de grup (la suma que
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Figura 8.4: Suma d’un punt amb ell mateix.

y?=x3-5x+5

acabem de definir). Per tal d’acabar de definir el grup, caldra disposar d’un element neutre respecte a
I’operaci6 suma, €s a dir, un element tal que:

P+0=pP

Doncs bé, aquest element neutre és precisament el punt imaginari a ’infinit & que afegiem com a element
de la corba en la definicid de I’inici del capitol. Podem imaginar aquest punt com a un punt situat a I’infinit
als finals de I’eix de les y. Aquest element és necessari, ja que no hi ha cap altre punt sobre la corba que
compleixi que sumat a un altre punt P; obtinguem com a resultat el mateix P;.

Podem fer servir la mateixa estrategia que hem descrit anteriorment per sumar un punt P, amb I’element &,
i comprovar com efectivament el resultat és el mateix Py. Aixi, per calcular S = P; + &, en primer lloc es
traga una recta entre el punt P; i &. Aquesta recta sera la recta vertical que passi pel punt P; (en I’exemple
de la Figura 8.5, correspon a la linia blava). A continuacid, es troba el segon punt d’interseccié S’ d’aquesta
recta amb la corba el-liptica. Finalment, es busca el punt simétric d’S’ respecte a I’eix de les x. Aquest punt
simetric S sera el resultat de la suma, i sera precisament el mateix punt P.

Figura 8.5: Suma d’un punt amb 1’element neutre &.

y2=x3-5x+5

En un grup cal que els elements tinguin inversos. Una vegada tenim el punt neutre definit, podem definir
I’invers additiu de qualsevol punt P; de la corba com I’element —P; tal que:

P+ (—Pl) =0
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Donat un punt P; = (x1,y1), el seu invers additiu —P; és simplement (x|, —y; ). Efectivament, si sumem P i
— Py fent servir I’operacié suma que hem definit anteriorment, obtenim com a resultat el punt a I’infinit &.

Figura 8.6: L’invers d’un punt.

y2=x3-5x+5

Aix0 fa que calcular I’invers d’un punt a la corba sigui molt eficient, ja que per a un punt P; = (x1,y1), el seu
invers additiu —P; és simplement (x1,—y).

Semantica En aquest capitol fem servir els termes suma, neutre i invers additiu (o simplement
invers) per a referir-nos a I’operacié que definim sobre els punts de la corba el-liptica,
I’element tal que sumat a un punt dona el mateix punt, i el punt tal que sumat a un altre
punt dona I’element neutre. Aquests termes sén, perd, una mica arbitraris. Podriem
haver utilitzat algun altre nom per a descriure I’operacié (per exemple, multiplicacid) i
altres termes com ara element identitat i element negatiu per referir-nos a 1’element
neutre i a 'invers d’un punt.

Per tltim, per a tenir estructura de grup I’operacié suma ha de ser associativa, és a dir, donats tres punts Py,
P, i P; € E, aquests han de complir que:

(Pi+P)+Ps=P +(P+P)

La demostraci6 d’aquesta propietat queda fora de 1’abast d’aquest document, perd en veurem un exemple.

Exemple 8.2 Exemple de propietat associativa de la suma

Donats tres punts P, P, i P; € E/R: y2 = x3 — 5x+35, calcularem el resultat de la suma P, + P> + P;
executant les sumes entre dos punts en ordres diferents, i comprovarem que el resultat és el mateix.

y?=x3-5x+5

P>
Py
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Les dues imatges segiients mostren graficament la suma dels tres punts. A la imatge de I’esquerra s’efectua
la suma (P + P») + P3; a la imatge de la dreta es calcula P + (P, + P3).

y2=x3-5x+5 y2=x3-5x+5

(Pr+P2) + Py Py + (P, +P3)
1 2 3

Per a calcular (P, + P,) + P; (imatge de I’esquerra) se suma primer P; + P> (la linia blava mostra la
recta entre els dos punts i la linia taronja el punt simetric al tercer punt d’interseccié amb la corba). A
continuaci6 se suma el resultat amb P5: la linia verda mostra la recta entre els dos punts a sumar i la linia
violeta el punt simetric al tercer punt d’interseccié amb la corba, que €s el resultat de la suma dels tres
punts.

Analogament, per calcular P; + (P, + P;) (imatge de la dreta) se suma P, + P; (linies blava i taronja) i al
resultat se 1i suma P; (linies verda i violeta).

En efecte, el resultat d’ambdues operacions és el mateix punt.

Aix{ doncs, els punts sobre una corba el-liptica (juntament amb el punt a I’infinit) i I’operaci6é suma que
acabem de definir (amb el punt a I’infinit com a element neutre que permet definir els inversos dels elements)
formen un grup. Ara bé, per tal que aquest grup pugui ser usat en criptografia, caldra deixar enrere la
representacié sobre els reals i tornar als cossos finits.

Corbes el-liptiques sobre cossos finits

Deixant enrere la representacié de les corbes el-liptiques sobre els reals, que ajuda a comprendre’n les seves
caracteristiques perd que no és gaire ttil per a la criptografia, reprenem ara les corbes el-liptiques sobre
cossos finits, tal com s’han definit a I’inici del capitol.

Es poden representar graficament els punts que conformen una corba el-liptica sobre un cos finit de manera
similar a com es fa sobre els reals. En aquest cas, pero, es deixa de visualitzar la forma de la corba, i
simplement es podra observar el conjunt de punts i algunes propietats de la seva estructura. En particular, se
segueix mantenint la simetria respecte 1’eix de les x.

Exemple 8.3 Exemple de representacié grafica d’una corba el-liptica sobre un cos finit

A continuacid es representa graficament la corba el-liptica de I'Exemple 8.1, E /Z1; : y* = x> —5x+ 5, que
com s’ha vist té 17 elements. Val a dir que a la figura s’observen només 16 punts, ja que el 17¢ element
correspon al punt a I’infinit &.
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y?=x3-5x+5 sobre 71,

10 °
9 ) °
8 [ ]
7{ ® ° °
6
5
41 ® ° °
3 ]
2 ) °
1 °

La llei de grup

Podem mantenir la definicié de 1’operacid suma que s’ha presentat a la secci6 anterior, treballant ara sobre
el cos finit, com a operacié de grup. Graficament, es pot seguir aplicant el mateix procediment per tal de
calcular el resultat d’una suma de dos punts, considerant ara perd que les rectes que es tracen sén modul el
primer.

Exemple 8.4 Exemple de suma de punts d’una corba el-liptica sobre un cos finit

Seguint amb la corba dels exemples anteriors, E/Z;; : y2 = x> — 5x+ 5, calculem la suma entre els
punts P, = (1,1) i P, = (4,7) graficament. Per fer-ho, es traca la recta que els uneix, prolongant-la
si cal considerant el modul, fins a trobar el tercer punt d’interseccié de la recta amb els punts de la
corba, §' = (10,8). Finalment, es calcula el punt simetric d’S’, S, que correspon al resultat de la suma
S=P+P=(10,3)).

+ P,

© B N W H» U O N © © O

A la practica, pero, quan s’opera amb punts sobre corbes el-liptiques, es fan servir expressions analitiques
per tal de calcular els resultats de les operacions. A continuacid es detallen les expressions que permeten
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calcular la suma de dos punts sobre una corba el-liptica mdodul un primer.

Donats dos punts, P; = (x1,y1) i P» = (x2,y2), que pertanyen a una corba el-liptica E /Z,,
el punt P; resultant de la suma, P; = P; + P, = (x3,y3), es pot calcular com:

SiPl#Pzi
m=22""" modp
X2 — X1
SiP1=P2:
32
m= Yita mod p
2y

i en ambdds casos:

X3 = m2—x1 —x; mod p

y3=m(x; —x3)—y; modp

Convé esmentar que el valor m que es calcula en el primer pas de la suma correspon al pendent de la recta
entre els dos punts (quan els punts a sumar sén diferents entre ells) o bé de la recta tangent a la corba que
passa pel punt (quan els punts a sumar sén iguals).

Dr’altra banda, pel que fa a la terminologia, a vegades es distingeix entre la suma de punts i el doblat d’un
punt per referir-se, respectivament, a la suma de punts diferents (és a dir, el cas P; # P,) i de punts iguals (és
adir,elcas P, = P).

Exemple 8.5 Suma de punts

Donats els punts Py = (x1,y1) = (1,10) i P, = (x2,y2) = (4,7) de la corba E/Z1; : y* = x> — 5x +5,
podem calcular el punt 5 = P; + P> de la manera segiient.

Com que Py # P, aleshores el pendent m és:

- 7-1
m=22" odp= 2710 a1 =8 mod 11 = 10
X2 — X1 4—1 3

Després, es calculen les coordenades del punt:
X3 :mz—xl—xg mod p = 10°-1—4 modll=7

y3=m(x;—x3)—y; modp=10(1-7)—10 modl1l=7

Finalment, es pot comprovar com Py = (x3,y3) = (7,7) es troba efectivament a la corba E:

y2:x3—5x+5 mod 11
7?=7"-5.-7+5 mod 11
49 =313 mod 11
5=5 modll
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Exercici 8.2 Donats els punts Py = (x1,y1) = (1,1) i Py = (x2,y2) = (4,7) de la corba E /Zy; : y* =
x% — 5x+ 5, calculeu analiticament el punt resultant de la suma P; = Py + P5, i comproveu que el resultat
coincideix amb el que hem calculat graficament a I’Exemple 8.4.

Doncs bé, els punts de la corba sobre un cos finit, amb 1’operacié suma que acabem de definir, poden formar
un grup ciclic, sobre el qual es poden construir algorismes criptografics basats en el problema del logaritme
discret.

Grup ciclic Tal com s’ha presentat al capitol de Fonaments matematics, un grup ciclic és un grup
que conté un element g (que s’anomena generador) tal que les seves poténcies generen
tots els elements del grup, llevat del zero.

Exemple 8.6 Exemple de grup ciclic sobre una corba el-liptica

Com hem vist a I’exemple anterior, la corba el-liptica E /Z; : y* = x> — 5x+5 té 17 elements:

[ﬁ’ (074)7(077)’ (1’ 1)’ (13 10)7 (275)7 (276)7 (474)7 (477)7 (672)7 (679)7(774)7(777)7
(8,2),(8,9),(10,3),(10,8)]

Aquests punts formen un grup ciclic d’ordre 17. Com ja hem vist al capitol de Fonaments Matematics,
com que 17 és primer, tots els elements soén primitius i, per tant, podem generar tots els punts de la corba
sumant un punt amb si mateix iterativament. Per exemple, per a P = (0,4):

P=(0,4) 8P = (6,9) 15P = (4,7)
2P=P+P=(4,4) 9P = (6,2) 16P = (0,7)
3P=P+P+P=(7,7) 10P = (10,3) 17P= 06
4P = (8,2) 11P = (2,5) 18P = (0,4)
5P =(1,10) 12P = (1,1) 19P = ...
6P = (2,6) 13P = (8,9)
7P = (10,8) 14P = (7,4)

Exercici 8.3 Genereu tots els punts de la corba el liptica E/Z1 : y> = x> — 5x + 5 fent servir el punt
P = (8,9) com a generador.

I Exercici 8.4 Calculeu quin és I'invers del punt P = (4,7) de la corba E /71 : y* = x> — 5x+5.

Exercici 8.5 La corba el-liptica E/Z; : y* = x> — 3x+6 té 9 elements:
[ﬁ7 (172)7 (179)7 (475)7 (476)7 (773)7 (778)7 (972)7 (979)]

Podem generar tots els punts de la corba a partir del punt (4,5)?
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Multiplicacié escalar

Cal destacar que a I’exemple anterior implicitament acabem de definir I’operacié de multiplicaci6 escalar
en una corba el-liptica com a I’operacié de suma reiterada d’un element amb ell mateix (escriviem 2P per a
representar P+ P; 3P per a representar P+ P+ P, etc.).

Per tal de calcular de manera eficient operacions de multiplicaci6 escalar, es pot utilitzar una generalitzacié
de I’algorisme de multiplicar i elevar. Com que s’ha fet servir notaci6 additiva per a definir I’operacié de
grup en corbes el-liptiques perod, en canvi, la versid tradicional de 1’algorisme de multiplicar i elevar fa
servir notacié multiplicativa, caldra adaptar I’algorisme. En concret, caldra substituir les operacions de
multiplicaci6 per I’operacié suma de punts que s’ha definit. A més, com que en corbes el-liptiques sovint
es fa servir notaci6 additiva (tal com estem fent en aquest capitol), I’algorisme per a corbes el-liptiques es
coneix habitualment amb el nom d’algorisme de doblar i sumar.

Aixi, per tal de calcular la multiplicaci6 escalar entre un punt (point) d’una corba (ec) i un enter (scalar),
podem fer servir 1’algorisme segiient:

def double_and_add(point, scalar, ec):

mon
Donat_un_punt_(point)_que_pertany_a_una_corba_(ec)_i_un_enter

(scalar), _retorna_la_multiplicacié _,escalar_del_punt_per
I’ enter.

[ T A T T T T
nun
[ETR I

[ETR I

[ TR T VI T T TR T |

# Obtenim la representacio binaria de [’ enter
bin_scalar = bin(scalar)[2:]

# Inicialitzem el resultat amb |’ element neutre
result = ec.neutre

# Recorrem la representacioé binaria des del digit
# menys significatiu al més significatiu

for i, e in enumerate(bin_scalar[::-1]):
if e == "1":
result = (result + point) # sumar
if i != len(bin_scalar) — 1: # si no és [’idltima iteracid

point = (point + point) # doblar
return result

Per a un escalar s, I’algorisme requereix log, s iteracions del bucle, cadascuna de les quals pot comportar una
o dues sumes de punts, en funcié del valor del bit de I’enter que s’esta processant a cada iteracié. Per tant, en
el pitjor cas I’algorisme requereix de 21log, s sumes.

A més de permetre calcular la multiplicacié de manera més eficient que sumant repetidament el punt amb si
mateix, I’algorisme de doblar i sumar té un altre avantatge. Quan el punt P a multiplicar és un punt fixat
(per exemple, si es fa servir una corba estandarditzada com les que veurem més endavant), es pot accelerar
el temps de computacié precalculant i emmagatzemant alguns valors que es reutilitzen sovint. En concret,
s’emmagatzemen els resultats d’anar doblant el punt P (és a dir, 2P,4P, 8P, ...), de manera que el pitjor cas
només requereixi de log, s sumes. Aquesta reducci6 en el temps d’execucid ve, pero, a canvi d’un increment
en I’espai necessari per correr I’algorisme, doncs cal desar els resultats precalculats.

Exemple 8.7 Exemple de multiplicacié escalar

Procedim a calcular 10P per a P = (0,4) € E/Zy; : y* = x> — 5x+ 5 fent servir ’algorisme de doblar i
sumar.

La representaci6 binaria de I’enter 10 és 1010. Per tant, es faran quatre iteracions del bucle.
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En primer lloc s’inicialitza result a &'. A continuaci6 s’executen les iteracions:

Iteracié e Comput

1 e=0 point = point + point = (0,4)+(0,4) = (4,4)

2 e=1 result = result + point —ﬁ+(4 ) = (4,4)
point = point + point = (4,4)+(4,4) = (8,2)

3 e=0 point = point + point =(8,2) (8,2) (6,9)

4 e=1 result = result + point = (4,4)+(6,9) = (10,3)

Per tant, 10P = (10, 3). Cal remarcar, d’una banda, que el calcul ha requerit inicament de quatre operacions
de suma entre punts (en comptes de les nou que caldrien si haguéssim anat sumant repetidament P amb s{
mateix). D’altra banda, és interessant notar com s’ha arribat al resultat: la variable point conté, a cada
iteracid, el resultat de doblar P (els valors 2P = (4,4), 4P = (8,2) i 8P = (6,9)); i la variable result
acumula els valors que permeten calcular el resultat i que vénen indicats per la representacié binaria de
I’escalar (en aquest cas, 10P = 8P +2P).

I Exercici 8.6 Calculeu 12P pera P = (7,2) € E /723 : y* = x> + 3x + 8 fent servir I’algorisme de doblar
i sumar.

El nombre de punts d’'una corba el-liptica

Comptar el nombre de punts d’una corba el-liptica sobre un cos finit #£ /Z, no és senzill. El teorema de
Hasse, provat I’any 1933, proporciona uns llindars que permeten acotar aquest valor.

Teorema 8.1 Donada una corba el-liptica E/Z, el nombre de punts de la corba #E compleix que:

#E—(p+1)|<2/p

Exercici 8.7 Proporcioneu una estimacié del nombre de punts de la corba el-liptica E/Zy; : V2 =
x> — 3x+ 6 fent servir el teorema de Hasse.

Perd el teorema de Hasse no ens permet calcular el nombre exacte de punts i, com hem vist, aquest és
important per caracteritzar el grup que es genera. El metode més simple per trobar el nombre exacte de punts
d’una corba consisteix a calcular per cadascun dels possibles valors d’x € Z,, el nombre de solucions que
té ’equaci6 de la corba (tal com es proposa a la solucié de I’Exercici 8.1). Ara bé, aquest metode no és
computacionalment viable per a les corbes que son Utils en criptografia.

Durant anys no es coneixia cap algorisme eficient per al calcul exacte del nombre de punts d’una corba
el-liptica (els algorismes existents eren exponencials). Aix0 va canviar ’any 1985 amb la publicacié de
I’algorisme de Schoof, el primer algorisme amb temps d’execuci6 polinomial que permetia comptar els punts
d’una corba el-liptica. Aquesta versi6 de 1’algorisme seguia sent ineficient per a corbes amb 1’ordre necessari
per a aplicacions criptografiques, perd una versié millorada d’aquest, 1’algorisme de Schoof-Elkies-Atkin
(SEA), sf que es pot fer servir a la practica per a aquestes corbes. L’algorisme de SEA és actualment el millor
algorisme generic conegut per a comptar punts de corbes el-liptiques.

Estructura dels grups generats per corbes el-liptiques

Sabem doncs que els punts d’una corba el-liptica sobre un cos finit amb I’operacié suma poden formar un
grup ciclic. Ara bé, ens podem preguntar si aixo €s sempre aixi. La resposta és negativa. Si1’ordre de la
corba, #E /Z,, es pot factoritzar en el producte de primers diferents, aleshores el grup E/Z, és ciclic. En cas
contrari, el grup és isomorf al producte directe de dos grups ciclics.
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Grups isomorfs || Informalment, diem que dos grups s6n isomorfs si tenen la mateixa estructura, és a dir,
i producte si les diferéncies entre els dos grups sén només cosmétiques (per exemple, en el nom
directe dels elements). D’altra banda, el producte directe de dos grups és un grup que té com a
elements els membres del producte Cartesia entre els dos grups. L’ operacié de grup
opera component a component, utilitzant I’operacié definida en cada grup d’origen.
Per a una introduccié més formal i completa a aquests termes, us recomanem la lectura
de Further pure mathematics: Group theory de The Open University (2016).

El cas particular en que el nombre d’elements és primer és el que hem anat veient en la majoria d’exemples
d’aquest capitol. En aquest cas, el grup E/Z,, és ciclic i, a més, tots els elements (excepte el punt a I’infinit
0) en s6n generadors. A continuacié estudiarem I’estructura dels grups formats per corbes el-liptiques amb
nombre d’elements no primer i, per fer-ho, veurem algunes definicions i teoremes que descriuen 1’estructura
de grups finits (no necessariament definits per corbes el-liptiques).

Definicié 8.2 Donat un grup (G, -), un subconjunt d’elements H C G és un subgrup de G si (H,-) és
un grup. Per denotar que H és un subgrup de G, escrivim H < G.

Aquesta definici6 segueix el que entendriem intuitivament com a un subgrup, és a dir, un subgrup no és res
més que un subconjunt d’elements d’un grup que manté les propietats de grup amb la mateixa operacio
(associativitat, element neutre i element invers).

Definicié 8.3 Donat un grup (G,-) i un element e € G, el subgrup H format per les poténcies de
I’element e és un subgrup ciclic de G.

Aix0 es deriva directament de les definicions de subgrup i grup ciclic. L’element e les potencies del qual
generen el subgrup ciclic és doncs el generador del subgrup.

Teorema 8.2 L’ordre d’un element e € G és igual a I’ordre del subgrup ciclic que genera. ‘

Donat un grup qualsevol, ens podem preguntar com sén els subgrups que conté. El teorema de Lagrange ens
descriu I’ordre d’aquests subgrups.

Teorema 8.3 El teorema de Lagrange estableix que per tot grup finit G, 1’ordre de cada subgrup de G és
un divisor de I’ordre de G.

Fixeu-vos que el teorema de Lagrange ens diu que 1’ordre dels subgrups de G (i, per tant, I’ordre dels
elements de G) és un divisor de 1’ordre de G, perd no ens descriu si per a cada divisor de 1’ordre de G hi ha
un element que té aquell ordre.

Si el grup G és ciclic, podem determinar exactament quants elements amb cada ordre possible hi ha.

Teorema 8.4 Sigui G un grup ciclic d’ordre n, si d|n aleshores hi ha ¢(d) elements g € G d’ordre d.

Exemple 8.8 Exemple de grup ciclic amb ordre no primer amb enters

Sigui G = (Z¢,+) el grup format pels enters modul 6 amb I’operacié suma modular. Veiem alguns
exemples de les propietats de (Zg,+) com a grup:

 L’operaci6é suma és associativa, per exemple, 2+ (3 —5) mod 6 = (2+3) —5 mod 6.

» Té element neutre respecte a la suma modular, el 0, ja que qualsevol element sumat a O dona el
mateix element.

* Per a qualsevol element e del grup, I’element —e mod 6 és I’invers additiu, ja que e —e =0
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mod 6.

El grup (Zg,+) és un grup ciclic, ja que es pot generar a partir de les poréncies dels elements 1 i 5. Noteu
que en aquest cas, com que estem fent servir notacié additiva, les poténcies son la suma repetida (i no pas
la multiplicacid).

El grup (Ze,+) té dos subgrups (més enlla del subgrup amb 1’element neutre i d’ell mateix). L’element
2 genera un subgrup ciclic d’ordre 3, format pels elements {2,4,0}. L’element 4 també genera aquest
mateix subgrup. D’altra banda, I’element 3 genera el subgrup ciclic d’ordre 2: {3,0}. Noteu com tots els
subgrups de (Zg,+) contenen I’element 0.

1> 0 < 0~ 0 F)A 0
5 1 5 L 5//‘*‘\ Lo A 541
of '+1 5 - )
4 2 4 2 4% \’2 45X 4 v 2
* 4 N
a3« ™3 s 3 3 3
Subgrup d’ordre 6 Subgrup d’ordre 3 Subgrup d’ordre 2
Generadors: 1, 5 Generadors: 2, 4 Generadors: 3

Tal com ens diu el teorema de Lagrange, 1’ordre dels subgrups és un divisor de 1’ordre de G (2/6 i 3|6).

A més, com que G és ciclic, sabem que hi ha ¢(2) = 1 element d’ordre 2 (I'element 3) i ¢ (3) = 2 elements
d’ordre 3 (els elements 2 i 4).

Ordre Num. d’elements Elements Subgrup
1 o(l)=1 0 {0}
2 ¢(2)=1 3 {0,3}
3 ¢(3)=2 2,4 {0,2,4}
6 #(6)=2 1,5 {0,1,2,3,4,5}

Exemple 8.9 Exemple de grup ciclic amb ordre no primer amb corba el-liptica

La corba el liptica E/Zy; : y2 = x4+ 10x+4 té 15 elements:

[0,(0,2),(0,9),(1,2),(1,9),(4,3),(4,8),(5,5),(5,6),(6,4),(6,7),(9,3),(9,8),(10,2),(10,9)]

El grup format pels punts de la corba el-liptica amb 1’operacié suma tal com 1’hem definida és un grup
ciclic ja que 15 es pot factoritzar en el producte de primers diferents (3 i 5). Lelement (0,2) n’és un dels
generadors.

Seguint el teorema de Lagrange, I’ordre dels subgrups son els divisors de 15, és a dir, 31 5. Com que G és
ciclic, sabem que hi ha ¢ (3) = 2 elements d’ordre 3 i ¢(5) = 4 elements d’ordre 5.
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Ordre Num. d’elem. Elements Subgrup
1 o(l)=1 7 {0}
3 ¢(3)=2  (1,2).(19) {0,(1,2),(1,9)}
5 #(5)=4  (5,5),(5,6),(10,2),(10,9) {6,(5,5),(5,6),(10,2),(10,9)}

15 ¢(15) =8 (0,2),(0,9), (4, 3), (4,8),(6,4), (6, E/Zy;:y* =x>+10x+4
7),9,3), (9, 8)

Es molt habitual que les corbes que es fan servir en criptografia tinguin ordre primer (i, per tant, tots els
elements generin tot el grup ciclic). En algunes construccions, pero, es triaran corbes que no tinguin aquesta
propietat. Donat un punt base G d’ordre n, es defineix el cofactor & d’una corba el-liptica, que mesura la
proporcié de punts utils de la corba:

Definici6 8.4  El cofactor /& d’una corba el-liptica E /Z,, d’ordre #E per a un punt base G € E d’ordre
n és:
#E

n

h

A les corbes amb ordre #E primer, tenim que #£ = n i, per tant, el cofactor és sempre 1.

Exemple 8.10 Exemple de cofactor diferent d’1

Recuperem la corba el-liptica de I’exemple 8.9 (els subgrups de la corba es troben detallats al propi
exemple). Com hem vist, la corba E /Z; : y* = x> + 10x +4 té ordre 15 i ’element (1,2) té ordre 3.

Per tant, el cofactor & de la corba E per al punt base G = (1,2) € E és:

#E 15
hziz—zs
n 3

Corbes el liptiques per a usos criptogrdfics

Com s’ha comentat anteriorment, en criptografia es fan servir corbes el-liptiques sobre cossos finits, i no pas
corbes definides sobre els reals. Ara bé, son totes les corbes el-liptiques sobre cossos finits adequades per
a usos criptografics? La resposta €s, de nou, negativa. No totes les corbes el-liptiques permeten construir
criptosistemes segurs: algunes d’elles sén vulnerables a atacs coneguts. Anomenem corbes criptograficament
fortes a les corbes que sén adequades per a usos criptografics.

Abans de descriure les propietats de les corbes criptograficament fortes, detallarem els parametres que
defineixen els criptosistemes basats en corbes el-liptiques:

Definicié 8.5 Els parametres de domini d’un criptosistema basat en corbes el-liptiques s6n els parame-
tres que determinen la corba el-liptica E i el punt base G:

» Un primer p que especifica el cos finit sobre el qual es defineix la corba.

* Els dos coeficients a,b € Z,, que defineixen la corba E /Z,, : > =x3+ax+b.

» Un punt base G € E/Z,, que genera el subgrup ciclic sobre el que es construeix el problema del
logaritme discret.

* L’ordre n primer del punt base G.

* El cofactor h = #E /n.
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Habitualment els parametres de domini s’especifiquen com una tupla (p,a,b,G,n,h).

Considerant els atacs que es coneixen actualment, es requereix que els parametres de domini de les corbes
el-liptiques per a usos criptografics compleixin les condicions segiients:

1. Es necessari que el nombre de punts de la corba #E sigui divisible per un primer 7 suficientment gran
(en general, com a minim major que 2'%%). Aixo s’aconsegueix habitualment seleccionant corbes amb
#E primer o bé amb un cofactor petit (normalment, el cofactor 4 és 1,2,3 0 4).

2. Cal assegurar que 1’ordre de la corba no coincideixi amb el del cos finit sobre el qual es defineix, és a
dir, per a una corba E /Z,, cal assegurar que #E # p.

3. Cal assegurar que n no divideix p* — 1 per a tots els enters k entre 1 i 20.

Ara bé, a partir d’aquestes condicions, com es poden generar corbes el-liptiques per a usos criptografics? Una
de les alternatives que es fan servir és seleccionar corbes aleatoriament, descartant aquelles corbes que no
compleixen els tres requisits especificats al paragraf anterior. El procediment consisteix doncs en repetir el
procés de seleccionar aleatoriament una corba i verificar que aquesta compleixi els requisits fins a trobar-ne
una que els compleixi. La selecci6 aleatoria de la corba proporciona un cert nivell de seguretat, ja que la
probabilitat de generar una corba que pertanyi a una classe especial que sigui vulnerable a un atac especific
(potencialment encara per descobrir) és molt baixa.

Tanmateix, com que algunes de les condicions que cal que les corbes compleixin per a ser segures per a usos
criptografics no sén trivials de verificar (sobretot per part de desenvolupadors sense coneixements especifics
en aquest tipus de criptografia) i, a més, el procediment de generar les corbes és computacionalment costés
(implica comptar el nombre de punts de la corba, que com ja hem vist, no és trivial), sovint es fan servir
corbes estandarditzades que han estat validades per experts i per a les quals el nombre de punts és conegut.
Existeixen diferents organismes que han estandarditzat corbes el-liptiques per a usos criptografics, com ara
el NIST, el consorci alemany Brainpool o Certicom Research. Aquestes corbes han estat suposadament
generades per a evitar els atacs coneguts i son suposadament segures per a usos criptografics. Pero fer is d’una
corba dissenyada per un tercer implica confiar que aquest tercer no 1’ha dissenyada malintencionadament i,
com es descriu a I’inici d’aquest capitol (Secci6 8.1), aixo historicament no sempre ha estat aixi. Per aquest
motiu, alguns estandards inclouen corbes seleccionades pseudoaleatoriament utilitzant un algorisme que
permet a tercers verificar que realment s’ha seguit aquest algorisme per a generar-les. D’aquesta manera,
hom pot verificar que la corba ha estat generada pseudoaleatoriament (cosa que en dificulta la possible
inclusié de portes del darrere) i alhora confiar que la corba compleix els requisits de seguretat minims (doncs
ha passat per un escrutini public extens abans de ser incorporada a 1’estandard).

L’ds de corbes estandarditzades pot simplificar els algorismes de generacié de claus (que veurem més
endavant en aquest mateix capitol) i també permet en certes ocasions precalcular valors necessaris per a la
creacid de signatures digitals. Aixi, es poden aprofitar moments en que el processador no esta ocupat per
precalcular aquests valors (basats en els parametres del domini especificats pels estandards) i fer-los servir
quan es requereixi generar una signatura, reduint aixi el temps necessari per calcular-la.

Seleccid verificablement pseudoaleatoria de corbes

Alguns estandards recomanen 1’ds de corbes el-liptiques que s’han generat pseudoaleatdoriament, seguint
un procediment que permet a terceres parts comprovar que efectivament s’han generat seguint aquest
procediment. En aquesta seccidé presentarem el procediment de generacié de corbes pseudoaleatories
verificable que es descriu a I’estandard I’ ANSI X9.62 i a I’estandard NIST.FIPS.186-4.

El procediment consta de dos algorismes: 1’algorisme de seleccid, que selecciona una corba pseudoaleatoria,
i I’algorisme de verificacid, que permet a un tercer verificar que la corba s’ha triat amb 1’algorisme de
seleccid.
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L’algorisme de seleccié verificablement aleatoria de corbes el-liptiques rep com a entrada
un primer p que definira el cos finit i una funci6 hash H de mida / bits. A partir d’aquests
valors, I’algorisme retorna una corba el-liptica E /Z,, : y? = x> +ax+b i una llavor S que
s’utilitza en el procés de verificacid.

L’algorisme de seleccid verificablement aleatoria de corbes el-liptiques segueix els passos
segiients:
1. Bscalculat = [log, p],s = |5 | iv=t—sl
2. Es genera una cadena binaria aleatoria S de g bits, amb g > /.
3. Es calcula ¢o = H(S) [i—v...1)» €s a dir, co correspon als v ultims bits del hash de la
Ilavor S.
4. Es calcula Wy =0 || Co[1...v)» és a dir, Wy €s el resultat de fixar el primer bit de ¢ a 0.
5. Peridesde 1 fins a s:
* Escalculas; = (S+i) mod 28.
* Es calcula W; = H(s;). A I’hora de calcular el hash, el valor s; es representa
com una cadena binaria de g bits.
6. Escalcular=Wy || W1 || ... || W;.
Sir=00bé4r+27=0 mod p, es torna al pas 2.
8. Es trien valors a i b € Z, arbitraris, de manera que com a minim un d’ells sigui
diferent de 0 i tals que 7-b> = a®> mod p.
9. L’algorisme retorna els coeficients a i b seleccionats i la llavor S generada al pas 2.

5

Notacié La notaci6 X|, ) indica els bits des de la posici6 a fins a la posici6 b del valor X. El
simbol || expressa la concatenacid.

Aixi, per exemple, per al valor X = 101100 tenim que Xjy_ 5 = 10, X3 ¢ = 100 i
0] Xj;...6) = 001100.

La sortida de I’algorisme sén els coeficients de la corba E /Z, seleccionada (amb el valor p especificat a
I’entrada) i la cadena binaria S que s’ha fet servir com a llavor del procés pseudoaleatori. Aquesta llavor S es
fara servir posteriorment en el procés de verificacid, i permet assegurar que els coeficients de la corba no
s’han dissenyat manualment.

Els parametres que defineixen la corba (els coeficients a i b) queden gairebé determinats pel valor r. En
concret, per a un valor d’r fixat, hi ha essencialment dos possibles valors a triar per al parell a,b. Com que
r es deriva de 1’aplicacié d’una funcié hash, no és computacionalment factible per a un atacant trobar una
llavor S que generi uns parametres a,b seleccionats manualment per 1’atacant.

L'eleccié El lector interessat a entendre perque r determina els valors a i b pot consultar la
daib Guide to Elliptic Curve Cryptography de Darrel Hankerson, Alfred Menezes i Scott
Vanstone.

Es interessant notar que les condicions validades al pas 7 (r # 0 i r # —24—7 mod p) permeten assegurar que

el discriminant de la corba és diferent de zero, ja que r = Z—z mod p per construcci6 (pas 8).

L’algorisme que acabem de descriure selecciona una corba pseudoaleatoria de manera que després es pugui
verificar que s ha seleccionat aixi. Ara bé, 1’algorisme de seleccid no té en compte les condicions necessaries
per a que la corba sigui segura per a usos criptografics. Per tal de generar uns parametres de domini segurs,
es procedeix a executar 1’algorisme anterior i, a continuacid, es comprova que la corba generada compleixi
les tres condicions que la fan criptograficament forta (especificades a la seccié anterior). Si no les compleix,
es torna a executar I’algorisme tantes vegades com calgui, fins a aconseguir seleccionar uns parametres
adequats.

A més a més de la corba el-liptica E, la generaci6 de parametres de domini per a criptografia de corbes
el-liptiques requereix d’un punt base G. Per tal de calcular aquest punt, es tria un punt G’ € E arbitrari i es
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calcula G = hG', on h = #E /n (recordeu que n és el primer gran que divideix #E). L’tGnica condicié que cal
que G satisfaci és que sigui diferent de & (si no ho és, simplement es torna a repetir el procediment fins a
trobar un G # 0). L’ordre del punt G és n.

Donada una corba E (especificada pels parametres a, b i p) i la llavor S generades per
I’algorisme de generaci6 de corbes verificablement aleatories, juntament amb la funcié
hash H utilitzada, 1’algorisme de verificacio de la seleccié aleatoria permet comprovar
que una corba ha estat creada seguint I’algorisme anteriorment.

L’algorisme consta dels passos segiients:

1. S’executen els passos 1 ide 3 a 6 de I’algorisme de selecci6. El pas 2 no és necessari,
ja que el valor S que s’utilitza és el que es rep a ’entrada.

2. Es comprova que r-b* = a® mod p. Si la comprovaci6 és satisfactoria, I’algorisme
dona per valida la corba. En cas contrari, la verificacié falla.

Noteu com I'is de I’algorisme de seleccié verificablement aleatoria en la creacié de corbes dificulta la
creaci6 de corbes especialment vulnerables, ja que els parametres d’aquestes es deriven d’una funcié hash
i, per tant, no es poden construir deliberadament vulnerables. Ara bé, ningti no impedeix a un possible
generador de corbes malintencionat d’executar 1’algorisme repetidament fins a trobar una corba que compleixi
alguns requisits que li siguin d’interes. Es per aixd que I’tis d’aquest algorisme en la creacié de corbes
estandarditzades no esta totalment lliure de sospita.

Corbes estandarditzades

Les corbes generades i publicades per organismes d’estandarditzacié es coneixen com a corbes estandard o
bé com a corbes amb nom.

La Taula 8.2 anomena les corbes amb nom més conegudes aixi com 1’estandard que les defineix:

Taula 8.2: Estandards que inclouen la definicié de corbes el-liptiques.

Organisme  Estandard Corbes sobre Z,,
NIST FIPS PUB 186-4: Digital Signa- P-192, P-224, P-256, P-384, P-521
ture Standard (DSS)

Certicom SEC 2: Recommended Elliptic secp192kl, secp192rl1, secp224kl,
Research Curve Domain Parameters secp224rl, secp256k1, secp256r1,
secp384rl, secp521rl

Brainpool =~ ECC Brainpool Standard Curves brainpoolP160r1, brainpoolP192r1,
and Curve Generation brainpoolP224r1, brainpoolP256r1,
brainpoolP320r1, brainpoolP384r1,

brainpoolP512r1

El NIST, en el seu estandard per a signatures digitals (FIPS PUB 186-4: Digital Signature Standard (DSS))
publicat al juliol de 2013 defineix cinc corbes el-liptiques sobre Z,, fent servir primers de diferents mides
(192, 224, 256, 384 1 521 bits). Les corbes s’anomenen anteposant el prefix P- a la mida. Aquest prefix
indica que les corbes estan definides sobre cossos finits d’ordre primer. Les corbes han estat generades amb
I’algorisme de generaci6 de corbes verificablement aleatories descrit a la secci6 anterior, fent servir SHA-1
com a funcié hash.
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Totes elles tenen en comii que fan servir el coeficient a = —3, el que permet optimitzar la suma de punts en
una de les representacions habituals. A més, els primers p seleccionats s6n primers de quasi-Mersenne, que
permeten optimitzar la reduccié modular. Les cinc corbes també tenen en comd el cofactor, 7 = 1.

Primers de Els nombres primers de quasi-Mersenne sén primers de la forma 2" — ¢, amb ¢ < 2".
KIAUC’Si' Per exemple, 292 — (254 4 1) és un primer de quasi-Mersenne, ja que (2% +1) < 292,
ersenne

A tall d’exemple, a continuaci6 es detallen els parametres de la corba P-256, una de les 5 corbes sobre Z,
definides a I’estandard del NIST. L’especificacié de la corba consta dels parametres segiients: el modul
primer p, I’ordre primer n de la corba, la llavor S que s’ha utilitzat en 1’algorisme de generacié de corbes
verificablement aleatories per tal de generar-la, el valor ¢ que correspon al valor » calculat en 1’algorisme de
generacio, el coeficient b de 1’equacié de la corba (el coeficient a és —3 per a totes elles), i les coordenades x
1y del punt base G.

La corba P-256 del NIST queda definida pels parametres segiients:

p:225672224+2192 +29671
n = 115792089210356248762697446949407573529996955224135760342422259061068512044369
SEED = (0x) c49d3608 86e70493 6a6678el 139d26b7 819f7e90
¢ = (0x) 7efbal66 2985be94 03cb055c 75d4f7e0 ce8d84a9 cblldabc af317768
0104fa0d
b= (0x) 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e
27d2604b
G, = (0x) 6b17d1f2 e12c4247 £8bcebeb 63a440f2 77037d81 2deb33al f4a13945
d898c296
Gy = (0x) 4fe342e2 fela7f9b 8ee7ebda 7c0f9el6 2bce3357 6b315ece cbb64068
37bf51£f5

Exemple 8.11 Exemple de verificacié de la generaci6 aleatoria d’una corba el-liptica

A continuacié procedirem a verificar que la corba del NIST P-256 ha estat efectivament generada
pseudoaleatoriament amb 1’algorisme descrit anteriorment.

Com que la generaci6 ha fet servir SHA-1 com a funci6 hash, aleshores / = 160.

1. Bscalculat = [log, p] =256, s = || = [ 25t =1iv=1r—sI=96.

2. Lallavor S és 0xc49d360886e704936a6678e1139d26b7819f7e90, amb g = 160 > /.
3. Es calcula:

co=H(S)y—v..) =
= 0x3£07cbeac96eccObfefbal662985be9403cb055¢ gy, 160) =
= 0xfefbal662985be9403cb055¢c

4. Es calcula Wy =0 || Co[1..,] = 0x7efba1662985be9403cb055¢.
5. Peridesde 1 fins a s:

s1=(S+1) mod 2" = 0xc49d360886e704936a6678¢1139d26b7819£ 791

W) = H(s1) = H(0xc49d360886e704936a6678e1139d26b7819f7e91) =
= 0x75d4f7e0ce8d84a9c5114abcaf3177680104fa0d
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6. Es calcula:

r=W||W =
= 0x7efbal662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0d

3

7. Es comprova que 7-b> = a> mod p:

0x7efb...fa0d - 0x5ac6. ..604b> = (—3)° mod 226 — 2224 1 21924 2%

Com que la igualtat es compleix, podem verificar que la corba ha estat generada pseudoaleatoriament
seguint I’algorisme descrit.

Fixeu-vos que com que s = 1, només s’executa una tnica iteracié del bucle que calcula les W;. A més, cal
tenir en compte que al calcular els hashos (pas 3 i pas 5), cal representar les entrades de la funcié hash (els
valors S'i s1) com a cadenes binaries.

Exercici 8.8 Verifiqueu que la corba del NIST P-192 ha estat generada pseudoaleatdriament amb
I’algorisme verificable de generaci6 de corbes.

La corba P-192 del NIST queda definida pels parametres segiients:

p:2192_264_1
n=6277101735386680763835789423176059013767194773182842284081
SEED = (0x) 3045ae6f c8422f64 ed579528 d38120ea 1219645
c= (0x) 3099d2bb bfcb2538 542dcd5f b078b6ef 5f3d6fe2 c745de65
b= (0x) 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9bil
G, = (0x) 188daB80e b03090f6 7cbf20eb 43a18800 f4ffOafd 82ff1012
Gyz (0x) 07192b95 ffc8da78 631011ed 6b24cdd5 73f977al 1e794811

Certicom Research, a I’estandard SEC 2: Recommended Elliptic Curve Domain Parameters publicat el gener
de 2010 (versi6 2.0), descriu vuit corbes el-liptiques sobre Zj,, fent servir primers de les mateixes mides que
I’estandard del NIST (192, 224, 256, 384 i 521 bits). En general, per a cada mida del primer, I’estandard
descriu dos tipus de corbes: una corba generada pseudoaleatoriament de manera verificable i una corba de
Koblitz. L’excepcié son les dues mides superiors (384 i 521 bits), per a les quals només es proporciona la
corba pseudoaleatoria.

Els noms de les corbes del SEC 2 segueixen un patré que permet identificar-ne les caracteristiques facilment:
els primers tres caracters son sec, que denota Standards for Efficient Cryptography; a continuaci6 s’inclou
una p, que descriu corbes sobre cossos finits Z,; després hi ha un nimero, que descriu la mida del primer
utilitzat; a continuacié hi ha una lletra, k o r, especificant si es tracta d’una corba aleatoria o de Koblitz; i
finalment hi ha un ndmero de seqiiéncia.

Les corbes aleatories (corbes r) especificades al SEC2 s6n equivalents a les corbes del NIST de la mateixa
mida especificades a la Taula 8.2 (la corba P-192 és equivalent a la secp192r1, la corba P-224 a la secp224rl,
etc.). Per tant, les corbes aleatories que especifica el SEC 2 han estat generades amb 1’algorisme verificable
de generaci6 de corbes fent servir SHA-1 com a funci6 hash.

Les corbes de Koblitz sobre cossos finits Z, tenen la particularitat d’estar definides per uns parametres que
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permeten una implementacié especialment eficient (el calcul del doblat d’un punt en aquest tipus de corbes
és molt eficient). Les corbes de Koblitz especificades al SEC 2 han estat seleccionades repetint el procés de
seleccionar parametres eficients fins a aconseguir trobar uns parametres que descriguin una corba d’ordre
primer i tenen a = 0, de manera que I’equaci6 que les defineix és de la forma E /Z,, : V> =x34b.

Corbes de Es important tenir en compte que el mot corbes de Koblitz és també utilitzat (i, de fet,
Koblitz més comunament) per a referir-se a corbes sobre Fon. A 1’estandard de Certicom, es
generalitza el terme i es fa servir per referir-se també a les corbes sobre un cos finit
d’ordre primer que tenen una propietat concreta que permet la implementacio eficient
del calcul del doblat d’un punt.

La corba La corba secp256k1 és actualment una corba molt coneguda, ja que €s la que fa servir
secp256k1 la criptomoneda Bitcoin per a les signatures digitals que autoritzen les transaccions.
Anteriorment al seu Us a Bitcoin, la corba era poc utilitzada. Els valors especialment
petits dels coeficients de la corba semblen indicar que és una corba nothing-up-my-
sleeve.

La corba secp256kl queda definida pels parametres segiients:

p:2256_232_29_28_27_26_24_1
n = (0x) FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25ESC

D0364141

a=0

b=1

G, = (0x) T79BE667E FODCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B
16F81798

Gy = (0x) 483ADA77 26A3C465 S5DAAFBFC OE1108A8 FD17B448 A6855419 9C47DO8SF
FB10D4B8

h=1

L’estandard ECC Brainpool Standard Curves and Curve Generation publicat el 2005 inclou set corbes
el-liptiques de set mides diferents, quatre de les quals coincideixen amb les del NIST i Certicom. Les altres
tres mides sén 160, 320, i 512 bits (aquesta dltima substitueix les de 521 del NIST i Certicom). Totes elles
han estat generades de manera verificablement pseudoaleatoria, amb un metode similar al que s’ha explicat
anteriorment.

A diferencia de les corbes del NIST, les de Brainpool no fan servir primers de quasi-Mersenne, de manera
que en general son menys eficients. Aquesta decisié va ser presa per tal d’evitar problemes de patents amb
els algorismes de calculs aritmetics rapids.

De manera similar als altres estandards, els noms de les corbes de Brainpool segueixen un patré que en
descriu les seves propietats: els primers caracters son brainpool, que denota 1’organisme de certificacio; a
continuaci6 s’inclou una P, que descriu corbes sobre cossos finits Z p;> després hi ha un ndmero, que descriu
la mida del primer utilitzat; a continuacié hi ha una lletra, r, que especifica que es tracta d’una corba aleatoria;
i finalment hi ha un ndmero de seqii¢ncia.

L’informe de 2017 sobre 1’ds del TLS de F5 (The 2017 TLS Telemetry report) resumeix les observacions
sobre més de 20 milions de hosts TLS repartits arreu del mén. L’informe reporta que un 74% dels intercanvis
de clau de Diffie-Hellman sobre corbes el-liptiques que es porten a terme fan servir la corba del NIST P-256,
sent clarament per tant la més popular de totes les corbes estandarditzades. Part d’aquesta popularitat ve
donada pel fet de ser la corba per defecte a I’OpenSSL en aquell moment i perque el TLS 1.3 requereix
que totes les implementacions suportin aquesta corba per a I’intercanvi de claus de Diffie-Hellman. La
segona corba més popular és la Curve25519, una corba proposada pel criptograf Daniel J. Bernstein sobre
un primer de 256 bits (el primer 22°3 — 19, que li dona nom). Aquesta corba no esta coberta per cap patent i
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la implementacié de referencia és codi lliure. E1 2017 el NIST va anunciar que inclouria aquesta corba al seu
estandard de signatura digital i, de fet, la propera versi6 d’aquest, encara en format d’esborrany (FIPS PUB
186-5 (Draft)), ja la contempla.

Funcions hash que retornen punts de corbes el-liptiques

Alguns dels esquemes criptografics basats en corbes el-liptiques requereixen d’una funcié hash que rebi
una entrada arbitraria (per exemple, la cadena de caracters a signar) i retorni un punt d’una corba el-liptica
concreta. En aquesta seccié descriurem com es poden construir aquestes funcions hash.

Donada una corba E /Z), : y2=x+ax+biunpunt G € E/Z, d’ordre n, una construcci6 ingénua d’una
funci6 hash H que rebi com a entrada cadenes arbitraries i retorni punts de la corba E /Z, és la segiient:

H(m)=H'(m)-G=P€E/Z,

on H' és una funci6 hash que rep entrades arbitraries i retorna un valor a Z,,.

Es a dir, la funcié hash H es construeix multiplicant un enter (resultant d’una altra funcié hash) per un punt de
la corba, de manera que s’obté un punt de la corba desitjada. Noteu que la funcié H' és facil de construir. Per
exemple, podriem definir H' com el resultat de la funci6 hash SHA-1 mddul n (és a dir, H'(m) = SHA-1(m)
mod n).

Tanmateix, aquesta construccié presenta problemes de seguretat a diferents nivells, motiu pel qual no es fa
servir a la practica. Més endavant (a I’Exercici 9.4) veurem un exemple concret d’aquests problemes de
seguretat en 1’ds d’aquesta construccié en les signatures BLS.

Una construccié més elaborada per a aconseguir funcions hash que retornin punts de corbes el-liptiques
és el metode d’intentar-i-incrementar (en angles, es coneix amb el nom de try-and-increment). El metode
consisteix a interpretar el missatge m com a la coordenada x del punt de la corba i calcular el valor d’y
corresponent, tenint en compte pero dos detalls que podrien ser problematics. D’una banda, pot ser que un
missatge donat m no correspongui a la coordenada x de cap punt de la corba. D’altra banda, donada una
coordenada x, ja hem vist que existiran dos possibles valors d’y.

L’algorisme de intentar-i-incrementar permet convertir un missatge m en un punt d’una
corba el liptica E /Z,, : y? = x> +ax+ b seguint els passos segiients:

1. Inicialitzar el comptador a zero: ¢ = 0.
2. Calcular (x,s) = H" (c||m).
3. Calcular t = x> +ax+b.
4. Sit és un residu quadratic modul p:
(a) Calcular I’arrel quadrada de : y = (—1)*-7'/2 mod p.
(b) Retornar el punt (x,y).
En cas contrari:
(a) Incrementar c: ¢ =c—+ 1.
(b) Tornar al pas 2.

La funci6 hash auxiliar H” rep el valor d’un comptador concatenat amb el missatge i retorna dos valors, un
valor a Z,, que correspon a la coordenada x del punt, i un bit s que es fara servir per decidir quin dels dos
possibles valors per a la coordenada y se selecciona (en cas que efectivament existeixin). D’aquesta manera,
si el primer valor x no correspon a cap punt de la corba, es pot incrementar el comptador i tornar-ho a intentar,
esquivant aix{ el primer dels detalls problematics que esmentavem. D’aquest procediment en prové el nom
de I’algorisme. Un cop calculat el valor x, calculem el valor y com I’arrel quadrada d’x, triant sempre el
valor més petit dels dos possibles (es tria una ordenacié qualsevol, ja que no és important per 1’algorisme).
Després, el bit s es fa servir per decidir si es retorna el valor més petit o es canvia per 1’altre valor.
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Exemple 8.12 Exemple d’execucié de I’algorisme de intentar-i-incrementar

Calculem un punt de la corba E /7 : y? = x> — 5x+5 que representa el missatge CRIPTOGRAFIA. Per
fer-ho, farem servir la segiient funcié hash auxiliar:

H"(m) = (SHA-1(m) mod p, SHA-1(m) mod?2)

i triarem com a resultat de 1’arrel quadrada el valor més petit considerat sobre els enters.

1. Inicialitzem el comptador a zero: ¢ = 0.
2. Calculem la funcié hash auxiliar:

(x,s) = H"(c||m) = H” (0|| CRIPTOGRAFIA) =
= (SHA-1(OCRIPTOGRAFIA) mod 11, SHA-1(OCRIPTOGRAFIA) mod 2)
= (0x2£48---8086 mod 11, 0x2f48---8086 mod2)=
= (8,0)

3. Calculemt =x>4+ax+b=8>—-5-84+5=477 mod 11 =4.
4. El valor t = 4 és un residu quadratic a Z;; (jaque 22 =4 mod 11i9%> =4 mod 11).
(a) Les dues arrels de 4 a Z;; s6n 21 9. Com que 2 <9 € Z, aleshores y = (—1)* 1172
mod p = (—1)-2 mod 11 =2.
(b) Esretorna el punt (8,2).

El punt (8,2) pertany, per tant, a la corba E, i es pot fer servir com a representacié del missatge CRIPTO-
GRAFIA en qualsevol algorisme criptografic que la faci servir en els seus parametres de domini.

8.5 El problema del logaritme discret sobre corbes el-liptiques

Utilitzant 1la multiplicaci6 escalar sobre corbes el-liptiques i de manera analoga al problema del logaritme
discret a Z,, podem definir ara el problema del logaritme discret sobre una corba el-liptica (ECDLP, de
I’angles, Eliptic Curve Discrete Logarithm Problem).

Donada una corba el liptica E/Z, amb ordre #E, un element primitiu G € E i un altre
element T € E, el problema del logaritme discret sobre corbes el-liptiques consisteix a

trobar un enter 1 < i < #F tal que:
i-G=T

Notacié Convé esmentar que la formulacié que es fa servir s’allunya una mica de la formulacié
tradicional del problema ja que s’ha triat la notaci6 additiva per a expressar 1’operacié
de grup entre els punts de la corba el-liptica. En canvi, si s’hagués fet servir la notacid
multiplicativa, la definici6 del logaritme discret seria més similar a la definici6 classica.
Tot i aix0, el problema és equivalent.

Exercici 8.9 Calculeu el logaritme discret del punt 7 = (0,7) en base G = (8,9) per a la corba
E /741 : y* = x> — 5x+5. Podeu fer servir el resultat de ’Exercici 8.3 per a resoldre aquesta activitat.
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Per quantificar el nivell de dificultat del problema és, per tant, necessari coneixer el nimero de punts de la
corba, #E.

El problema del logaritme discret sobre corbes el-liptiques es pot generalitzar eliminant la restriccié que el
punt G hagi de ser primitiu. En aquest cas, donat un punt base G d’ordre n primer, cal trobar ’enter 1 <i<n
tal que i- G = T. El logaritme discret es calcula doncs sobre el subgrup ciclic de E generat per G, al qual el
punt 7 també pertany. L’ ordre d’aquest punt, n, passa a tenir importancia en la seguretat dels protocols que
se’n deriven.

El millor algorisme que es coneix actualment (2025) per solucionar el problema del logaritme discret sobre
corbes el-liptiques (excepte per casos molt especifics o assumint I’existéncia d’ordinadors quantics) és
I’algorisme ro de Pollard. Aquest algorisme permet calcular el logaritme discret amb un temps d’execucié
O(+\/n), on n és I’ordre del punt. D’aqui se’n deriven els nivells de seguretat que ofereixen les corbes
el-liptiques per a diferents mides de la clau que s’han detallat a la comparativa de la Taula 8.1.

Récord de El record de comput de ’ECDLP amb 1’algorisme ro de Pollard és sobre una corba
comput definida sobre un cos primer de 112 bits de I’any 2012.

Criptografia basada en el problema del logaritme discret sobre corbes

En aquesta secci6 es descriuen algorismes criptografics que es basen en el problema del calcul del logaritme
discret sobre corbes el-liptiques. En primer lloc, veurem la versié de I’intercanvi de claus de Diffie-
Hellman sobre corbes. A continuacid, presentarem 1’algorisme de signatura ECDSA. Finalment, descriurem
I’algorisme de xifratge ECIES.

Intercanvi de claus de Diffie-Hellman amb corbes el liptiques

L’algorisme d’intercanvi de claus de Diffie-Hellman sobre corbes el-liptiques (ECDH, de I’angles, Elliptic
Curve Diffie-Hellman Key Exchange) és una variant de 1’algorisme d’intercanvi de claus de Diffie-Hellman
(que ja hem presentat al Capitol 6) que treballa sobre corbes el liptiques fent servir les operacions de suma i
multiplicacioé que hem definit en aquest capitol. De la mateixa manera que la variant classica, 1’objectiu de
I’ECDH és aconseguir que dos usuaris que es comuniquen per un canal insegur derivin una clau compartida.

El procés d’inicialitzacié de 1’algorisme consisteix en la selecci6 dels parametres de domini: els elements
que defineixen la corba el-liptica E (un primer p i els coeficients a i b € Z,,) i un element G = (x,,y,) € E
d’ordre n.

Una vegada fixats els parametres de domini, 1’algorisme d’intercanvi de claus s’executa de manera analoga a
la variant classica:

L’algorisme d’intercanvi de claus de Diffie-Hellman sobre corbes el-liptiques entre dos
usuaris, A i B, consta dels passos segiients:

1. A tria un valor aleatori kp.ya = a € (1,...,n) i calcula kpps = a-G = (X4,Ya)-

2. B tria un valor aleatori k,.iyg = b € (1,...,n) i calcula kppp = b- G = (xp,y).

3. A1iB intercanvien els seus valors k,;, €s a dir, A envia a B el valor kj,;4 i B envia
a A el valor kppp.

4. A deriva la clau compartida kag = kpubs - Kpriva = (XaB,YAB)-

5. B deriva la clau compartida kap = Kpupa - kprive = (XaB,YAB)-

Les claus privades (els valors a i b) s6n enters, mentre que tant les claus publiques (Kpyupa 1 kpupp) com la
clau compartida (k4p) s6n punts de la corba el-liptica. Per tant, a cada pas (a excepci6 del pas 3) es calcula
una multiplicacié escalar.
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Aix{ doncs, efectivament, el punt k4p derivat per les dues parts participants en el protocol és el mateix, ja
que, d’una banda, ’'usuari A calcula:

kap = kpriva - kpupp = a(bG)

i, d’altra banda, 1’usuari B calcula:
ka = kprivs - kpupa = b(aG)

Com que la suma de punts és associativa, les dues parts calculen el mateix valor.

Pel que fa a la seguretat davant d’un atacant que escolti el canal, I’atacant coneixera els dos valors intercanviats
pel canal, kppa 1 kpupp, @ més dels parametres publics que defineixen E (a, b i p) i el punt G, pero calcular
kap a partir d’aquests valors és un procés computacionalment dificil.

Exemple 8.13 Exemple d’intercanvi de claus de Diffie-Hellman amb corbes el liptiques

Els usuaris A i B disposen d’un canal insegur amb el qual comunicar-se, i volen aconseguir crear una clau
compartida kqp:

Se seleccionen els parametres de domini a = 3,b = 8,p = 23 (i, per tant, E /73 : y> = x> +3x+8) i
G = (19,1) € E/Z»3 (de manera que #E = n = 29).

1. A tria el valor aleatori kpiy4a = a = 15 i calcula:
kpupa = a-G =15(19,1) = (6,14).

2. B tria un valor aleatori k,,;,p = b = 18 i calcula:
kpupg =b-G =18(19,1) = (13,17).

3. AiB intercanvien els seus valors k.

4. A deriva la clau compartida, calculant:
kap = kpups - kpriva = 15(13,17) = (17,2).

5. B deriva la clau compartida, calculant:
kap = kpupa - kprive = 18(6,14) = (17,2).

El protocol finalitza amb A i B compartint el mateix valor secret kap = (17,2).

8.6.2 L’'esquema de signatura ECDSA

L’ECDSA (per les seves sigles en angles, Elliptic Curve Digital Signature Algorithm) és una variant de
I’algorisme de signatura DSA (Digital Signature Algorithm) que es basa en el problema del logaritme discret
sobre corbes el-liptiques. L'ECDSA és analeg al DSA, pero operant sobre corbes el-liptiques en comptes de
sobre els enters. L’ECDSA va ser proposat I’any 1992 per Scott Vanstone, i des d’aleshores ha estat inclos
en diversos estandards.

L’algorisme de generacié de claus de I’ECDSA coincideix amb els primers passos de ’intercanvi de claus de
Diffie-Hellman amb corbes el-liptiques.

En primer lloc, s’executa el procés d’inicialitzacid, en que se seleccionen els parametres de domini: la
corba E /7, (amb modul p i coeficients a i b) i un punt G que genera un grup ciclic d’ordre primer n. Els
parametres de domini sén doncs la tupla (p,a,b,G,n). Si es fan servir corbes estandarditzades, no cal
executar el procés d’inicialitzacid, ja que els parametres de domini ja venen definits.

Una vegada generats els parametres de domini, es procedeix a la generaci6 de claus:
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L’algorisme de generacié de claus ECDSA consta dels passos segiients:

1. Es tria un enter aleatori k., = d €g (1,n).
2. Bscalculak,y, =B=d-G.
3. Laclau publica k,,;, €s el punt B, mentre que la clau privada k,;, és el valor d.

Les claus generades per I’algorisme anterior es poden fer servir per a generar i validar signatures digitals
fent servir els algorismes segiients:

A partir d’un missatge en clar m, la clau privada de I’emissor k., = d, i els parametres de
domini (p,a,b,G,n), es calcula la signatura digital ECDSA del missatge:

1. Es tria una clau efimera k, € (0,n).

2. Es calcula R = k.- G. Com que R és un punt de la corba el-liptica, tenim que
R= (xR,yR).

Es calcula » = xg mod n. Si r =0, es torna al pas 1.

Es calcula e = H(m).

Es calcula s = (e+d-r)-k; ! modn. Sis=0,es torna al pas 1.

La signatura és la tupla (7, s).

N g B

L’algorisme de signatura ECDSA requereix de 1’Gs d’una funcié hash, al pas 4, que s’aplica al missatge
abans de signar-lo, com €s habitual en les signatures digitals. Per a 1’algorisme ECDSA la funci6 hash ha
de retornar un enter i, per tant, no és necessari fer servir un esquema que permeti obtenir punts a partir de
funcions hash (a difereéncia d’altres esquemes criptografics que veurem més endavant).

En els passos 3 1 5 es fan comprovacions sobre els valors que formen part de la signatura digital, i que
asseguren que la signatura resultant de I’execucié no contingui zeros. Aix0 permet evitar certs atacs.

Com que els tres primers passos de la signatura no requereixen 1’ds del missatge m a signar, si es fan
servir corbes estandarditzades (i, per tant, els parametres de domini sén coneguts anticipadament) es poden
precalcular valors r aprofitant moments en que la carrega del sistema sigui baixa i el processador estigui
disponible. Aquests valors poden ser utilitzats després, quan es requereixi fer una signatura digital, reduint el
temps de comput necessari per calcular-la.

La variant de I’algorisme de signatura ECDSA que acabem de descriure és probabilistica. Per a un mateix
missatge i una mateixa clau privada, existeixen diverses signatures valides. Aquesta variabilitat s’introdueix
en la generacié d’una clau efimera (k.), que se selecciona aleatoriament i que sera diferent per a cada
signatura. De fet, €s indispensable per a la seguretat de I’esquema que la clau efimera sigui tinica, doncs
multiples signatures fetes amb una mateixa clau privada i una mateixa clau efimera rebel-len la clau privada.
Quan no es pot assegurar que es disposa d’una font d’aleatorietat prou bona per a complir aquest requisit,
s’utilitzen versions deterministes de 'ECDSA, que deriven la clau efimera del missatge a signar.
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A partir d’'un missatge en clar m, la clau puiblica k,,;, els parametres de domini
((p,a,b,G,n)) i una signatura del missatge (r,s), els passos segiients permeten verifi-
car una signatura ECDSA:

1. Es verifica que r i s es trobin a I’interval (0,7).

Es calcula e = H(m).

Es calculaw = s~! mod n.

Escalculau; =w-e modniu; =w-r modn.

Es calcula P = u; - G+ uz - B. Com que P és un punt de la corba el liptica, tenim que

P = (xp,yp).

6. Sixp =r mod n, aleshores la signatura és valida i la verificaci6 finalitza correcta-
ment. En cas contrari, la signatura es considera invalida i la verificaci6 fracassa.

g @2 9

Noteu com I’algorisme de verificaci6 de signatures ECDSA és correcte. Si la signatura (7, s) ha estat creada
per un signant legitim, aleshores s = (e +d - r) ~kg1 mod n (pas 5 de I’algorisme de signatura) i, per tant:

1

ke=s"'e+d-r) modn=s"'e4+s'-d-r modn=w-e+w-d-r modn=

=u;+uy-d modn

Aleshores, tenim que:

PZM]-G+u2-B=M1~G—|—M2~d~G=G<M1+M2~d)ZG-ke
i, per tant, xp =r.

Exemple 8.14 Exemple de signatura i verificaci6 amb ECDSA
L’usuari A vol enviar el missatge m = 567 signat amb ECDSA a un altre usuari.

En primer lloc, se seleccionen els valors ptiblics a = —5,b=5,p =11 (E/Z; : x> —=5x+5)i G= (2,6) €
E (de manera que #E = n = 17).

A continuacid, cal que A disposi d’un parell de claus ECDSA. L’algorisme de creaci6 de claus és el mateix
que en ’ECDH:

1. A tria el valor aleatori kpr;4 = d = 5.
2. Acalculak,, =B=a-G=5(2,6)=(8,9).
3. La clau publica k,,;, és el punt B = (8,9), mentre que la clau privada k,;, és el valor d = 5.

Per tal de signar el missatge m = 567, A executa 1’algorisme de signatura. Per simplicitat, a I’exemple es
fara sevir la funci6 identitat (que retorna a la sortida el valor que rep a I’entrada) com a funci6 hash H.

A tria una clau efimera k, = 10 €g (0,17).

AcalculaR=k,-G =10(2,6) = (6,2) = (xg,yR)-

A calcula r = xg modn = 6. Com que r # 0, segueix I’execucié de 1’algorisme al pas segiient.
A calcula e = H(m) = 567.

Acalculas = (e+d-r)-k;' modn=(567+5-6)-10"" mod 17 =597-12 mod 17 =7. Com
que s # 0, segueix 1’execuci6 de 1’algorisme al pas segiient.

6. La signatura és la tupla (r,s) = (6,7).

s> I =

A partir del missatge en clar m = 567, la clau publica k,,;,, els parametres de domini, i la signatura del
missatge (r,5) = (6,7), el receptor del missatge pot verificar-ne la signatura:

1. Verificaque 6 € (0,17)17 € (0,17).
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Calcula e = H(m) = 567.

Calculaw=s"! modn=7"" mod17=>5.

Calculau; =w-e modn=5-567 mod17=131iuy=w-r modg=5-6 mod 17 = 13.
Calcula P=u;-G+uy-B=13(2,6) +13(8,9) = (6,2) = (xp,yp).

Comprova si xp = r mod g. Com que efectivament 6 = 6 mod 17, la signatura és valida.

DS PR

Exercici 8.10 Donada la corbai claus generades per ’algorisme de generaci6 de claus de ’Exemple 8.14
i la mateixa funcié hash que en aquest exemple, verifiqueu la validesa de la signatura ECDSA (10, 3) per
al missatge m = 876.

Exercici 8.11 Donada la corba E/Zy3 : y* = x* + 3x + 8 i el punt base G = (13,6) d’ordre 29:

1. genereu un parell de claus ECDSA fent servir aquests parametres de domini,

2. proporcioneu una signatura amb ECDSA del missatge m = 25504446 considerant com a funci6
hash la funci6é H(x) =x mod 10, i

3. valideu la signatura que acabeu de generar.

8.6.3 L'esquema de xifratge integrat de corbes el-liptiques (ECIES)

L’esquema de xifratge integrat de corbes el-liptiques (ECIES) (de 1’angles, Elliptic Curve Integrated Encryp-
tion Scheme) va ser proposat per Mihir Bellare, Michel Abdalla i Phillip Rogaway a finals dels noranta i és
I’algorisme de xifratge basat en corbes el-liptiques més estes actualment.

Diferents versions de I’'ECIES (similars perd no totalment compatibles entre elles) es troben estandarditzades
per diversos organismes als estandards ANSI X9.63, SEC 1, ISO/IEC 15946-3, i IEEE P1363a.

L’ECIES és un algorisme de xifratge hibrid, que fa ts de la criptografia de clau publica per a generar una
clau que s’utilitza en un algorisme de xifratge simetric. D’aquesta manera, s’aprofita I’eficiencia del xifratge
simetric i les propietats que ofereix la criptografia de clau publica.

A grans trets, el funcionament de ’ECIES es basa en generar una clau secreta compartida entre emissor
i receptor de manera analoga a 1’algorisme de Diffie-Hellman i a partir d’aquesta clau se’n deriven dues
claus simetriques. La primera d’aquestes claus simetriques es fa servir per a xifrar el missatge fent servir un
criptosistema de clau simetrica, i la segona es fa servir per a autenticar el text xifrat.

L’ECIES fa servir tres primitives criptografiques: un algorisme de xifratge de clau simetrica (tal que
m = Dy (E(m)), una funci6 de derivaci6 de clau (KDF) i un codi d’autenticaci6é de missatges (MAC).

A partir d’un missatge en clar m, la clau publica k,,;, = B (generada amb el mateix algoris-
me de generacié de claus que per a ’ECDSA) i els parametres de domini (p,a,b, G,n,h),
els passos segiients permeten xifrar el missatge amb ECIES (I’esquema de xifratge
integrat de corbes el-liptiques):

1. Es tria aleatoriament una clau efimera k, € (0,n).

2. EscalculaR=k,-GiZ=h-k.-B. Si Z= 0, es torna al pas 1. Com que Z és un
punt de la corba el-liptica, tenim que Z = (xz,yz)-

Es calcula (k,ky) = KDF (xz,R).

Es calcula C = Ey, (m).

Es calcula t = MACy, (C).

Es retornen els valors (R,C,t).

N ©n g B
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Noteu com del secret compartit Z se’n deriva la clau simetrica &y, que es fa servir per a xifrar el missatge, i
la clau simetrica kp, que es fa servir per autenticar-lo.

A partir d’un missatge xifrat (R,C,t), la clau privada k., = (d), i els parametres de
domini (p,a,b,G,n), els passos segiients permeten desxifrar el missatge amb ECIES
(I’esquema de xifratge integrat de corbes el-liptiques):

1.
2.

oA W

Es valida que R sigui un punt valid de la corba diferent de &.
EscalculaZ=h-d-R. Si Z = 0, es rebutja el text xifrat. Com que Z és un punt de
la corba el liptica, tenim que Z = (xz,yz)-

Es calcula (k,k2) = KDF (xz,R).

Es calcula t’ = MACy, (C). Sit #1', es rebutja el text xifrat.

. Es calcula m = Dy, (C).
. Es retorna el text en clar m.

Es interessant notar com el punt Z es deriva del secret de Diffie-Hellman compartit entre emissor i receptor
(Iemissor calcula k, - B fent servir la clau publica del receptor B i el receptor calcula d - R fent servir la seva
clau privada).

Si el text xifrat (R,C,t) és realment el resultat de xifrar m seguint 1’algorisme de xifratge, aleshores:

Z=h-d-R=h-d-k.,-G=h-ko-d-G=h-k,-B

1, per tant, el receptor deriva les mateixes dues claus simetriques k; i k> que I’emissor ha utilitzat per xifrar, i
pot validar i desxifrar el missatge.
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Resum

En aquest capitol s’ha presentat la criptografia de corbes el-liptiques. En primer lloc, s’ha explicat el seu
origen i els seus avantatges en relacio6 a la criptografia de clau publica tradicional. A continuacid, s’ha
descrit com es fan servir les corbes el-liptiques per crear grups d’interes per a la criptografia, s’han presentat
els principals estandards que cobreixen la criptografia de corbes el-liptiques, i s’ha exposat la variant del
problema del logaritme discret sobre corbes el-liptiques. Per ultim, s’han detallat alguns dels esquemes
criptografics més populars que fan servir aquest tipus de criptografia: I’intercanvi de claus de Diffie-Hellman
sobre corbes el-liptiques, I’esquema de signatura ECDSA, i I’esquema de xifratge ECIES.
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Solucions dels exercicis

Exercici 8.1:

A continuacid es proposa una aproximacié que permet resoldre el problema plantejat amb els coneixements
exposats fins a la secci6é en que es proposa I’exercici. Més endavant s’expliquen altres alternatives més
eficients per al calcul dels punts d’una corba.

Els punts de la corba seran tots aquells que compleixin I’equacié y> = x> — 4x+ 1 a Zs. Per tant, en primer
lloc avaluem I’expressio per a tots els possibles valors x € Zs:

.l;»—i»—*b)»—t‘%w

AUJ[\J»—AO‘X

Ara, ens cal saber quins dels valors d’y? sén residus quadratics a Zs. Com que el cos és petit, els podem
calcular per forga bruta, provant tots els possibles casos:

Auw~o‘\<
~4>4>»—o“<.\,

Veiem doncs que els valors 114 sén residus quadratics, mentre que el 3 no ho és.

Per tant, trobem que els punts de la corba sén:

[(071)7(074)7(271)7(274)7(371)7(374)7(472)’(4’3)’6]

Exercici 8.2:

Com que Py # P,, aleshores el pendent m és:

Y2 —yi1
m=-———

7-1 6
modp=-— modll=: modll=2
o odp=,—7 mo 3 0

Després, es calculen les coordenades del punt:
xy=m*—x;—x, modp=2>—1-—4 modll=10

y3=m(x;—x3)—y; modp=2(1—-10)—1 modl1l=3
Per tant, el resultat de la suma és P; = (10,3). Efectivament, el resultat coincideix amb el calcul fet
graficament a ’Exemple 8.4.
Exercici 8.3:

En primer lloc, calculem P + P. Per fer-ho, es calcula el valor del pendent m:
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m_3-82—5
29

mod 11 = % mod11 =0
1 després, es calculen les coordenades del punt:
x=m*—x—x» modp=0—-8—8 modll=6
y3=m(x;—x3)—y; modp=08—-6)—9 modll=2
Per tant, 2P = P+ P = (6,2).

Seguint el mateix procediment, podem calcular la resta de punts:

P=(8,9) 8P = (4,4) 15P = (6,9)
2P=P+P=(6,2) 9P = (4,7) 16P = (8,2)
3P=P+P+P=(1,10) 10P = (2,5) 17P =0
4P = (0,4) 11P = (10,8) 18P = (8,9)
5P=(7,4) 12P = (7,7) 19P = ...
6P = (10,3) 13P = (0,7)

7P = (2,6) 14P = (1,1)

Exercici 8.4:
L’invers del punt P, = (x1,y1) sera el punt P tal que P, + P, = 0.
D’una banda, sabem que aquest punt P, és precisament P, = —P, = (x1,—y1) = (4,—7) = (4,4).
Alternativament, si prenem com a referencia la solucié de I’exercici anterior, veiem que:

P =(4,7)=9P

OP+8P=17P=0

P, =8P =(4,4)

Exercici 8.5:

Com que 9 no és primer, no tots els elements del grup s6n generadors. En particular, el punt (4,5) no ho és,
ja que no genera tots els 9 elements del grup:

P=(4,5)
2P=P+P=(406)
3P=P+P+P=0

Exercici 8.6:

La representaci6 binaria de 1’enter 12 és 1100. En primer lloc s’inicialitza result a ¢. A continuacié
s’executen les iteracions:
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Taula 8.3: Execuci6 de I’algorisme de sumar i doblar

Iteracié e Comput

1 e=0 point = point + point =(7,2)+(7,2) =(18,11)

2 e=0 point = point + point = (18,11)+ (18,11)=(22,2)

3 e=1 result = result + point =+ (22,2) =(22,2)
point = point + point =(22,2)+(22,2) =(10,16)

4 e=1 result = result + point =(22,2)+ (10,16) = (16,14)

Per tant, 12P = (16, 14).

Exercici 8.7:

Substituint els valors al teorema de Hasse tenim que:

HE — 12| <2V11
5.36 < #E < 18.63

Per tant, les corbes el-liptiques definides sobre Z; tindran entre 6 i 18 punts.

Exercici 8.8:

1.

Escalculat = [log, p] =192, s = |2 | = [B& | =1iv=r—sl=32.

2. Lallavor S és 0x3045ae6fc8422f64ed579528d38120eae1219645, amb g = 160 > [.

Es calcula:
o= H(S)[lfv...l] =
= 0x7£6da10026c7££92c5ac2e890bd59b44b099d2bb o5 160) =
= 0xb099d2bb

Es calcula Wo = 0 || cgj...,] = 0x3099d2bb.
Perides de 1 fins a s:

s1=(S+1) mod2' = 0x3045ae6fc8422f64ed579528d38120eae12196d6

W, = H(s1) = H(0x3045ae6fc8422f64ed579528d38120eae12196d6) =
= 0xbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65

Es calcula:

r=W||W, =
= 0x3099d2bbbfcb2538542dcd5fb078b6ef5£3d6fe2c745de65

Es comprova que 7-b> = a> mod p:
0x3099. ..de65 - 0x6421...b9b1% = (—3)> mod2!%? — 2% — 1]

Com que la igualtat es compleix, podem verificar que la corba ha estat generada aleatoriament seguint
I’algorisme descrit.

Exercici 8.9:

Com que la corba (E : y* = x> — 5x+5 a Z;) coincideix amb la de I’exercici 8.3 i la base G = (8,9) és
precisament el punt P, aleshores podem observar directament de la solucié de 1’exercici 8.3 que:

13P=(0,7)=T
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1, per tant, el logaritme és 13.

Exercici 8.10:
1. Es verifica que 10 € (0,17) 13 € (0,17).
2. e=H(m)=876.
3. w=s"! modg=3"" mod17=6.
4. uy=w-e modg=6-876 mod17=3iupy=w-r modg=6-10 mod 17 =9.
5. P=u;-G+uy-B=3(2,6)+9(8,9) = (0,7) = (xp,yp).
6. Es comprova si xp =r mod g. Com que 0 # 10 mod 17, la signatura és invalida.

Exercici 8.11:

1. La generaci6 del parell de claus consta dels passos segiients:

1.
2.
3.

Es tria el valor aleatori kp,jya = d = 6.
Es calcula B=aG = 6(13,6) = (18,11).
La clau publica &, és el punt B = (18,11), mentre que la clau privada k), és el valor d = 6.

2. La signatura del missatge m = 25504446 consta dels passos segiients:

SNk

6.

Es tria una clau efimera k, = 19 € (0,29).

Es calcula R =k, -G = 19(13,6) = (12,1) = (xg,¥r)-

Es calcula r = xg mod n = 12. Com que r # 0, segueix I’execuci6 de I’algorisme al pas segiient.
Es calcula e = H(m) = H(25504446) = 6.

Es calcula s = (e+d-r)k,;' modn=(6+6-12)19"" mod29 =20-26 mod 29 = 27. Com que
s # 0, segueix 1’execuci6 de 1’algorisme al pas segiient.

La signatura és la tupla (r,s) = (12,27).

3. La verificaci6 de la signatura (r,s) = (12,27) per al missatge m = 25504446 consta dels passos segiients:

SNl

Es verifica que 12 € (0,29) 1 27 € (0,29).

Es calcula e = H(25504446) = 6.

Es calculaw =s~! modg=27"" mod29 = 14.

Escalculau; =w-e modg=14-6 mod29=261iuy =w-r modg=14-12 mod 29 = 23.
Es calcula P=u; -G +up-B=26(13,6)+23(18,11) = (12,1) = (xp,yp).

Es comprova si xp = r mod g. Com que efectivament 12 = 12 mod 29, la signatura és valida.
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9.1

En el capitol anterior s’han presentat les corbes el-liptiques i alguns dels seus usos en criptografia. Tot i aixo,
no ens hem endinsat en una de les construccions més populars en els dltims anys en criptografia basada en
corbes el-liptiques: els pairings.

Algunes corbes el-liptiques tenen una estructura addicional anomenada aparellament (en angleés, es coneix
com a pairing), que obre la porta a tot un nou conjunt d’eines criptografiques. En particular, els pairings es
fan servir en criptografia per a atacar criptosistemes basats en el logaritme discret i també en la construccié
de noves primitives criptografiques.

En aquest capitol descriurem les propietats dels pairings i la seva definici6 (tot explicant les eines matemati-
ques necessaries per a construir-los), i veurem alguns algorismes criptografics basats en aquests.

Propietats dels pairings

Existeixen diferents tipus de pairings, perd no tots sén adequats per a usos criptografics. Els tnics pairings
coneguts que son utils en criptografia i, a més, eficientment computables, sén els pairings de Weil i de Tate
sobre corbes el-liptiques.

Més enlla de la seva definicid explicita, que veurem més endavant, a continuaci6 en descrivim les propietats
que els caracteritzen.

Definicié 9.1  Siguin Gy, G i G grups ciclics d’ordre primer g amb Gy € Gy i G| € G; elements
generadors dels grups. Diem que Go i G s6n els grups d’origen i Gr el grup objectiu.

Un aparellament (conegut en angles com a pairing) és una aplicacié e : Go x G; — Gr que satisfa dues
propietats:

1. Es bilineal, és a dir, per a tot Py, Qo € Goi P;,0; € Gy:

e(Py,Pi+ Q1) =e(Py,Py)xe(Py, 01)
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e(Po+Qo,P1) =e(Po,Pr)*e(Qo,Pr)

2. Esno degenerat, és a dir, g7 = ¢(Go, G}) és un generador de Gr.

Es a dir, I’aplicaci6 e és lineal per a les dues entrades. La bilinealitat dels pairings implica la segiient
propietat, en la qual es basen les construccions criptografiques que els fan servir:

e(atPy, BPr) = e(Po, P1)*P = e(BPy, auPy)

La propietat es deriva directament de la definicié de bilinealitat:

e(aPy,BPy) = e(Po, BP1)* = e(aPy, P)P = e(Py,P)*P

Notacié Noteu que s’ha fet servir notacié additiva a G i G; 1 multiplicativa a G7. Aix0 €s aixi
ja que com veurem a continuacio, els grups Go i G estan definits per punts de corbes
el-liptiques (i en aquest capitol anomenem suma a 1’operacié de grup) i, en canvi, el
grup Gr sera un grup multiplicatiu.

Diem que un aparellament és simetric si Go = G i asimétric en cas contrari.

La definici6 explicita dels pairings de Weil i de Tate és complexa i, per aix0, sovint s’obvia aquesta definicié
ies descriuen Gnicament les propietats que els caracteritzen. Entendre les propietats dels pairings és suficient
per poder comprendre els esquemes criptografics que se’n deriven pero, d’altra banda, entendre com es
calculen ens permet aproximar-nos més detalladament a la seva estructura. Les dues seccions segiients estan
centrades en la definici6 explicita dels pairings: en primer lloc, es detallen un conjunt d’eines matematiques
que permeten definir els pairings; a continuacio, es presenta la definici6 explicita dels pairings de Weil i
de Tate, tot exemplificant el calcul amb una corba petita. El lector interessat pot doncs aprofundir en la
construccié dels pairings seguint la lectura de la propera seccié. D’altra banda, el lector que no desitgi
aprofundir en la construcci6 dels pairings, pot passar directament a la Secci6 9.4 per focalitzar-se directament
en els algorismes criptografics que es basen en les propietats que proporcionen els pairings.

Eines matematiques per a la construccié dels pairings

En aquesta secci6 es presenten les eines matematiques que permeten definir explicitament els pairings de
Weil i de Tate. En primer lloc, s’estén la definicié de corbes el-liptiques que hem vist fins ara sobre Z, a
cossos finits amb un nombre d’elements no primer. A continuacid, es defineix la r-torsié dels punts d’una
corba el-liptica i s’observa I’estructura dels subgrups que conforma. Finalment, es descriu el concepte de
divisor d’una funcid i es presenta el seu us en el context de la criptografia de corbes el-liptiques.

Corbes el-liptiques sobre cossos estesos

Fins ara hem fet servir corbes el-liptiques definides sobre cossos finits amb un nombre primer d’elements
(Zp). Ara bé, també es poden construir corbes el-liptiques sobre altres cossos finits, com ara cossos amb un
nombre d’elements potencia d’un primer F 4. Al capitol de Fonaments matematics ja hem vist com construir
aquests cossos finits fent servir polinomis irreductibles. L’ds d’aquests cossos per a la creacié de corbes
el-liptiques és analeg al cas de cossos finits amb nombre primer d’elements.
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Exemple 9.1 Exemple de corba el-liptica sobre cos estés

Com ja hem vist a I’'Exemple 8.6, la corba el liptica E /Z; : y2 = x> —5x+5 té 17 elements:

[0,(0,4),(0,7),(1,1),(1,10),(2,5),(2,6),(4,4),(4,7),(6,2),(6,9),(7,4),(7,7),
(8,2),(8,9),(10,3),(10,8)]

La corba esta definida sobre Z11, un cos finit amb un nombre primer d’elements (11).

La corba el-liptica E/(Z11/z*> +1) : y* = x> —5x+5 té en canvi 119 elements. La corba esta definida
sobre el cos finit d’112 elements fent servir el polinomi 22+ 1, irreductible a Z;; i de grau 2.

Alguns dels 119 elements d’aquesta corba el-liptica sén:

[6,(0,4),(0,7),(1,1),(1,10),(2,5),(2,6), (4,4), (4,7),(6,2), (6,9), (7,4), (7,7),
(8’2)7 (879)7 (10,3),(1078), (5a4Z), (5,72),(9,22),(9,9Z)7(Z+2,Z+3),(Z—|—2, IOZ),
(z4+4,42+38),(z+4,72+3),.. ]

Podem comprovar que aquests punts efectivament pertanyen a la corba verificant que compleixen I’equacié
que la defineix. Aixi, per exemple, per al punt (5,4z), tenim que:
Y =x"—5x+5 mod1l
(42)>=5>—5.54+5 mod 11
162 =105 mod 11
572=6 mod 11
522-6=0 mod1l

Efectivament, el residu de dividir 572 — 6 entre z2 4+ 1 a Z1; és 0 (ja que 5(z> +1) =5z> +5=57>—6
mod 11).

9.2.2 Els punts de la r-torsio

En gran part d’aquest capitol hem treballat amb corbes el-liptiques definides sobre cossos finits amb un
nombre primer d’elements. A la seccid anterior hem vist que també podem definir corbes sobre cossos
estesos amb ordre la poténcia d’un primer. A continuacié veurem una de les construccions que es poden
definir quan treballem amb grups sobre cossos estesos, els grups formats per r-torsions.

Definicié 9.2 Sigui E una corba elliptica definida sobre un cos finit Z, i n un primer divisor de #E /Z,.
El grau d’immersié (en anglés, parlem d’embedding degree) d’E respecte a n és el menor enter k tal que
n divideix pF — 1.

Per al cas n = #E /Z,, direm simplement que & és el grau d’immersié d’E.

Una vegada definit el grau d’immersid, passem a definir la r-torsio:

Definicié 9.3 Sigui  un primer diferent de p. Es defineixen els punts de la r-torsié, E[r], com el conjunt
de punts P que pertanyen a E/ I tals que rP = 0. Es a dir,

Elr]={P€E/F 4 tals que rP = 0}
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‘ amb k el grau d’immersi6 d’E respecte a r.

Exemple 9.2 Exemple de 3-torsio

La corba E/Z1; : y*> = x> + 10x + 4 té 15 elements (#E /Z;; = 15):
[£,(0,2),(0,9),(1,2),(1,9),(4,3),(4,8),(5,5),(5,6),(6,4),(6,7),(9,3),(9,8),(10,2), (10,9)]

El grau d’immersi6 d’E respecte a n =3 (amb 3| 15) és k = 2, ja que 2 és el menor enter tal que 7| prF—1.

Noteu que per a k = 1 la condicié no es compleix, ja que 3 { 11" — 1. En canvi, per a k = 2 tenim que
31112—1.

Hi ha 9 punts a la 3-torsi6:
E3|={P€E/(Z11/Z* +1) tals que 3P = O} =

=[0,(1,2),(1,9),(8,3z2),(8,82),(2z+1,z+9),(2z+ 1,10z +2),(9z+ 1,z+2),
(924 1,10z +9)]

Dels 9 punts de la 3-torsid, 3 es troben al cos base (€, (1,2),(1,9) € E/Zy;) i la resta al cos estes
E/(Z11/7 +1).

A continuacié comprovem que els punts compleixen la condicié per pertanyer a la 3-torsié. Com a
exemple, mostrem els calculs per als punts (1,2) i (8,3z):

P=(1,2)
2P =(1,9)
3P=0
P = (8,37)
2P = (8,87)
3aP=0

Es interessant notar 1’ estructura dels subgrups de la 3-torsi6: la 3-torsi6 té 4 subgrups ciclics, tots ells
d’ordre 3:

Ordre  Subgrup
3 {ﬁ7 (1,2), (179)}
3 {0, (8,3z), (8,82)}
3 {0, 2z+1,z4+9), (2z+1,10z+2)}
3 {0, 92+ 1,z+2), (9z+1,10z4+9)}

Exercici 9.1 Donada la corba de 1’exemple anterior (Exemple 9.2), calculeu el grau d’immersié d’E
respecte an =15,71 15.

9.2.3 El divisor d’una funcié

Per acabar la presentaci6 de les eines matematiques que ens permetran definir els pairings, exposarem el
concepte de divisor d’una funcié.
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Abans, pero, definirem els conceptes de funci6 racional, i els zeros i pols d’aquestes.

Definicié 9.4 Una funcié racional f(x) és una funcié que pot ser expressada com a una divisié de
polinomis en la qual el denominador no és 0 (és a dir, f(x) = ¢(x)/p(x) amb p(x) # 0). Quan el numerador
q(x) i el denominador p(x) no tenen arrels en comu, diem que la funcié esta en forma reduida.

Definici6 9.5 Els zeros d’una funcio racional s6n els punts en qué f(x) = 0 mentre que els pols sén els
punts en qué f(x) = oo,

Donada una funci6 racional en forma reduida expressada amb els polinomis factoritzats:

Calx—ag)M(x— o) (x— o, )M

f(x) - b(x—ﬁl)vl (X_Bz)vz .. (X_Bn)‘/"

©.1)

els zeros corresponen als valors ¢; mentre que els pols sén els 8;. Noteu que o; # f3; per a qualsevol i i j, ja
que la funcid es troba en forma reduida. Direm que els y; i els v; s6n la multiplicitat de cada zero i de cada
pol, respectivament.

A més, si el grau del polinomi del numerador difereix del grau del polinomi del denominador (deg(g(x)) #
deg(p(x))), hi haura un zero o un pol a I’infinit. En concret, si deg(g(x)) > deg(p(x)) hi haura un zero a
I'infinit i si deg(g(x)) < deg(p(x)) hi haura un pol a I’infinit. La multiplicitat del zero o del pol sera la
diferencia entre els graus dels polinomis (|deg(g(x)) — deg(p(x))|), de manera que 1’ordre total de zeros i
pols és igual.

Els divisors sén una eina que es fa servir per descriure els zeros i els pols d’una funcié. Donada una funcié
racional:

fx) =c[(x—o)* 9.2)

i

escriurem:

div(f) =Y wi (o)

i

En primer lloc, noteu com I’equacié 9.2 és equivalent a ’equacié 9.1. Només cal expressar els factors que
es trobaven al denominador amb valors negatius als exponents. En segon lloc, és important interpretar el
divisor com a tal, i evitar operar com si estiguéssim treballant amb nimeros (o, més endavant, amb punts de
la corba). Per aquest motiu, es fan servir les claus ( i ) per denotar que no estem parlant d’un enter (0 un
punt) ¢; sind d’un zero o un pol en aquell punt (més endavant tornarem a fer incis en aquest detall, quan
definim els divisors sobre corbes el-liptiques). Per tltim, cal destacar que efectivament el divisor ens permet
anotar els pols i zeros de la funcid, ja que ens descriu a on sén i quina multiplicitat tenen.

Exemple 9.3 Zeros i pols d’una funcié

La funcié:
(x—1)? 2 -3
=——=(x—1 2
) = g = 6= D’ (+2)
té un zero de multiplicitat 2 a x = 1 i un pol de multiplicitat 3 a x = —2. Addicionalment, la funcié té
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un zero de multiplicitat 1 a I’infinit, ja que el grau del denominador €s superior al del numerador en una
unitat.

Observant la representaci6 grafica de la funcid, podem veure que efectivament és zero en x = 1 i tendeix a
infinit en x = —2:

_ (x=1)?
fix) = x+2)°

400

200 4

—200 A

—400 -

—600 -

Per tant, podem descriure els pols i zeros de la funcié f amb el divisor:

div(f) = 2(1) = 3(=2) + (o)

Exercici 9.2 Indiqueu el divisor de la funci6 racional:

(x=1)*(x+5)?

flx) = (x—12)*

Es interessant notar com es reflecteixen les operacions entre funcions en els divisors:

div(f-g) =div(f) +div(g) 9.3)

div(f/g) = div(f) —div(g) 0.4

Exemple 9.4 Operacions entre funcions

Donades les funcions:

amb divisors:

https://www.criptografia.cat v0.2.1 04/02/2026


https://criptografia.cat

9.2 Eines matematiques per a la construccid dels pairings 271

div(g) = ~3(~2) +3()

podem comprovar com el divisor del seu producte és la suma del divisor de cadascuna d’elles:

x—1)?
) = (=1 b = g = = 12

div(f-g) = 2(1) = 3(=2) + (o) = div(f) +div(g)

i que el divisor del seu quocient és la resta del divisor de cadascuna d’elles:

L)C)_(X—l)z_x_ 2(y 3
g(x) - (x+12)3 _( 1) ( +2)

div(f/g) = 2(1) +3(=2) — 5(e0) = div(f) — div(g)

A més, dues funcions que tenen el mateix divisor s6n iguals excepte per una constant i el divisor d’una funcié
és zero si i només si la funcié és constant.

En la criptografia basada en corbes el-liptiques, es fan servir divisors per descriure els punts d’interseccié
d’una corba E amb una funcié f(x), de manera que s’utilitzen per descriure els zeros i els pols de la funcié

E — f(x).

Definicié 9.6 Sigui E una corba el-liptica. Un divisor sobre E és una suma formal:
D= Z np(P)

on els n, s6n enters i on tots els n,, excepte un nombre finit sén zero.

Es a dir, ara els zeros i pols seran punts de la corba el-liptica (P € E), i n’expressarem la seva multiplicitat
amb els enters n,, de la mateixa manera que ho feéiem anteriorment amb funcions racionals definides sobre
els reals.

De nou, és important diferenciar la suma de punts d’una corba (que denotavem amb el simbol +, per exemple,
P + P») i la multiplicaci6 escalar d’un enter per un punt (que denotavem per sP o bé s - P) de la suma formal
que conforma un divisor (que denotem fent servir també el simbol + i de manera similar a la multiplicacié
escalar, pero indicant els punts dins de les claus, s1(P1) + 52 (P2)).

Exemple 9.5 Divisors de les rectes que defineixen la suma

Ja hem fet servir funcions sobre corbes el-liptiques a I’inici d’aquest capitol, quan descriviem com sumar
dos punts d’una corba el-liptica. Recapitulant, el procediment per calcular la suma entre dos punts requeria
del calcul de la recta que passava per aquests dos punts (o bé de la recta tangent a la corba en aquell punt,
en I’operaci6 de doblat) i de la recta vertical que passava pel tercer (o segon, en el cas del doblat) punt
d’interseccié de la corba. A continuacié descriurem els divisors d’aquestes funcions.

Anomenem [p, p, ala funcié que representa la recta que passa pels punts P; i P> (recta que tracem per a
calcular la suma P 4 P», representada en blau a la figura segiient) per a P; # P,. Aleshores podem escriure
els divisors de la funci6 Ip, p,:

div(lp p,) = (P1) + (P) + (= (P1 + P2)) — 3(0)
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ja que efectivament la funcié /p, p, interseca la corba E en els punts P;, P, i —(P; + P») (el punt simetric al
resultat de la suma).

S'= —(P1+P2)

Per al cas en que els dos punts a sumar son iguals (linia blava a la figura segiient), aleshores tenim que:

div(lp p) = 2(P1) + (—2P) —3(0)

Anomenem vy a la funcié que representa la recta vertical que passa pels punts S i —S (linia taronja de les
dues figures anteriors). Aleshores, podem dir que:

div(vs) =(S) + (—S) —2(0)

ja que la funci6 vg interseca la corba E en els punts Si.5'.

Tot i que ja es pot intuir de la descripcié que s’ha fet dels divisors de funcions racionals, en els propers
paragrafs acabarem d’aprofundir en la multiplicitat del punt & de les funcions anteriors.

A continuaci6 es defineixen algunes caracteristiques dels divisors.

El suport d’un divisor D és el conjunt de tots els punts P que tenen el coeficient n,, diferent de zero. Dos
divisors D i D, tenen un suport disjunt si la interseccié entre el suport de tots dos és un conjunt buit (és a
dir, no tenen punts en comu al suport).
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El grau d’un divisor D €s la suma dels coeficients n,:

deg(D) = Z np
PEE

Un divisor D és un divisor principal si existeix una funcié racional f tal que D = div(f), és a dir, si
representa els zeros i els pols d’una funcié racional. Equivalentment podem afirmar que un divisor és
principal si i només si té grau zero i Y pcg n,P = . Noteu que en aquesta tltima expressié no hi ha les claus
(1), de manera que aqui s’esta calculant el sumatori de multiplicacions escalars (a diferéncia de 1’expressié
del divisor).

Exemple 9.6 Divisors de les rectes que defineixen la suma

A I’Exemple 9.5 hem vist els divisors de les rectes que es fan servir per a sumar punts (Ip, p,, lp, p, 1 Vs),
deduint-los a partir de la definici6 de les propies rectes:

div(lp, p,) = (P1) + (P2) + (= (P + P2)) = 3(0)
diV(lPl,Pl) = 2<P1 <—2P1> — 3<ﬁ>
div(vs) = (S) +(=S) —2(0)

Y+
Y+

No hem descrit amb detall, perd, per qué aquests divisors inclouen el punt a I’infinit & ni la seva
multiplicitat. Doncs bé, com que les funcions que defineixen aquestes rectes son funcions racionals, els
seus divisors s6n principals i, per tant, han de tenir grau zero. Per aixd la multiplicitat de &' a div(l) i
div(v) és —3 1 —2, respectivament.

Exemple 9.7 Divisors principals

Sigui P € E un punt de la corba el liptica E, tal que ’ordre de P és n. Aleshores, el divisor:
D =n(P) —n(0)

és un divisor principal.

En efecte, el divisor compleix les dues propietats necessaries per ser principal:

deg(D) = an:n—nzo
PEE

Z’n,,P:nP—nﬁ:@>
PEE

Noteu que com que ’ordre del punt P és n, nP = 0.

Cal destacar també que en aquest cas sabem que existeix una funci6 racional que té com a divisor D (ja
que el divisor és principal) pero, a diferencia de 1’exemple anterior (Exemple 9.6), ara no la coneixem.
Més endavant, a la propera subseccid, veurem com construir funcions que tinguin un divisor concret.

Dos divisors D i D, s6n equivalents si difereixen en un divisor principal, és a dir, si D = D| — D; és un
divisor principal. Com que un divisor principal té grau zero, dos divisors equivalents tenen el mateix grau.
Per denotar que dos divisors sén equivalents, escrivim D ~ D,.

Ja per acabar, només ens queda descriure 1’avaluacié d’una funcié en un divisor, cosa que ens permetra
il-lustrar el teorema de la reciprocitat de Weil. 1’avaluacié d’una funcié racional f en un divisor
D =Y pcgny(P) amb el suport de D i de div(f) disjunts es defineix com:
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f) =TT s

PeE

Per tal de poder avaluar la funcié f en un divisor D, els suports de D i de div(f) han de ser disjunts, ja que si
P € div(f) aleshores f(P) seria zero o infinit i, per tant, f(D) també ho seria.

Aix0 ens permet descriure el teorema de la reciprocitat de Weil, que és la base de moltes de les propietats
que es fan servir en criptografia basada en pairings:

Teorema 9.1 Siguin f i g dues funcions diferents de zero en una corba el liptica tals que div(f) i div(g)
tenen suports disjunts. Aleshores, f(div(g)) = g(div(f)).

Exemple 9.8 Reciprocitat de Weil

A continuacié comprovarem la reciprocitat de Weil per a una corba i funcions concretes, tot aprofitant per
exemplificar els diferents conceptes presentats en aquesta seccid. Aquest exemple esta basat en I’exemple

3.3.1 del manual Pairings for beginners de Craig Costello.
Donada una corba E /Zsp3 : y* = x> + 1 i les funcions f(x,y) = m% iglx,y) =y+251x*+
129x 4201 sobre E, els divisors d’ f i g sén:

div(f) = 2(433,98) + (232,113) — (432,27) — 2(127,258)
div(g) = (413,369) + (339, 199) + (147,443) + (124,42) — 4(0)

Pel que fa als divisors d’f, noteu com efectivament els punts (433,98) i (232,113) s6n punts on el
numerador d’ f és 0; i els punts (432,27) i (127,258) sén punts on el denominador és 0.

(433,98) : 20y +9x+ 179 =20-98+9-433+179 mod 503 =0
(232,113) : 20y +9x+179=20-113+9-232+ 179 mod 503 =0
(432,27) : 199y + 187x+ 359 = 199-27 + 187-432+ 359 mod 503 =0
(127,258) : 199y + 187x+ 359 = 199-258 + 187 - 127+ 359 mod 503 =0

A més, tots ells pertanyen a la corba E:

982 =433 4+1 mod 503
1132 =232° +1 mod 503
27 =432° +1 mod 503
256> =127°+1 mod 503

De manera similar, pel que fa als divisors de g, els punts (413,369), (339,199), (147,443), (124,42) s6n
punts on el numerador és 0 i, a més, pertanyen a la corba E (els calculs sén analegs i es deixen com a
exercici per al lector).

Pel que fa al grau i el suport dels divisors d’ f i g, podem dir que:
deg(div(f))=2+1-1-2=0

deg(div(g)) =1+1+1+1-4=0
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sup(div(f)) = {(433,98),(232,113), (432,27), (127,258)}
sup(div(g)) = {(413,369), (339,199), (147,443), (124,42), 6’}
sup(div(f)) Nsup(div(g)) =0

Els dos divisors son principals, ja que el seu grau és 0 i, a més:
div(f) = 2(433,98) 4 (232,113) — (432,27) — 2(127,258) = O

div(g) = (413,369) + (339,199) + (147,443) + (124,42) —4- O = O

Com que el suport dels dos divisors €s disjunt, podem calcular 1’avaluacié de la funcié f en el divisor
div(g):

f(div(g)) =f(413,369) - £(339,199) - £(147,443) - £(124,42) - £(O)~* =
20-369+9-413+179  20-199+9-339+179  20-443+9-147+179
T199-369 + 187-413+359 199-199 + 187-339+359 199-443 + 187 147 + 359
- 20-4249-124+4179 < 20-1+9-0+179 >4_321
19942+ 187124 +359 \ 199-1+ 187-0+ 359

Cal remarcar que per a la resta de punts de la corba, els enters n, son 0 i, per tant, el resultat del seu factor
és sempre 1.

Coordenades || Noteu que per a calcular I’avaluacié d’ f en el punt & hem considerat que x =0iy=1.
projectives Aix0 és aixi ja que s’ha utilitzat la representacio en coordenades projectives, de manera
que ¢ = (0:1:0). El lector interessat en aprendre aquesta representacié pot consultar
The arithmetics of Elliptic Curves de Joseph H. Silverman.

També podem calcular I’avaluacié de la funci6 g en el divisor div(f):

g(div(f)) =g(433,98)% - g(232,113) - g(432,27) ! - g(127,258) % =
=(98 4+251-433% 4129433 +201)- (113 4251 -232% 4129232 4+ 201)-
(2742514322 +129-4324201) ! - (258 4251 - 1277 + 129127 4201) 2 =
=321

Aix{ doncs, efectivament, f(div(g)) = g(div(f)) = 321.

9.2.4 Construccié de funcions a partir del divisor

Com a tltim apunt abans de presentar la construcci6 explicita dels pairings de Weil i de Tate, veurem com
podem construir funcions amb un divisor donat.

Un divisor d’especial importancia en la definici6 dels pairings és el divisor:

div(fmp) = m{P) — (mP) — (m—1)(0)

per a qualsevol enter m i qualsevol P € E. El divisor és un divisor principal, ja que el grau és zero (en efecte,
m—1—(m—1)=0)iYpcpn,P =mP—mP—(m—1)0 = 0. Per tant, sempre existeix una funcié racional
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Jfm,p per a qualsevol m i P.

A més, si el punt P pertany a la r-torsid, aleshores:

div(frp) =r(P) = (rP) = (r—1)(0) =
= HP)=(0) = (r=1)(0) =
P)y—r

Sabem que existeix una funcié racional f,, p per a qualsevol m i P ja que el divisor és principal, perd
necessitem saber com trobar aquesta funcié. Doncs bé, podem construir f,, p iterativament, a partir d’una
funcié constant de divisor zero, de la manera segiient:

I
Forip = fup- —L 9.5)
V(m+1)P

on Lypp és la recta que passa pels punts mP i P, i v, 1)p €s la recta vertical que passa pel punt (m+1)P
(recordeu que hem descrit aquestes funcions a I’Exemple 9.5).

Noteu com, efectivament, div(f+1,p) = div(finp - v(l’”%ip):
! m+

div(fini1.p) = (m+1)(P) = ((m+1)P) —m(0)
div(fn.p) =m(P) — (mP) — (m—1){(0)
div(lupp) = (mP) + (P) 4+ (—(m+1)P) = 3(0)
div(voni1yp) = ((m+1)P) + (=(m+1)P) —2(0)

i, fent servir les Equacions 9.3 i 9.4, veiem que:

In
diV(fm,P . el ) =
V(im+1)P

div(fmp) +div(lnpp) — div(V(erl)p) =
= (m(P) = (mP) = (m—1)(0) ) + ((mP) + (P) + (~(m+ 1)P) ~3(0) ) -
= ({m+DP) + (~(m+1)P) ~2(0) ) =
(mP) — (mP) + (—(m+1)P) — {(—(m+1)P) — (m+1)P)—
—(m—=1)(0)=3(0)+2(0) =
=(m+1)(P)—((m+1)P)—m(0) =
=div(fmr1,p)

El divisor d’una funci6 la determina excepte multiples escalars diferents de zero, de manera que podrem
construir funcions amb uns divisors concrets fent servir I’Equaci6 9.5.

Exemple 9.9 Construccié de la funcié f,.p
Procedim a construir la funcié f3p pera P = (2,11) € E/Zp3 : y* =x> —x.

La funci6 f3 p es construeix iterativament a partir d’ i p, la funcié constant amb divisor zero:

fir=1

Per a construir f> p cal calcular la funcié Ipp i la funci6 vop.
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La funci6 /pp és la recta tangent a la corba que passa pel punt P:

32 3.22-1
=TI =t T B =
1 21

y=mx+b;11=12-2+b;b =10
lpﬁp y= 12x+10

La funcié v,p és la recta vertical que passa pel punt 2P:
2P =2(2,11) =(2,12)

V2PZ)C=2

Aleshores:

fp=f lpp\ _y—12x-10  y+1lx+13
e vp/) x—2 - x+21

Per ultim, es calcula f3 p a partir d’ f p:

y+11x+13

T (x—=2)=y+11x+13

fp=/fpvp=

9.3 Construccidé explicita dels pairings de Weil i Tate

Arribats a aquest punt, ja estem en disposicié de poder descriure els pairings de Weil i de Tate.

9.3.1 El pairing de Weil

Siguin P,Q € E/ F o [r] dos punts de la r-torsié d’una corba el-liptica i Dp, D¢ dos divisors
de grau zero amb suports disjunts tals que:

Dy~ (P)—(0)
Dg ~(Q) —(0)
Existeixen funcions f i g tals que:
div(f) =rDp
div(g) =rDg

El pairing de Weil és una aplicacié que rep un parell de punts de la r-torsi6 i retorna una
arrel r-esima de la unitat, definida com:

Wr(Pa Q) =
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Arrels de la Una arrel de la unitat és un nimero que elevat a un enter positiu dona 1. Quan I’enter
unitat positiu és 2, parlem d’arrels quadrades; i quan és 3, d’arrels ctbiques.

Exemple 9.10 Calcul del pairing de Weil

A continuaci6 calcularem el pairing de Weil per a dos punts concrets d’una corba el-liptica. Aquest
exemple esta basat en I’exemple 5.1.1 del manual Pairings for beginners de Craig Costello.

La corba E /Zy3 : y* = x> — x t6 #E / Z»3 = 24 elements.
El punt P = (2,11) té ordre r = 3.
El grau d’immersi6 de la corba respecte a r = 3 és k = 2, ja que 3123 — 1 perd en canvi 3 | 232 — 1.

Hi ha 9 punts a la 3-torsié:

E/(Zy/(Z2+1))[3] =[6,(2,11),(2,12),(21,11z),(21,12z), (52,22 + 2), (52,212 + 21),
(182,274 21), (18,2124 2)]

Calcularem el pairing de Weil w3(P,Q) pera P = (2,11) i Q = (21, 12z), dos punts que pertanyen a la
3-torsio.

En primer lloc, hem de trobar els divisors de grau zero Dp i Dy amb suports disjunts, i equivalents a
(P)—(0)i{Q)— (0), respectivament. Per fer-ho, seleccionem dos punts addicionals aleatoris de la corba
sobre el cos estes, R = (17z,2z+21) i § = (10z+ 18,132+ 13), i fixem els divisors Dp i Dy com:

Dp= (P

Do = (0

(R)
()

+R)—
+ —

S)

Noteu com efectivament els divisors tenen grau zero i suports disjunts:

deg(Dp) =deg(Dg)=1—-1=0
sup(Dp) = {P+R,R} = {(z+16,18z+20),(17z,2z+21)}
sup(Dg) = {Q+5,8} = {(192+22,12z+ 10), (10z + 18,13z + 13)}
sup(Dp) Nsup(Dg) =0

A més, els divisors son efectivament equivalents a (P) — (&) i (Q) — (0. En efecte, el divisor D}, resultant
de restar (P) — (€') a Dp és un divisor principal:

Dp=Dp—((P)—(0)) = (P+R) — (R) — (P) +(0)
deg(Dp)=1—-1—-1+1=0
(P+R)—R-P+0=0

Els calculs per a Dy sén analegs.
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En segon lloc, necessitem trobar les funcions f i g que tenen com a divisors 3Dp i 3D, respectivament.

Podem trobar fi g com:
3
v
f=re ( lP +R)
PR

3
VO+s
8 f3,Q< lQ+ >
0.

on [/ iv sén les funcions que descriuen la recta que passa per dos punts i la recta vertical que passa per un
punt, respectivament.

Efectivament, el divisor de f és 3Dp (els calculs per a g sén equivalents i s’ometen per brevetat):
div(f) = div(fs.p) +3(div(vps) — div(Ipz)) =
= (3(P)=3(0)) +3((~(P+R)) + (P+R) —2(0) — (P) — (R) — (~(P+R)) +3(0) ) =
=3(P+R)—3(R)

Procedim doncs a construir les funcions f i g. Per a construir f, cal trobar les funcions vpg, lpg 1 f3p:
La funci6 vp g és la recta vertical que passa pel punt P+ R:
P+R=(2,11)+(17z,2z+21) = (z+ 16,18z +20)

VP+RI)C:Z+16

La funci6 [pg és la recta que passa pels punts P i R:

— 2z4+21—11
m=22"1 modp:L=6z+13
X2 — X1 17z -2

y=mx+c,c=y—mx=11-2(6z+13) =11z+38
Ipr:y=(6z+13)x+(11z+38)

La funci6 f3 p es construeix iterativament a partir d’ i p, tal com hem vist a I'Exemple 9.9.

frp=y+11x+13

Aix{ doncs, la funci6 f és:

x—z—16 )3
y—(6z+13)x—(11z+8)

3
fx,y) = fap (ﬁ) =(y+11x+13)- <

De la mateixa manera, per a construir g cal trobar les funcions vgs, lgs 1 f3,0. A continuacié es
proporcionen aquestes funcions, i es deixa com a exercici per al lector els calculs individuals per a
trobar-les:

I Exercici 9.3 Trobeu les funcions vo.s, lo.s i f3,0.

Vo+s i x=19z7+22
los:y=03z+1)x+(18z+2)
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fop:y=—11zx— 10z

De manera que la funcié6 g és:

3
g(x,y) = f30 (VQ+S> = (y+ 11zx+10z) - (

x—197—22 )3
lps )

y—B8z+1)x—(18z+2
En tercer lloc i ja per acabar, procedim a calcular el pairing de Weil:

(Do) fQ+S)g(®)  (Tz+22)(21z+22)
WP O) = p) = FSeP+R) ~ (erd)isern) e+l

Noteu com, efectivament, 157+ 11 és una arrel 3-gsima de la unitat, ja que (15z+11)% = 1.

A partir de I’exemple anterior, podem veure ara alguns dels efectes de la bilinealitat del pairing de Weil:

Exemple 9.11 Bilinealitat en el pairing de Weil

A T’exemple anterior hem calculat el pairing de Weil per a P = (2,11) i Q = (21,12z). A continuacié
veurem exemples de bilinealitat en el pairing de Weil per a aquests punts concrets.

Els punts resultants de doblar P i Q s6n 2P = (2,12) 120 = (21,11z).

Si calculem el pairing de Weil de 2P i1 Q o bé el de P 120, veurem que sén iguals, i també que coincideixen
amb el quadrat del de P i Q:

w3(2P,Q) = w3(P,2Q) = 8z+ 11 = (15z+11)> = w3(P,0)?

9.3.2 El pairing de Tate

En la definici6 basica del pairing de Tate, el resultat del pairing per un parell de punts concret no és tnic.
Com que en aplicacions criptografiques aquesta caracteristica és problematica, habitualment s’ utilitza el
pairing de Tate reduit, que no és res més que el pairing de Tate elevat a (¢ — 1) /r. Aixi, s’aconsegueix que
el resultat sigui una arrel r-¢sima de la unitat, i que per cada parell de punts el valor del pairing sigui tnic.
En aquest text descrivim doncs directament el pairing de Tate reduit.

Siguin P,Q € E/F & [r] dos punts de la r-torsi6 d’una corba el-liptica. Existeix una funcié
f tal que:

div(f) =r(P) —r(0)
Sigui Dy un divisor de grau zero amb suport disjunt de div(f) i tal que:

Do ~(0Q)—(0)

El pairing de Tate reduit és una aplicacié que rep un parell de punts de la r-torsié i retorna
una arrel r-€sima de la unitat, definida com:

1(P.Q) = f(Dg) )"
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A diferencia del pairing de Weil, en el pairing de Tate només cal que un dels punts pertanyi a la r-torsié (el
punt P que descriu el divisor d’ f), i el segon punt pot no ser-hi (perd ha de complir unes propietats concretes
que no son trivials de definir). Com que els punts de la r-torsi6 les compleixen, per simplicitat en aquest
document seleccionem sempre punts que hi pertanyin.

Exemple 9.12 Calcul del pairing de Tate

A continuaci6 calcularem el pairing de Tate reduit per als mateixos dos punts que en I’exemple anterior
(Exemple 9.10).

Sigui E /73 : y* = x> — x la corba el liptica, amb P = (2,11),0 = (21,12z) € E/(Z23/(z* + 1))[3]. El
grau d’immersio de la corba respecte a r = 3 és k = 2.

En primer lloc, trobem una funcié f amb divisor 3(P) — 3(0). Tal com hem calculat a I’exemple anterior,
la funcié f3 p : y+ 11x+ 13 té aquest divisor.

En segon lloc, trobem un divisor D¢ de grau zero amb suport disjunt al divisor d’ f i equivalent a (Q) — (&).
Per fer-ho, podem fer servir la mateixa estrategia que a I’exemple del pairing de Weil: seleccionem un
punt S aleatori i fixem:

Do =(Q+S) —(S)
Per al punt S = (10z+ 18,13z + 13), tenim doncs que:

Dg = ((19z+22,12z+10)) — ((10z+ 18,13z + 13))

Noteu que en aquest cas no ens cal calcular la funcié que té per divisor Dg.
Finalment, calculem el pairing de Tate reduit:

_ (P-1)/r _ f(QJrS))("kl)/’_ (f(191+22,12z+10)>(2321)/3 _
t-(P,Q) = f(Dg)"" —( 1G] ~ \f(10z+ 18,13z + 13) B

147412\
:(8;——'—17) = 157411

De nou, podem comprovar com el resultat del pairing és una arrel 3-&sima de la unitat: (15z+ 1 P = .

Exemple 9.13 Bilinealitat en el pairing de Tate

De la mateixa manera que amb el pairing de Weil, podem veure també un exemple concret de les propietats
de bilinealitat del pairing de Tate a partir dels valors de 1’exemple anterior.

Recordem que P = (2,11), 0 = (21,12z), 2P = (2,12) i 2Q = (21, 11z).

Si calculem el pairing de Tate de 2P i Q o bé el de P i 2Q, veurem que sén iguals, i també que coincideixen
amb el quadrat del de P i Q:

,(2P,Q) =1,(P,2Q) = 8z+ 11 = (15z4+11)> =1,(P,Q)?

9.4 Algorismes criptogrdfics basats en pairings

En aquesta secci6 es descriuen algorismes criptografics que fan servir pairings. En primer lloc, veurem
I’esquema de signatura BLS, que permet fer signatures curtes i, a més, permet agregar-les. A continuacio,
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descriurem la criptografia basada en la identitat i explicarem un dels algorismes d’aquesta familia, I’algorisme
de xifratge de Boneh-Franklin.

L’'esquema de signatura BLS

L’esquema de signatura digital BLS (anomenat aix{ per les inicials dels cognoms dels seus creadors, Dan
Boneh, Ben Lynn i Hovav Shacham) va ser proposat I’any 2001. L’esquema fa servir un pairing bilineal per
a la verificaci6 de signatures.

La caracteristica principal d’aquest esquema de signatura digital és que produeix signatures curtes: la mida
de la signatura digital és la meitat de la tindria una signatura DSA amb el mateix nivell de seguretat. Aixo
fa que I’esquema sigui idoni per a situacions amb poc ample de banda o quan €s necessari que un huma
transcrigui la signatura digital manualment.

L’esquema de signatura BLS fa servir un pairing i una funcié6 hash. Sigui e : Gg X G; — G7 un pairing
on Gy, G i Gr sén grups ciclics d’ordre primer ¢ amb Gy € Gg i G| € G elements generadors dels grups.
Sigui H una funcié hash que relaciona els missatges de I’espai de missatges a elements de Gy.

L’algorisme de generacio de claus BLS consta dels passos segiients:

1. Es tria un enter aleatori & €g Zg.
2. Escalculau = o-G; € Gj.
3. Laclau publica és k,;, = u, mentre que la clau privada és k., = .

L’algorisme de generaci6 de claus és doncs analeg al de ’ECDSA: es tria un enter aleatori que sera la clau
privada i es multiplica aquest enter pel generador d’un grup ciclic, que és un parametre public del sistema.
La clau publica és un element de Gy, és a dir, un punt d’una corba el-liptica.

Les claus generades per I’algorisme anterior es poden fer servir per a generar i validar signatures digitals
fent servir els algorismes segiients:

A partir d’un missatge en clar m, la clau privada de I’emissor k,;, = @, i els parametres
de domini, es calcula la signatura digital BLS del missatge:

1. Es calcula 0 = o - H(m) € Go
2. La signatura és el valor ©.

L’algorisme de signatura requereix de 1’Gs d’una funcié hash que s’aplica al missatge abans de signar-lo, i
que el converteix en un element del grup Gy, és a dir, en un punt de la corba el-liptica. Una vegada es té la
representaci6 del missatge m en el grup Gg, només cal calcular una multiplicaci6 escalar entre el punt de la
corba que representa el missatge i la clau privada. Convé destacar que la signatura és doncs un punt d’una
corba el-liptica (un element de Gg), de manera que si la representacié dels punts és curta, la signatura també
ho sera.

Fins aqui només s’ha fet ds de corbes el-liptiques perd encara no s’ha introduit 1’ds del pairing. L’ algorisme
de verificaci6 de la signatura és precisament el punt de I’esquema que requereix de 1’ds de pairings:
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A partir d’un missatge en clar m, la clau publica k,;, els parametres de domini i una
signatura del missatge o, els passos segiients permeten verificar una signatura BLS:
1. Es verifica que e(H(m),u) = e¢(0,G).
2. Si la igualtat es compleix, aleshores la signatura €s valida i la verificaci6 finalitza
correctament. En cas contrari, la signatura es considera invalida i la verificaci6
fracassa.

Convé notar com una signatura digital correcta sera donada per valida per 1’algorisme de verificacid, ja que
per les propietats de bilinealitat del pairing:

e(H(m),u) = e(H(m),aGy) = e(H(m),G)* = e(aH(m),G1) = e(0,Gq)

L’esquema de signatura BLS és determinista, ja que donats uns parametres de domini, una clau privada
1 un missatge en clar, la signatura que es produeix és tnica. Aixo el diferencia de la variant classica de
1’algorisme de signatura ECDSA, que és probabilistic.

Exemple 9.14 Exemple de signatura i validacié6 amb BLS

Sigui E /Z43 : y? = x> 4 7x una corba el-liptica d’ordre 44. Farem servir com a grups ciclics Go i G; dos
subgrups ciclics de la 11-torsié. El grau d’immersi6 de la corba respecte a r = 11 és k = 2. L’exemple
utilitzara com a pairing e el pairing de Weil (wy;).

Sigui Gy = (4,7) el generador del subgrup ciclic Gy i G; = (2,8z) el generador del subgrup ciclic G
(tots dos d’ordre 11). Gy es troba en el cos base (Gog < E/Z43), mentre que G es troba al cos estes
E/(Fyp /22 +1).

Abans de signar, I'usuari ha de disposar d’un parell de claus. Per aconseguir-les, I’usuari executa
I’algorisme de generaci6 de claus:

1. Tria un enter aleatori @ = 5 € Zy3.
2. Calculau = a-G; =5(2,8z) = (39,7z) € G;.
3. La clau publica és k,;, = (39,7z), mentre que la clau privada és k., = 5.

Ara, ’usuari pot signar executant I’algorisme de generaci6 de la signatura. Suposem que la representaciéd
del missatge m al subgrup Go és H(m) = (41,35). Efectivament, H(m) € Go ja que H(m) = 2Gj.
Recordeu que ja hem vist a la seccié 8.4.3 com crear funcions hash que retornin punts d’una corba
concreta.

1. Escalcula o = o - H(m) = 5(41,35) = (4,36) € Gg
2. La signatura és el valor o = (4,36).

Un receptor pot verificar la signatura a partir del missatge m, la signatura o, i la clau publica k,,;, (i
coneixent els parametres de domini que sén publics):

1. El receptor verifica que e(H (m),u) = e(0,G1).
(@) e(H(m),u) =wq1((41,35),(39,7z)) =34z +7.
(b) e(o,G)=wi1((4,36),(2,8z)) =34z+7.

2. Com que la igualtat es compleix, la signatura és valida.

Exercici 9.4 Suposeu que es fa servir I’esquema de signatura BLS amb la construcci6 ingénua de la
funci6 hash H segiient:
H(m) =H'(m)- G,
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on H'(m) = SHA-1(m) mod q. Expliqueu perqué aquesta construccié no és segura.

Més enlla de produir signatures curtes, I’esquema de signatura BLS té algunes propietats addicionals que
el fan especialment interessant. El BLS permet agregacié de signatures i esquemes de signatures llindar.
A continuacié descriurem com construir un esquema de signatures agregables en base a 1’algorisme de
signatura BLS.

Agregacié de signatures

Els esquemes de signatura digital que permeten agregacio de signatures es caracteritzen
per permetre comprimir diverses signatures (sobre diferents missatges i amb diferents
claus) en una sola signatura agregada, que es pot fer servir per verificar totes les signatures
de cop. Aquesta signatura agregada té una longitud similar a la d’una signatura individual,
independentment del nombre de signatures que comprimeixi.

De la mateixa manera que un esquema de signatura queda definit per tres algorismes (generacio de claus,
signatura i verificacio), els esquemes que permeten agregacio de signatures incorporen dos algorismes
addicionals: I’agregaci6 de signatures i la verificacié d’una signatura agregada. L’agregaci6 de signatures
rep un conjunt de signatures (i, en alguns esquemes, les claus publiques associades) i genera una Unica
signatura agregada. Com que 1’agregacié de signatures no requereix de claus privades ni de la interaccié
dels signants, qualsevol persona (amb coneixement de les signatures i les claus pibliques) pot executar
I’algorisme i generar una signatura agregada. Aix0 implica que I’agregacid de signatures es pot fer amb
posterioritat a la creacié de les signatures. La verificacid de signatures rep una signatura agregada i el conjunt
de missatges que s han signat (i, en alguns esquemes, les claus publiques associades), i valida que totes les
signatures que resumeix la signatura agregada siguin correctes.

Els esquemes de signatura digital que permeten agregaci6 de signatures son utils en diversos escenaris. Per
exemple, en la verificacié d’una cadena de certificats digitals, és habitual haver de validar diverses signatures,
des del certificat a comprovar fins al certificat arrel de la CA en el qual es confia. Un altre escenari on
I’agregaci6 de signatures és especialment interessant és en criptomonedes basades en cadena de blocs, on
té diverses aplicacions. D’una banda, en les transaccions amb multiples entrades, permetria agregar les
signatures de cada entrada en una sola signatura, cosa que redueix la mida d’aquestes transaccions. La mida
de les transaccions és critica en sistemes blockchain, ja que és un dels grans limitadors de 1’escalabilitat
del sistema. D’altra banda, I’agregacié de signatures també permetria implementar sortides multisignatura
de manera eficient. Les sortides multisignatura sén sortides de transaccions que requereixen més d’una
signatura per a ser gastades. Aquestes sortides especifiquen un conjunt de claus publiques i un llindar
de signatures minim necessaries per a autoritzar el pagament. Aixi, per tal de gastar aquestes sortides es
requereix habitualment d’un conjunt de signatures. Si es disposa d’un esquema amb agregaci6 de signatures,
aquest conjunt de signatures a proporcionar es pot resumir en una tnica signatura, oferint de nou millores en
la longitud de les transaccions. Addicionalment, alguns esquemes d’agregacié de signatures també permeten
agregar les claus publiques, cosa que redueix encara més la mida de les transaccions i ofereix privadesa
afegida.

BLS i Ethereum || Les primeres versions de les criptomonedes Bitcoin i Ethereum feien servir ECDSA.
La nova versié d’Ethereum (Eth2) que es troba actualment en desplegament (2021)
incorpora signatures BLS, amb 1’objectiu d’accelerar la verificacié de signatures.
Bitcoin incorpora des de novembre de 2021 1’ds de signatures Schnorr, que també
permeten agregacio.

A continuaci6 es descriu 1’algorisme d’agregacié de signatures BLS ingenu, que permet agregar signatures
pero no és segur. Més endavant es descriu el problema de seguretat d’aquesta versi6 de 1’algorisme i una
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modificacié que permet solucionar-lo.

A partir d’un conjunt d’n claus pibliques KP** = {kP* ... kP”} i d’un conjunt d’n
signatures X = {0y, -+, 0, } es calcula la signatura agregada Oug:

1. Es calcula la signatura agregada 6,, = 01 +---+ 0,
2. Lasignatura agregada és el valor o, € Go.

L’agregaci6 de signatures consisteix doncs en la suma de punts de la corba G, que conformen les signatures
individuals, i la signatura agregada és també un punt de la mateixa corba. Noteu com el procés d’agregacié
de signatures no requereix ni dels missatges signats ni de les claus privades que han generat les signatures.

A partir d’un conjunt d’n claus pibliques KP** = {kP* ... kP“’}, d’un conjunt d’n
missatges M = {my,--- ,m,} i d’una signatura agregada Oy, €ls passos segiients permeten
verificar la signatura agregada:

1. Es comprova si e(0ug, G1) < e(H (my), k) - - e(H(my), k2"

2. La signatura agregada és valida (i, per tant, totes les signatures individuals que
resumeix es consideren valides) si la comprovaci6 del pas anterior es fa amb exit.
En cas contrari, es rebutja la signatura agregada.

Lalgorisme de verificacié dona per valida una signatura agregada que comprimeix un conjunt de signatures
individuals valides per les propietats del pairing:
¢(4g,G1) = e(01 4 +0,,G1) =
e(01,Gy)- - (GnaGl)
e(onH(m),Gi)- - -e(a,H(mn),G1) =
(
(

(
e(H(m1),01Gy)- - -e(H(my),0,Gy) =
e(H(m) k") - - e(H (my) k)

La verificaci6 de signatures agregades es pot calcular de manera especialment eficient quan el missatge
signat és el mateix per a totes les signatures, és a dir, quan m = m; = my = --- = m,,. En aquests casos,
I’equaci6 de verificacio es pot simplificar:

¢(Gug, G1) = e(H(m1) k{"™) - - - e(H (my) k")
e(Gug, G1) = e(H (m), k") - - - e(H (m), K"
e(Gug, G1) = e(H(m), k" -+ k")
de manera que es passa de necessitar calcular n+ 1 pairings a calcular-ne només 2.

Exercici 9.5 Aquest exercici fa servir els mateixos parametres de domini que I’Exemple 9.14. Sigui
E /743 : y* = x> + 7x una corba el-liptica d’ordre 44; G i G dos subgrups ciclics de la 11-torsi6 generats
per Go = (4,7) i G| = (2,8z), respectivament; i e el pairing de Weil (w;.).

També aprofitem el parell de claus i la signatura generades a ’'Exemple 9.14:
kprzv _ 5 kpub (39 71)

= (41,35), o1 = (4,36)
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Sigui &} " — 7 la clau privada d’un segon usuari. Genereu la seva clau publica.

Genereu una signatura o, de ’usuari 2 per al missatge m = (41,35).

Agregueu les dues signatures (07 i 02) en una sola signatura agregada O,.

Verifiqueu la signatura agregada o,, fent servir I’algorisme de verificacié de signatura agregada.

Verifiqueu de nou la signatura agregada o,,, aprofitant que els dos missatges signats s6n identics.

@ s W D =

Per a facilitar la resolucié de I’exercici, a continuacié es proporcionen alguns valors precalculats:

=(4,7) =(2,82)
2(;O = (41,35) 2G1 (26,427)
3Gy = (15,30) 3G, = (33,92)
4Gy = (17,1) 4G, = (28,30z)
5Go = (10,9) 5G, = (39,7z) we((41,35),(2,82)) = 40z + 11
6Go = (10,34) 6G; = (39,367) wi((41,35),(39,72)) = 34z +7
1Go = (17,42) 7G, = (28,137) w((41,35),(28,13z)) = 352+ 18
8Go = (15,13) 8G1 (33,342)
9G, = (41,8) = (26,a)
10Go = (4,36) 10G1 =(2,35z)
11Gy=6 11G, =6

L’algorisme que acabem de presentar és, perd, vulnerable a atacs de clau publica murria (en angles, es
coneixen amb el nom de rogue public key attacks). En aquests atacs un atacant és capag¢ de generar una
signatura agregada valida que inclou una signatura d’un missatge m per part d’una victima V sense que la
victima hagi proporcionat tal signatura.

L’atac de clau publica murria fa servir la clau puiblica d’una victima k,,,y = uy i genera una signatura
agregada o, valida que inclou una signatura de la victima del missatge m. L’atac consta dels passos segiients:

L atacant selecciona un enter aleatori & € Zg.

L’atacant calcula la clau piblica auxiliar k4 = ug = o - Gy € Gy.

L’atacant calcula la clau publica mirria kp,pp = g —uy € Gy.

L’atacant calcula la signatura agregada c,, = ot - H(m).

L’atacant presenta la signatura agregada o, per al conjunt de missatges M = {m,m} amb claus
puibliques K> = {kpubv s kpubm }

Nk LD =

Noteu que I’adversari fa servir la clau publica k) per a I’atac, perd que en desconeix la clau privada
corresponent (I’adversari ha creat aquesta clau piblica combinant la clau publica de la victima i la clau
publica auxiliar que ha generat i per a la qual si que en coneix la clau privada).

Exercici 9.6 Demostreu que I’atac de clau publica mirria aconsegueix generar una signatura agregada
valida en la versi6 basica del BLS fent servir les propietats de bilinealitat del pairing.

Aquest atac trenca la seguretat de I’esquema de signatura agregada ingénua que hem descrit i motiva la creacié
de variants que en siguin resistents. Es coneixen diferents variants de 1’esquema segures i, a continuacio, en
descriurem una d’elles.

Lalgorisme d’agregacié de signatures BLS segur parteix d’una variant modificada de ’algorisme de
signatures BLS:
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A partir d’un missatge en clar m, el parell de claus de I’emissor (kpiy = & 1 kpyp = u =
o - G| € Gy), i els parametres de domini, es calcula la signatura digital BLS modificada
del missatge:

1. Es calcula 6 = o - H(kpyup,m)
2. La signatura és el valor o.

Es a dir, 1a signatura es fa no només sobre el missatge m siné també sobre la clau piblica del signant kpubs
impedint aix{ 1’atac de clau piblica murria que hem vist anteriorment. Aixo requereix de la utilitzaci6é d’una
funcié hash H que rebi dos valors (el primer de G i el segon de I’espai de missatges) i retorni un valor de
Go.

L’algorisme d’agregaci6 de signatures es manté tal com 1’hem definit anteriorment. L’algorisme de verificacié
de signatures agregades es modifica lleugerament de manera analoga al procés de signatura:

A partir d’un conjunt d’n claus pibliques KP** = {kf”b,'-- KPY d’un conjunt d’n
missatges M = {my,--- ,m,} i d’una signatura agregada 0O,,, els passos segiients permeten
verificar la signatura agregada:

1. Es comprova si e(Gug, G1) = e(H (K" my), k') - e(H (KE"® ,my ), K5"®)

2. La signatura agregada és valida si la comprovaci6 del pas anterior es fa amb exit. En
cas contrari, es rebutja la signatura agregada.

Demostracié La demostracié de perque aquesta variant és segura queda fora de 1’abast d’aquest
text. El lector interessat pot consultar I’article original Compact Multi-Signatures for
Smaller Blockchains de Dan Boneh, Manu Drijvers i Gregory Neven per a llegir-ne els
detalls.

Criptografia basada en la identitat

Els pairings permeten també construir esquemes de xifratge amb propietats addicionals als sistemes de
xifratge tradicionals.

En els esquemes de xifratge de clau publica tradicionals, per tal d’enviar un missatge xifrat a una persona
caldra que en coneguem la seva clau piblica. Ja hem vist com aquesta associaci entre una clau publica i la
identitat d’un usuari es fa habitualment amb un certificat digital. Per tant, per aconseguir la clau publica del
receptor del missatge, I’emissor pot demanar-li el seu certificat digital o bé pot descarregar-lo d’un repositori
public de certificats. En qualsevol dels dos casos, 1’emissor necessita aconseguir i validar la clau publica del
receptor abans de poder iniciar el procés de xifratge del missatge. El xifratge basat en la identitat, proposat
per Adi Shamir el 1984, permet evitar aquest procés previ i fer servir la identitat del receptor directament
com a la seva clau publica.

Tot i que la idea del xifratge basat en la identitat va ser proposada el 1984, en aquell moment només es
coneixia un esquema de signatura basat en la identitat (proposat pel mateix Shamir). No va ser fins al 2001
quan Dan Boneh i Matthew K. Franklin van proposar el primer esquema de xifratge basat en la identitat, que
utilitzava el pairing de Weil sobre corbes el-liptiques.

El xifratge basat en la identitat (IBE, de ’angles, Identity Based Encryption) és un tipus
de xifratge de clau publica en que la clau ptiblica d’un usuari es deriva directament d’una
informacid tnica sobre la identitat d’aquest usuari.
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En els esquemes de xifratge basat en la identitat, qualsevol cadena de caracters que identifiqui a I’usuari
pot ser utilitzada per a calcular la clau publica. Cal, pero, que aquest identificador sigui tnic entre tots els
usuaris de I’esquema. Alguns exemples d’identificadors habituals s6n el correu electronic, el nimero de
telefon o el nom de domini.

Els esquemes de xifratge basats en la identitat requereixen d’una entitat de confianca, que és I’encarregada
de generar les claus dels usuaris. L’entitat de confianca disposa d’un parell de claus mestra. La clau publica
mestra €s coneguda per totes les entitats del sistema i es fa servir en el procés de xifratge, mentre que la clau
privada mestra és secreta (només coneguda per 1’entitat de confianga). Aquesta clau privada mestra es fa
servir per a derivar les claus privades dels usuaris.

Per tant, els usuaris necessiten interactuar amb 1’entitat de confianca per tal d’obtenir les claus privades
associades als seus identificadors, de manera que cal que ’entitat de confianga pugui autenticar els usuaris
(per assegurar que obtenen la clau privada d’un identificador propi) i disposi d’un canal confidencial amb els
usuaris (per transmetre’ls la clau privada).

Aixi, els usuaris d’un esquema IBE es poden intercanviar missatges xifrats sense necessitat d’haver tingut
cap contacte previ entre ells per tal d’intercanviar-se les claus publiques pero, en canvi, si que caldra que els
usuaris puguin comunicar-se amb 1’entitat de confianga.

El flux d’informaci6 a I’hora de xifrar no és 1’tnica diferencia entre els esquemes IBE i els esquemes de clau
publica tradicionals. Una altra diferéncia és la necessitat d’existéncia de les claus prévia al procés de xifratge.
En un esquema tradicional, I’usuari ha de generar un parell de claus abans de poder rebre un missatge xifrat.
En canvi, amb IBE, ’usuari pot rebre un missatge xifrat per al qual encara no se n’ha generat la clau privada.

En una infraestructura de clau publica tradicional existeixen mecanismes de revocacié dels certificats digitals,
que permeten gestionar situacions com ara el compromis de les claus privades dels usuaris. En els esquemes
basats en IBE, les claus publiques no es poden revocar, ja que no hi ha cap manera de comunicar a 1I’emissor
que una clau ha estat revocada: 1’emissor fa servir la identitat de 1’usuari i la clau piblica mestra per a xifrar
un missatge, sense comunicar-se amb cap entitat que pugui informar-lo de la possible revocacié d’una clau.
Per a solucionar aquesta limitacid, els esquemes IBE acostumen a combinar I’identificador de 1’'usuari amb
una cadena que representi el periode de temps en que es considera valida la clau. D’aquesta manera, una
mateixa clau només és valida durant un periode de temps concret, cosa que limita les possibles conseqiiencies
d’una perdua o compromis.

Exemple 9.15 Identificadors per a IBE

Us sistema IBE per a correu electronic pot fer servir com a identificador d’usuari el correu de 1’usuari
concatenat amb la data, de manera que les claus tindrien una vigencia d’un dia.

Aixi, per exemple, I’identificador 2021-09-30: info@uoc . edu seria la clau puiblica associada a 1’adreca
info@uoc.edu valida durant el dia 30 de setembre de 2021.

Fent servir aquest mateix format, es poden enviar correus que només es poden desxifrar en el futur, per
exemple, xifrant un correu per a I’identificador 2221-09-30: info@uoc. edu.

Una altra diferéncia notable dels esquemes IBE és que incorporen implicitament un sistema de recuperacio
de claus. Com que I’entitat de confiancga pot calcular totes les claus privades de tots els usuaris, 1’entitat
de confianga pot recuperar qualsevol clau del sistema. A més, pot fer-ho sense necessitat de guardar claus
individuals, ja que les claus privades dels usuaris es deriven directament de la clau privada mestra.

Els esquemes IBE consten dels tres algorismes habituals en els esquemes de xifratge (generacié de claus,
xifratge i desxifratge) més un algorisme addicional d’inicialitzacid, que consisteix en la generaci6 del parell
de claus de ’entitat de confianga. Els dos algorismes de generaci6 de claus (el de I’entitat de confianga i el
dels usuaris del sistema) s6n executats per 1’entitat de confianga. Els algorismes de xifratge i desxifratge sén
executats pels usuaris de I’esquema (emissors i receptors de missatges), com en els esquemes de xifratge
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tradicionals.

L’esquema basic de Boneh-Franklin

A continuacid es presenta una de les construccions de xifratge basat en la identitat proposades per Dan Boneh
i Matthew K. Franklin. La construcci6 fa servir pairings sobre corbes el-liptiques.

Sigui e : Gg X G| — Gy un pairing on Go,G| i Gy sén grups ciclics d’ordre primer g amb Gy € Gy i
G € G elements generadors dels grups.

L’esquema d’IBE fa us d’un criptosistema de clau simetrica (tal que m = Dy(E;(m))) i de dues funcions
hash. Sigui Hy una funcié hash que relaciona els missatges de 1’espai d’identificadors a elements de Gg i H;
una funcié hash que relaciona parells de G| x G amb les claus del criptosistema simetric.

Lalgorisme d’inicialitzacié és executat per I’entitat de confianca per tal de generar el parell de claus mestre:

L’algorisme d’inicialitzaci6 consisteix en la generacié del parell de claus mestre de
I’entitat de confianca € i consta dels passos segiients:

1. Es tria un enter aleatori & €g Zj.
2. Escalculau; = a-G; € G;.

3. La clau publica mestra és kgub = u1, mentre que la clau privada mestra €s kgﬁv =a.

L’algorisme de generacié de claus d’un usuari és executat també per 1’entitat de confianca, en el moment en
que I'usuari li sol-licita la clau privada associada al seu identificador:

L’algorisme de generacio de claus d’un usuari rep la identitat id de 1’usuari i la clau
privada mestra kf,:n-v = o i executa els passos segiients:

1. Lentitat de confianga € calcula sk;y = a - Hy(id) € Go.

2. La clau publica de I’usuari €s k,;, = id, mentre que la clau privada €s ki, = sk;g.

L’algorisme de xifratge consisteix en la derivaci6 d’una clau simetrica k a partir de 1’identificador del receptor
i la clau ptblica mestra. Aquesta clau simetrica es fa servir per a xifrar el missatge amb un algorisme de
xifratge simetric.

A partir d’un missatge en clar m, la identitat del receptor id, i la clau piblica mestra
kS, = u1, es calcula el missatge xifrat:

1. Es tria un enter aleatori € Z,.

Es calculaw; = -G € G;.

Es calcula el pairing z = e(Hy(id), Buy) € Gr.
Es calcula la clau simetrica k = Hy (wy,z).

Es calcula el missatge xifrat ¢ = Ex(m).

La sortida és la tupla (wy,c).

N

Noteu com I'usuari pot xifrar sense obtenir la clau publica de I'usuari, ja que aquesta és directament
I’identificador.

L’algorisme de desxifratge procedeix a derivar la clau simetrica k amb que s’ha xifrat el missatge, a partir de
la informacié que rep de I’emissor i la clau privada de I'usuari (que ha obtingut de 1’entitat de confianca).
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A partir d’'un missatge xifrat (wi,c) i la clau secreta d’un usuari k., = skiq, es calcula el
missatge desxifrat:

1. Es calcula el pairing z = e(skig,w1) € Gr.

2. Es calcula la clau simétrica k = H; (w1, 2).

3. Es calcula el missatge en clar m = Dy(c).

4. La sortida és el missatge en clar m.

L’algorisme sera correcte si la clau simetrica que es fa servir al desxifrar és exactament la mateixa que
s’utilitza al xifrar. La clau simetrica k es deriva dels valors wy i z, i el valor w; es transmet com a part del
text xifrat. Per tant, cal comprovar que les z que es calculen en els algorismes de xifratge i desxifratge sén
les mateixes. En efecte, per les propietats del pairing, podem veure com els valors z fets servir pels dos
algorismes coincideixen:
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Resum

En aquest capitol s’han presentat els pairings sobre corbes el-liptiques, tot descrivint-ne les seves propietats.
Després, d’una banda, s’han descrit les eines matematiques necessaries per entendre la seva formulacié
explicita i s’ha explicat com construir-los. D’altra banda, s’han presentat els algorismes criptografics més
populars que els fan servir: un esquema de signatures que permet agregacié (I’esquema BLS) i un esquema
de criptografia basada en la identitat (I’esquema de Boneh-Franklin).
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Solucions dels exercicis

Exercici 9.1:

El grau d’immersié d’E respectean =5ésk=1jaque 5| 112 —1.

El grau d’immersié d’E respecte a n = 7 no esta definit, ja que 71 15.

El grau d’immersi6 d’E respecte a n = 15 no esta definit, ja que 15 no és primer.
Exercici 9.2:

La funcié pot expressar-se com:

(x—1)*(x+5)>

G- 12)7 =(x—1)7>x+5*x—12)"*

flx) =
i, per tant:

div(f) = 3(1) 4+2(—5) — 4(12) — (e0)

Exercici 9.3:
La funcid vg.s és la recta vertical que passa pel punt Q +S:
O+8=(21,127) + (10z+ 18,13z + 13) = (192 + 22,12z + 10)

Vots:x=19z+22

La funci6 lp 5 és la recta que passa pels punts Q1 S:

Y2 — Y1 13z+ 13— 12z
M e —x  10zt18—21 T

y=mx+cc=y—mx=12z—21(3z+1) = 18z+2
los:y=(3z+1)x+(18z+2)

La funci6 f,.o es construeix iterativament a partir d’ fi o:

fie=1
_ lopo\ y+11lzx+10z
fo=fio (sz) B x—21
y+ 11zx+ 10z

f3,Q:f27QvQ: (x—21):y+llzx+10Z

x—21
Exercici 9.4:
La signatura d’un missatge m seria:

c=a-H(m)=
=a-H'(m) -G =
=H'(m)-a-G| =
=H'(m) u

i, per tant, la signatura dependria tinicament del missatge m i la clau publica u. Aixi doncs, un atacant podria
crear signatures valides només amb informaci6 publica.
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Exercici 9.5:
1. Calculem la clau puiblica:
K = a- Gy =17(2,87) = (28,13z) € G,

2. Calculem la signatura:

Oy =0 H(m) = 7(41735) = (15730) € Go
3. Calculem la signatura agregada:
Oy =01+ -+ 0, = 01+ 0y = (4,36) +(15,30) = (41,35)
4. Per validar la signatura agregada es comprova si e(0yq, G1) Z e(H(my ), kP - e(H (ma), KE?):
¢(Gug, G1) = e((41,35),(2,82)) = 40z+ 11
e(H (m1),k{"") - e(H (my), K5") = e((41,35),(39,7z)) - e((41,35), (28,13z)) = 40z + 11

La igualtat es compleix, de manera que la signatura agregada és valida.

5. Per validar la signatura agregada aprofitant que les dues signatures corresponen al mateix missatge
. ?
comprovem si e(Ggg,G1) = e(H (m), k" + -+ ki)

e(Gug,G1) = e((41,35),(2,8z)) = 40z + 11
e(H(m),k[lmb 4. J,-kguh) = e((41 , 35), (39,72) + (287 13Z)) =40z+11

De nou, la igualtat es compleix de manera que la signatura agregada és valida.
Exercici 9.6:

Per validar la signatura agregada, el verificador comprovara si

e(0ug,G1) < e(H(m),kpupy ) - e(H(m), kpupy)

Com que
e(04e,G1) = e(aH(m),Gy) =
=e(H(m),aGy) =
= e(H(m)akpubA) =
= e(H(m),kpupy +kpuvsr) =
=e(H(m),kpupy ) - e(H(m),kpupv)

la verificaci6 sera correcta i la signatura agregada sera donada per valida.
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10.1

(1 0. Protocols criptografics

Més enlla dels mecanismes per xifrar i desxifrar missatges el cert és que la criptografia permet construccions
més elaborades que continuen tenint el mateix objectiu que els criptosistemes: protegir la informacié. Aixi,
ens podem trobar diferents situacions on calguin protocols que ens garanteixin un seguit de propietats de
seguretat que els criptosistemes per si sols no poden proporcionar. Es en aquest punt on intervenen els
protocols criptografics, protocols entre dos o més usuaris que utilitzen mecanismes criptografics per protegir
la informacio.

En aquest capitol estudiarem diversos protocols criptografics cada un d’ells amb un proposit diferent. Llevat
de I’esquema de comparticié de secrets, els protocols descrits en aquest capitol sén protocols en els que hi
intervenen dos usuaris i no es contempla 1’existencia de cap tercera part de confianca. Aix{, les operacions es
realitzen, sovint de forma conjunta, entre els dos usuaris per aconseguir 1’objectiu del protocol. La suposicié
que es fa en tot moment és que els usuaris poden actuar de forma deshonesta de manera que és important que
els propis protocols incorporin els mecanismes de seguretat necessaris per tal que, en cas que una part actui
de forma maliciosa, I’altra part no se’n vegi afectada o, com a minim, pugui detectar 1’engany.

El protocol de tres passos de Shamir

El protocol de tres passos de Shamir, va ser proposat per A. Shamir tot i que no el va publicar mai. El
protocol permet establir una comunicacié secreta entre dues parts sense cap intercanvi previ de claus. La
base del protocol és una funcié de xifratge commutativa respecte a les claus. Es a dir, sera el mateix xifrar un
missatge m amb una clau & i el resultat tornar-lo a xifrar amb una clau k;, que xifrar-lo primer amb la clau
k> 1 el resultat xifrar-lo amb la kq, és a dir:

Ey, (Exy (m)) = Ei, (Ex, (m))

Passem a descriure el protocol de tres passos de Shamir en el qual I’ Alice vol fer arribar el missatge m al
Bob. Per fer-ho, I’ Alice disposara d’una clau per xifrar, k£ i una clau per desxifar kg i el Bob també tindra
una clau per xifrar k% i una per desxifrar k4. Denotarem per Eye (m) I’accié de xifrar el missatge m amb
la clau de xifrat k§ de I’ Alice. Igualment, denotarem per DkZ (¢) el desxifrat del missatge ¢ amb la clau de

desxifrat k4 de 1’ Alice.
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En I’esquema de la Taula 10.1 es poden veure els diferents passos del protocol i la informacié que s’intercan-
vien els usuaris que hi participen.

Taula 10.1: Esquema de 3 passos de Shamir

Pas Alice Bob

1. Calcula c; = Ee (m) =

5 <2 Calcula ¢y = Eye(c1) = Eye (Eys (m))
3. Caleula c; = Dy (Egg (Exs (m))) =

= Dya(Egs (Exg (m))) = Ege (m)
4. Calculam = ijé (63) = Dkg (Ekg (m))

Com podem veure, al final del protocol I’ Alice ha fet arribar a Bob el missatge m de forma segura ja que
en cap dels missatges que s’han intercanviat en cada un dels tres passos el missatge m no ha viatjat en clar.
Aixi, un atacant que estigui analitzant les comunicacions entre A i B no podra extreure cap informacié de m.
Noteu, a més, que en cap moment s’ha produit un intercanvi de claus. L’ Alice només coneix k§ i k‘j ien Bob
només kj i kg.

En els segiients apartats veurem alguns criptosistemes que tenen la propietat de commutativitat de claus i
quins resultats presenten quan s’utilitzen com a esquema de xifrat en el protocol de tres passos de Shamir.

El xifrat de Vernam i el protocol de tres passos de Shamir

Un dels criptosistemes que hem presentat en aquest llibre és el criptosistema de Vernam, que seria el
criptosistema més segur que existeix ja que, utilitzant una bona clau, ens aporta seguretat incondicional. Si
recordem, el mecanisme tant de xifrat com de desxifrat d’aquest criptosistema és molt simple. Donat un
missatge m expressat en bits, i una clau k de la mateixa mida que el missatge també expressada en bits, la
funcié de xifrat consisteix en fer una XOR entre el missatge i la clau, és a dir Ex(m) = m @k = c. D’altra
banda, per desxifrar el missatge ¢ simplement haurem de fer de nou una XOR amb la mateixa clau k amb la
que hem xifrat Dg(c) = cDk =m.

Si ens hi fixem, aquest criptosistema presenta commutativitat de claus, ja que si tenim dues claus kj i k; es
compleix que:
Ey, (Ery(m)) = (m© k) k1 = (mD k1) @ ko = Ey, (E, (m))

ja que I’operacié XOR és commutativa.

Aixi, si utilitzem el criptosistema de Vernam per al protocol de tres passos de Shamir entre A i B tenim que
les claus de xifrar i desxifrar per a cada usuari son la mateixa, és a dir, k§ = kjf =kpiky= k% =kgienels
tres intercanvis d’informacié del protocol es generaran els missatges mostrats en 1’esquema de la Taula 10.2.

Taula 10.2: Esquema de tres passos de Shamir amb el xifrat de Vernam

Pas Alice Bob

1. Calculacy =m®ky 2

2. £ Caleula cy=c1Pkp
3. Calculacy=cr®Dkys =mdDky =

4. Calculam = c3Dkp

Tot i que aparentment hem aconseguit desenvolupar el protocol correctament utilitzant un dels criptosistemes
més segurs que hi ha, el problema esta en que un atacant que pugui veure la comunicaci6 en té prou en
prendre nota dels tres missatges xifrats que s’intercanvien 1’Alice i en Bob, ja que un cop intercepta cy,c; i
c3 per obtenir el missatge xifrat m només cal que faci una suma XOR dels tres:

1D ®e3=(mPka) D (MDka Dkp) D (mBkp) =m

https://www.criptografia.cat v0.2.1 04/02/2026


https://criptografia.cat

10.1.2

10.1 El protocol de tres passos de Shamir 299

Per tant, podem concloure que a I’hora d’utilitzar un criptosistema per al protocol de tres passos de Shamir
no en tindrem prou en assegurar-nos que compleixi la commutativitat de les claus siné que caldra anar en
compte sobre la relacié que tenen els missatges una vegada han estat xifrats.

Aquest fet ens fa veure que, més enlla d’aquest exemple concret, en la creacié de protocols criptografics és
important no només que cada una de les eines criptografiques que s’utilitza sigui segura siné que a més, la
seva combinacié ho continui essent, fet que com hem vist, no sempre succeeix.

El criptosistema d’exponenciacié

Un altre esquema amb commutativitat de claus el va proposar el mateix A. Shamir. Aquest sistema es
basa amb 1’exponenciaci6 i la seva seguretat recau en la dificultat del calcul del logaritme discret. Es un
criptosistema semblant amb I’RSA pero no s’ha de confondre amb I’'RSA ja que en aquest cas les dues claus
que s’utilitzen, una per xifrar i I’altra per dexifrar, sén dues claus secretes que inicament estan en possessio
d’un sol usuari.

En primer lloc es tria un parametre per a I’intercanvi, un primer p gran. Totes les operacions es realitzaran al
cos Z,. L’ Alice genera les seves claus de la segiient manera. Tria com a clau de xifrat § un valor aleatori
i com a clau de desxifrat calcula el valor k¢ tal que k§ -k4 =1 (mod p — 1). La funcié de xifrat per a un

missatge m sera Ey (m) = mks (mod p). La funci6 de desxifrat d’un missatge ¢ sera ij (c)= ki (mod p).

De la mateixa manera, en Bob generara les seves claus k% i k% i utilitzara les mateixes funcions de xifrat i
desxifrat. Amb aquestes condicions el protocol queda descrit en I’esquema de la Taula 10.3.

Taula 10.3: Esquema de tres passos de Shamir amb el xifrat d’exponenciaci6
Pas Alice Bob

Calcula c; = w4 (mod p)

o

19/ 79| L

Calcula ¢; = (¢1)* mod p

1
2.
3. Calculacs = (cz)kz mod p = m*s mod p
4 Calculam = (C3)k‘é mod p

Fixeu-vos que, en aquest cas, un atacant que intercepti els tres missatges de la comunicacié, c¢1,c; i ¢3 no
podra obtenir cap informacié sobre el missatge transmes ja que les claus per xifrar només les coneixen A i B.

Exemple 10.1 Exemple de protocol de tres passos de Shamir amb el criptosistema d’exponenciacio.
En aquest exemple suposarem que els dos usuaris treballen amb el parametre p = 131. A més, ’usuari
A disposara de la clau de xifrat k§ = 21 i de la clau de desxifrat k¢ = (k§)~! (mod p—1) = 31. D’altra
banda, I’usuari B també tindra el seu parell de claus. La de xifrat sera k§ = 27 i la de desxifrat k% = (k§)~!
(mod p—1) =53.

Amb aquests parametres, 1’'usuari A vol enviar de forma secreta el missatge m = 15 a B i per fer-ho els

passos del protocol seran els segiients:

Pas Alice Bob
¢ =15% (mod 131) =125 2

& ¢ =(125)? mod 131 =27

1.
2.

3. 3=027%mod 131=129 2
4. m = (129)> mod 131 = 15
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Exercici 10.1 Reproduiu el protocol de tres passos de Shamir per tal que A envii el missatge m = 20 a
B utilitzant el criptosistema d’exponenciacié on la clau de xifrat d’A val k§ = 19 la clau de desxifrat d’A
val kg =791 les corresponents claus de xifrat i desxifrat de B valen kj = 13 i kg = 77 respectivament.
Suposarem, també, que p = 101.

Esquemes de comparticié de secrets

Quan volem emmagatzemar un secret cal tenir en compte que hi ha situacions en les que el secret no pot ser
guardat de forma centralitzada perque hi ha el perill que aquesta centralitzaci6 esdevingui un punt feble en
la seguretat. En aquestes situacions el concepte de centralitzacio pot tenir diferents vessants. Per exemple,
imaginem-nos que tenim el codi d’obertura d’una caixa forta perd no volem que estigui custodiat per una sola
persona perque té el perill que aquesta persona pugui marxar amb tots els diners. Voldriem poder distribuir
aquest codi de manera que més d’una persona fos necessaria per a 1’obertura de la caixa forta.

Una altra situaci6, potser més quotidiana, és I’emmagatzemament de contrasenyes. Si emmagatzemem
la contrasenya en un unic lloc, si aquest lloc sofris algun incident perdriem la clau. Podriem solucionar
aquest problema guardant la mateixa clau en diferents llocs, perd aixo implicaria una reducci6 de la seguretat
ja que les probabilitats que algu la trobi sén més grans. Al igual que el que hem fet amb la caixa forta,
podriem repartir el valor de la clau en diferents fragments. Fixeu-vos que en aquest cas, la possibilitat de
poder recuperar la clau només amb alguns fragments (i no necessariament amb tots) és important ja que si
els necessitem tots per recuperar-la, tornem a estar en el punt de partida: si un dels llocs on hi ha un dels
fragments de la clau sofris algun incident no podriem recuperar la clau i també 1’hauriem perduda.

Per resoldre aquests tipus de situacions tenim els esquemes de comparticié de secrets. Aquests esquemes
van ser proposats de forma independent I’any 1979 per Adi Shamir i George Blakley.

Un esquema de comparticié de secrets llindar (1m,n) (en angles (m,n)-threshold secret
sharing scheme), és un esquema que permet distribuir un secret en n fragments diferents de
manera que si s’ajunten m o més fragments es pot recuperar el secret, perd no és possible
obtenir cap informacid del secret si es disposen de menys d’m fragments.

Si assumim I’escenari en el qual volem repartir un secret S entre diferents usuaris, un esquema de comparticié
de secrets llindar (m,n) esta format per n usuaris, u,-- - ,u,. Cada usuari té el seu corresponent fragment s;
del secret S. A més cal que es compleixin les segiients propietats:

1. Peratoti=1,--- n, 'usuari u; només coneix el seu fragment s;.
2. El secret S es pot obtenir a partir d’m valors diferents s; per a qualsevol i € {1,--- ,n}.
3. Donats m — 1 valors diferents, s;, no es pot obtenir cap informacié d’S.

Esquema de comparticié de secrets polindmic

Un esquema per compartir secrets llindar (m,n) forca utilitzat és el proposat per A. Shamir basat en la
interpolacié polindmica.

Suposem que volem compartir el secret S utilitzant un esquema de llindar (m,n). Aixd vol dir que hem de
crear n fragments i que en tenim prou en tenir-ne m per reconstruir-lo, perd que menys d’aquesta quantitat
no ens sera suficient. En aquest tipus d’esquema hi haura un superusuari, el gestor, que sera I’encarregat de,
partint del secret S, generar els n fragments. Com a parametres publics tindrem un nombre primer p tal que
p>nip>S.

Per construir els fragments, el gestor construeix un polinomi a(x) de grau m — 1 amb coeficients a; a Z,, és a
dir a(x) € Zp[x]. Aquest polinomi tindra com a coeficients valors aleatoris, llevat del terme independent que
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sera exactament el valor secret S, és a dir, podem expressar el polinomi de la segiient manera:
a(x) = S+ax+arx®+ -+ ap_ X" (mod p)
La generaci6 dels fragments es realitzara de la segiient manera. El gestor tria n valors aleatoris de Z,,

{x1,--+ ,xn}, 1 per a cada valor en calcula la seva avaluaci6 pel polinomi, és a dir, a(x;) = S+ ajx; + az)ci2 +
e +am—1x:'n_1 (mOd p)'

El polinomi a(x) es manté en secret i només el coneix el gestor, perd es pot eliminar una vegada s’han
generats els fragments.

Cada participant rep com a fragment del secret el parell {x;,a(x;)}, és a dir, un valor x; i la seva avaluacié en
el polinomi, a(x;).

Podrem recuperar el secret si tenim m fragments plantejant el segiient sistema d’equacions:

a(x1) = S+aix —|—agx%—|—~~~—i-am_1x’1"’l (mod p)
a(x) = S+a1x2+a2x%+~~~+am,1x’2"’l (mod p)
a(x,) = S+alxm+a2x31+~~-—|—am,1x;ﬁ_l (mod p)

Si ens fixem, en aquest sistema hi tenim m incognites corresponents als m coeficients dels polinomis
S,ay,az, - ,a,—1 1 també hi ha m equacions, per la qual cosa al resoldre’l obtindrem el valors de les
incognites i en particular la que ens interessa, que és el valor secret S. A més, aquest sistema sempre tindra
solucié i sera tnica perque hi intervé el determinant de Vandermonde.

Exemple 10.2 Exemple de protocol de compartici6 de secrets llindar (3,5)

Suposem que tenim cinc usuaris u1,up, U3, uq,us que volen repartir-se el valor secret S = 673. Per fer-ho
utilitzaran 1’esquema de comparticié de secrets polinomic de Shamir i treballaran amb el primer p = 1931.

Passem a descriure els dos processos d’un esquema de comparticié de secrets: la generacid dels fragments
i la recuperaci6 del secret.

Generaci6 dels fragments:

Donat que amb 3 usuaris n’hi haura prou per recuperar el secret, el gestor construira un polinomi de grau
2 amb coeficients a Z1931 on el terme independent sigui el secret S = 673. Aixi, el gestor triara dos valors
aleatoris per crear el polinomi, per exemple 436 i 806 i construira el polinomi a(x) = 673 + 806x +436x7.
Amb aquest polinomi, procedira a construir els fragments de cada usuari avaluant el polinomi en una
component x per a cada participant. Si suposem que u; té la component x = 1, up la component x, =21
aixi per a cada usuari, tindrem les segiients avaluacions:

a(1) =673 +806-1+436-12 = 1915 (mod 1931)
a(2) = 673 +806-2+436-22 =167 (mod 1931)
a(3) =673 +806-34436-3> = 1222 (mod 1931)
a(4) =673+806-4+436-4> = 1218 (mod 1931)
a(5) = 6734806 -5+436-52 = 155 (mod 1931)

Per tant I’'usuari u; rebra el fragment [1,1915], I"usuari u, el fragment [2,167], Iusuari u3 el fragment
[3,1222], 'usuari uy el fragment [4,1218] i 'usuari us el fragment [5, 155].

Recuperacio del secret:

Suposem ara que tres dels cinc usuaris es reuneixen per recuperar el secret. Suposem que son els usuaris
uy, ug i us (perd haguéssim pogut triar qualssevol tres altres). Els fragments d’aquests usuaris sén [1,1915],
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[4,1218] 1 [5,155] respectivament. Com que aquests valors s6n punts del polinomi utilitzat per generar els
fragments, podem plantejar el segiient sistema d’equacions:

S+aj-1+ay-12 1915 (mod 1931)
S+ar-4+ay-4? 1218 (mod 1931)
S+a;-54+ay-5 = 155 (mod 1931)

Com que només ens interessa resoldre el sistema per la variable S, que és el secret, podem aplicar el
metode de Cramer i obtenim:

1915 1 1
1218 4 16

155 5 25 2
7= 352 =352-161 =673 (mod 1931)
1 1 1 12
1 4 16
1 5 25

Exercici 10.2 Utilitzeu un esquema de compartici6 de secrets de Shamir per generar els fragments d’un
sistema (3,5)-llindar per compartir el nombre secret 11. Preneu com a primer p = 13.

Exercici 10.3 En un esquema de comparticié de secrets polindmic de Shamir amb llindar (3,6)
els participants reben els segiients fragments (58,137),(11,48),(50,99),(80,50), (104,33), (39,114).
Tenint en compte que treballen a Z49 recupereu el secret.

Exercici 10.4 En un esquema de comparticié de secrets polindmic de Shamir amb llindar m = 3,
construit sobre Z3, 'usuari A té 1’avaluaci6 del polinomi per a x = 1, I’'usuari B, x =2 i I’'usuari C, x = 3.
Els tres usuaris es reuneixen per poder trobar la clau del sistema. Tots tres usuaris fan trampa; els usuaris
AiC li sumen 2 aI’avaluaci6 del polinomi en el seu punt pero la clau que recuperen €s la correcta. Quina
és la trampa que ha fet I’'usuari B?

Problemadtiques dels esquemes de comparticié de secrets

A la practica, els esquemes de comparticié de secrets tenen un seguit de restriccions que fan que el seu us
requereixi construccions molt més complexes que les que hem presentat aqui.

El primer punt a tenir en compte en un esquema de comparticié de secrets €s la confianga que es diposita en
el gestor del sistema. Fixeu-vos que el gestor és el que s’encarrega de generar el polinomi que permetra crear
els fragments de cada participant i, per fer-ho, necessita el valor del secret. Per tant, cal que el gestor sigui
una tercera part de confianca o bé que aquest procés es realitzi amb les garanties de seguretat necessaries.

D’altra banda, també ens podriem preguntar que passaria si un dels participants donés un valor aleatori en
comptes del seu fragment. El cert és que el secret no es recuperaria i encara més, no sabriem qui ha estat el
culpable. I encara pitjor, I’atacant podria utilitzar el secret recuperat erroniament, el seu fragment fals i el
seu fragment correcte per recuperar el secret real sense 1’ajut de la resta de participants mentre que la resta
de participants continuarien sense poder recuperar el secret.

Per tal de resoldre aquests problemes hi ha els esquemes de comparticié de secrets verificables, esquemes
més elaborats que utilitzen mecanismes de compromis de bit que veurem més endavant.
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Fixeu-vos, pero, que totes aquestes problematiques no ens afecten quan només volem utilitzar I’esquema de
comparticié de secrets per emmagatzemar una contrasenya de forma distribuida i segura ja que en aquest cas,
tant el gestor com els usuaris que proporcionaran els fragments sén tots el mateix.

Esquemes de compromis de bit

Hi ha situacions quotidianes en les que estem acostumats a fer servir alguns mecanismes molt simples que
funcionen sense cap dificultat d’execucié. Un d’aquests casos és el de ’tirar una moneda a I’aire’ per, per
exemple, decidir quin dels dos jugadors d’una partida d’escacs tindra les fitxes blanques. Ara bé, quan les
dues parts que duen a terme aquest petit protocol no es troben fisicament al mateix lloc, la simplicitat de tirar
una moneda a I’aire no ens serveix si hi ha certa desconfianga entre els dos participants.

Si analitzem el procés de tirar una moneda a I’aire veiem que, normalment, un dels dos usuaris tria cara o
creu i |’altre, una vegada s ha decidit qui guanyara segons el revers de la moneda, tira la moneda a 1’aire. En
aquest simple esquema, 1’usuari que tria cara o creu ho fa de forma puiblica, de manera que després (quan cau
la moneda) no pot dir que ha triat una altra cosa. I I'usuari que tira la moneda no pot fer trampa (assumint
que la moneda no esta trucada!) perque tira la moneda davant de 1’altre usuari i els dos veuen el resultat que
en surt, de manera que qui tira la moneda no pot canviar-ne el resultat.

Per emular aquest protocol de forma remota (o digital) es fa servir un esquema de compromis de bit.

Un esquema de compromis de bit (en angles, bit commitment) és una tecnica per la qual
un usuari A es compromet, davant d’un usuari B, a un valor m per mitja d’un valor C(m),
que sera el compromis. Aquest compromis ha de tenir les segiients propietats:

1. Donat el compromis C(m), B no pot obtenir informaci6 del valor compromes .

2. A ha de poder obrir el compromis C(m) mostrant el valor compromes 7.

3. A no pot obrir el compromis C(m) mostrant un valor diferent al valor m compromeés
inicialment.

Amb un esquema de compromis de bit com el que acabem de descriure, el protocol de tirar una moneda a
I’aire es pot definir amb els segiients passos.

1. L’usuari A tria cara o creu i codifica la seva tria en el missatge m. Posteriorment, calcula el compromis
d’m, C(m),ilenvia a B.

2. B genera aleatoriament un bit, on 1 correspondra al valor cara i O correspondra a creu. B enviara a A
el valor aleatori generat.

3. A obrira el compromis C(m) mostrant a B quin valor (cara o creu) havia triat, de manera que es veura
qui ha guanyat en el protocol de tirar una moneda a I’aire.

Fixeu-vos que en el pas 2 del protocol, ’'usuari A ja ha triat cara o creu perd I’usuari B, tot i tenir el compromis
C(m), no pot saber quin valor ha triat (gracies a la primera propietat de 1’esquema de compromis de bit). En
el pas 2, tot i que 1'usuari B no generés el bit de forma aleatoria (per intentar alterar el protocol) el fet que no
coneix si A ha triat cara o creu fa que la tria d’aquest valor aleatori sigui intrascendent. D’altra banda, en el
pas 3, A ja sap quin valor ha obtingut B i per tant B no pot desdir-se’n. A més, A obre el seu compromis i, tot
i congixer el valor obtingut per B, no pot obrir-lo mostrant un altre valor diferent al que s’ha compromes,
gracies a la tercera propietat de I’esquema de compromis de bit.

Els protocols de compromis de bit es descriuen per mitja de dues fases: fase de generacié del compromis i
fase d’obertura del compromis i en els segiients apartats veurem dues tecniques diferents que implementen
un esquema de compromis de bit.
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Compromis de bit utilitzant funcions hash

Una de les tecniques més utilitzades per implementar un esquema de compromis de bit és mitjangant una
funci6 hash, funcions que hem definit en el Capitol 5. Una funci6 hash 4 és una funcié que parteix d’una
informaci6 de mida qualsevol x i en retorna un resum de mida fixa A(x), un valor petit d’alguns centenars de
bits. Perque aquesta funcié hash sigui considerada criptograficament segura cal que compleixi tres propietats
essencials. En primer lloc, donat un valor y tal que #(x) =y, no és possible trobar la seva antiimatge, x, és a
dir, la funci6 hash no es pot invertir. D’altra banda, donats els valors x i y tals que &(x) =y no és possible
trobar un valor X’ # x tal que A(x) = h(x’) = y. Finalment, tampoc €s possible trobar dos valors x i x; tals
que x| # x3 i que h(x;) = h(x2). Amb una funcié amb aquestes propietats podem definir un compromis de
bit de la segiient manera.

Sigui m el missatge al qual I’'usuari es vol comprometre, en la fase de generaci6 del compromis I’usuari A
selecciona un valor aleatori r i calcula C(m) = h(r || m) on h és una funcié hash criptografica.

En la fase d’obertura del compromis C(m), I'usuari A revela els valors r i m. A partir d’aquests valors,
I"usuari B pot calcular A(r || m) i comprovar que efectivament coincideix amb el valor C(m) al qual A s’havia
compromes.

Comprovem que aquest esquema compleix amb les tres propietats d’un esquema de compromis de bit.

1. B no pot obtenir el valor compromes m a partir el compromis C(m) ja que h(-) és una funci6 hash
criptografica i per tant no es pot invertir. Fixeu-vos que el valor aleatori r s’utilitza en cas que el
missatge m se seleccioni d’un conjunt petit de missatges, per tal d’evitar que B pugui calcular totes
les imatges de la funcié hash per a tots els possibles valors diferents d’m i descobrir-ne el valor
compromes.

2. A pot obrir el compromis C(m) fent puablics els valors r i m.

3. A no pot obrir el compromis, C(m), obtenint un valor m’ # m perqué aixd voldria dir que A pot trobar
(r||m)# (¥ || ) tal que h(r || m) = h(r' || m’) i aixd no és possible per les propietats que hem
enumerat de la funci6 hash criptografica que s’utilitza.

Compromis de Pedersen

Un altre algorisme de compromis de bit és el Compromis de Pedersen, presentat per Torben Pryds Pedersen
I’any 1991 com a part d’un esquema de comparticié de secrets verificable. Les dues fases d’aquest tipus de
compromis de bit es descriuen a continuacié.

Sigui m el missatge al qual 1’usuari es vol comprometre, en la fase de generacioé del compromis 1’usuari A
selecciona un grup multiplicatiu G d’ordre ¢ i tria aleatoriament dos generadors d’aquest grup, g i /, tal que
no es conegui el logaritme discret d’ 4 en base g. Aquests valors seran valors piblics de I’esquema. Aleshores
A calcula el valor del compromis com C(m) = g™ -h" (mod g), on r és un valor aleatori.

En la fase d’obertura del compromis C(m), I’'usuari A revela els valors r i m. A partir d’aquests valors,
I’usuari B pot calcular g” - A" (mod ¢) i comprovar que efectivament coincideix amb el valor C(m) al qual A
s’havia compromes.

En aquest cas també es pot verificar que aquest esquema compleix amb les tres propietats d’un esquema de
compromis de bit.

1. B no pot obtenir cap informacié del valor compromes m a partir del compromis C(m) ja que donat
el missatge m, com que r és triat de forma uniformement aleatoria en el conjunt G, el resultat del
compromis C(m) = g™ -h" (mod g) també és un valor uniformement distribuit en G i per tant B no
en pot obtenir cap informacio.

2. A pot obrir el compromis C(m) fent pablics els valors r i m.

3. A no pot obrir el compromis, C(m), obtenint un valor m’ # m perqueé aixo voldria dir que A pot
trobar (r,m) # (r',m’) tal que g” - k" = g" -h” (mod q). Perd aixd no és possible perqué aleshores
es podria calcular el logaritme discret d’/ en base g com = i

1
r—r

1 aixo no pot succeir perque el calcul
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del logaritme discret é€s un problema amb una complexitat massa elevada.

Exemple 10.3 Exemple d’esquema de compromis de bit de Pedersen

Suposem que 1’usuari A vol comprometre’s al valor m = 11. Per fer-ho, treballara en el grup multiplicatiu
G = Z ;3 i triara els valors g = 6 i h = 88 que sén generadors de Zjo3. Aleshores, per a la generacid
del compromys, A tria com a valor aleatori r = 17 € Zj3 i calcula el compromis com C(m) = 6'! - 8817
(mod 103) = 34.

En la fase d’obertura, A envia a B els valors (m,r) = (11,17) i B comprova que efectivament 6'! = 53
(mod 103), que 88!7 = 57 (mod 103) i que per tant el seu producte és efectivament el valor 34 = 53 -57
(mod 103).

Una de les caracteristiques interessants que presenta el compromis de Pedersen és la seva propietat homo-
morfica. Aquesta propietat ens permet generar el compromis de la suma de dos valors sense coneixer els
valors i només a partir dels compromisos de cada un d’ells. Aixi, si tenim dos missatges m i m; i els seus
respectius compromisos de Pedersen, C(m;) i C(my), tenim que el compromis del valor suma m = m; + my
sera igual al producte dels seus compromisos C(m) = C(m;) - C(my).

En efecte, si escrivim la formulaci6 per a cada un dels compromisos:
C(my)=¢g™-h"" (modgq) i C(mp)=g"-h"? (mod q)
ien fem el producte, tenim

C(ml) -C(mz) _ (gm1 _hrl) . (gmz _hrz) (mod q) — gm1+m2 ,hr1+r2 (mod q) — C(m1 +m2)

Exercici 10.5 En un esquema de compromis de Pedersen s’utilitzen com a valors de 1’esquema
G = Zj13 1 els generadors g = 27 i h = 94. L’usuari A s’ha compromes al valor m; = 29 amb el
compromis C(m;) =24 i a més del missatge, el valor necessari per a obrir el compromis és r; = 90.
Comproveu que efectivament, amb els valors m; =29 i r; = 90 es pot obrir el compromis C(m;) = 24.
L'usuari A també s’ha compromes al valor m, = 20 per mitja del compromis C(m;) = 91. Calculeu
el compromis per al valor m; + my, és a dir C(m; +my). Podeu obrir el valor d’aquest compromis
C(my+my)?

Aplicacions dels esquemes de compromis de bit

Els esquemes de compromis de bit tenen muiltiples aplicacions en protocols criptografics on hi ha una
desconfian¢a mutua entre els usuaris que hi participen. Una de les aplicacions és en 1’esquema de llangament
d’una moneda, que ja hem detallat a I’inici d’aquest apartat.

Una altra aplicacié d’aquests esquemes és en 1’ambit dels esquemes de comparticié de secrets. Com ja hem
comentat en 1’apartat corresponent, quan en un esquema de comparticié de secrets els usuaris mostren els
seus fragments, en cas que alguns usuaris no proporcionin el fragment correcte, la resta d’usuaris no sap si el
fragment proporcionat és correcte o no i poden recuperar un secret incorrecte. A més, en els esquemes de
comparticié de secrets, el gestor que reparteix el secret cal que sigui honest. Els esquemes de comparticié de
secrets verificables solucionen aquests problemes fent que el gestor que reparteix els secrets també reparteixi
un compromis per a cada coeficient del polinomi que fragmenta el secret. D’aquesta manera, tot i no congixer
el polinomi, gracies a les propietats homomorfiques del compromis es pot comprovar si un fragment és o no
correcte.

Els esquemes de compromis de bit també s’utilitzen en proves de coneixement nul. Com veurem més
endavant, les proves de coneixement nul es basen en processos iteratius. Per tal de paral-lelitzar aquests
processos sense que en la primera ronda es mostrin tots els valors, es pot utilitzar un esquema de compromis
de bit per tal que una de les parts del protocol pugui seleccionar certs valors per endavant perd sense
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necessitat de revelar-los, de manera que a posteriori, quan s hagin d’utilitzar en el protocol, es puguin obrir
els compromisos per revelar-ne el valor.

Signatures cegues

Un altre dels protocols interessants en criptografia son les signatures cegues, un protocol que s’utilitza per
signar digitalment missatges de forma especial.

En un protocol de signatura cega (en angles blind signature) 1’usuari A aconsegueix
la signatura d’un missatge m per part de I’usuari B sense que B sapiga quin missatge ha
signat.

El concepte de signatura cega el va proposar David Chaum I’any 1982 per al seu ts en esquemes de pagament
anonim.

Per imaginar-se com funciona un protocol de signatura cega és interessant utilitzar una analogia en termes de
papers i signatures manuscrites. La idea és que 1’usuari A té el document que ha de signar B i en comptes de
proporcionar-li directament (fet que faria que B en pogués veure el contingut), A el posa dins d’un sobre. La
peculiaritat d’aquest sobre €s que esta fet de paper carbo, és a dir, si escrivim alguna cosa fora del sobre
es calcara a ’interior. En particular, si B fa una signatura manuscrita fora del sobre, quan posteriorment
traiem el document de dins del sobre tindrem el document signat per les propietats de calca del sobre de
paper carbé. A més, B no haura pogut veure el contingut del document que ha signat.

Com amb altres protocols criptografics, no és dbvia quina utilitat pot tenir que un usuari pugui signar un
document sense saber el que signa. Tot i aix0, al llarg d’aquest apartat veurem en quines situacions tenen
aplicabilitat les signatures cegues.

Signatura cega amb RSA

Donat que un protocol de signatura cega pretén obtenir la signatura digital d’un missatge, aquest protocol
sempre incloura un esquema de signatura digital en concret. A continuacié veurem un protocol de signatura
cega basat en RSA. Aquest mateix protocol €s el que va idear D. Chaum quan va proposar el concepte de
signatura cega.

Denotarem per m el missatge que A vol tenir signat per B. B signara digitalment els seus missatges amb
un esquema RSA. Per fer-ho utilitzara la seva clau privada d. La clau publica corresponent a aquesta clau
privada la denotarem per (e,n). El protocol es desenvolupara en els segiients passos:

1. A tria un valor aleatori r a Z, tal que ged(r,n) = 1 i el xifra amb la clau publica de B, és a dir, calcula
t =r® (mod n). El valor ¢ és el valor que utilitzara per tapar el missatge m que B ha de signar. Per
fer-ho, A calculara m’ = m-t (mod n) i enviara el valor m’ a B.

2. Enrebre m’, B simplement realitzara la signatura sobre aquest valor de forma estandard, utilitzant la
seva clau privada d. Aixi obtindra s’ = (m’)¢ (mod n) i enviara el valor s’ a A.

3. A destapara la signatura feta per B simplement dividint la signatura que ha rebut de B, s’, pel valor
aleatori » generat en el primer pas, s = ‘7/

En la Taula 10.4 es mostra el protocol de forma esquematica.

Fixeu-vos que el valor s destapat per A en el pas 3 efectivament correspon a la signatura del missatge original
m. Aix0 és aixi perque:
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Taula 10.4: Protocol de signatura cega
Pas Alice Bob

1. Triar€grZytqged(r,n)=1
Calculat = mod n

Tapat :
calculam’ = m-t mod n =
2. Signa el valor m’ calculant:
& ¥ =(m)? modn
3. Obté la signatura de m calculant

s = i; (destapat)

Exemple 10.4 Exemple de protocol de signatura cega amb RSA

Suposem que 1’usuari A vol que I'usuari B 1i signi el missatge m = 15. L’usuari B utilitza per a realitzar
signatures digitals el criptosistema RSA. La clau publica de B és (e,n) = (19,551) i la corresponent clau
privada d = 451. Amb aquests parametres, el protocol de signatura cega entre A i B sera el segiient:

Pas Alice Bob
1. Tria 25 €g Zss t.q. ged(15,551) =1
Calcula t = 25' = 310 mod 551

Tapat :
caleula m’ = 15-310 =242 mod 551 =22,
2. Signa el valor m’ = 242 calculant:
& g 2 249%1 = 14 mod 551
3. Obté la signatura de m calculant

s =12 =14-529 =243 (mod 551)

Fixeu-vos que el valor s = 243 és efectivament la signatura del missatge original m = 15 ja que s =
154! =243 mod 551

Exercici 10.6 En un sistema d’autentificacié anonima, 1’usuari A té accés a un recurs S. Per poder-hi
accedir, I’autoritat de certificacié CA li generara una credencial que consistira en la signatura d’un
missatge m que contindra una clau publica generada per ’usuari A i I’identificador del recurs S. Per tal
que la credencial sigui anonima, la CA realitzara una signatura cega de manera que no tindra manera de
saber quina és la clau publica que certifica i per tant quan A accedeixi al recurs la CA no podra saber-ho.
Ara bé, per assegurar-se que A no accedeix a un recurs diferent, la signatura cega la realitzaran amb un
protocol de triar i remenar. Aixi, A preparara 5 missatges diferents m; tals que m; = (PK;||S), on PK; sera
una clau ptblica de la qual A en coneix la corresponent clau privada i el simbol || denota la concatenaci6.
Expliciteu tots els missatges que s’intercanviaran A i la CA en aquest protocol. Suposeu que treballen a
Zggy 1 que els criptosistemes de clau publica que fem servir sén I’RSA. Suposeu que el valor S = 5 i que
el parell de claus (publica i privada) de la CA sén PKca = 19, SKca = 619. Per simplificar, no cal indicar
les corresponents claus privades de les 5 clau pibliques triades.

10.4.2 Aplicacions de les signatures cegues

Hi ha multiples escenaris on les signatures cegues son interessants d’utilitzar i la majoria d’ells tenen a veure
amb la protecci6 de I’anonimat. Vegem com es poden fer servir en el segiient escenari per tenir identificadors
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anonims.

Suposeu un sistema amb una autoritat central que té identificats als seus usuaris. Per tal de permetre utilitzar
els recursos del sistema de forma anonima, els usuaris poden obtenir uns pseudonims per part de 1’autoritat
central. Aquests pseudonims estan signats digitalment per 1’autoritat central una vegada ha comprovat
que I'usuari té suficients privilegis per a utilitzar els corresponents recursos. La signatura de 1’autoritat
central sobre el pseudonim ha de permetre la seva validacié per una tercera part quan 1’usuari vol utilitzar el
pseudonim davant d’algun dels recursos del sistema on es vol autenticar.

Amb aquest escenari, si I’autoritat central signa els pseudonims dels usuaris de forma estandard, els
usuaris obtindran anonimat davant dels tercers amb qui s’autentifiquin utilitzant el pseudonim. Ara bé, no
aconseguiran anonimat davant de 1’autoritat central ja que 1’autoritat central, quan signa el pseudonim, sap la
identitat real de 1’usuari i, per tant, la correspondeéncia entre la identitat real i el pseudonim, trencant aixi
I’anonimat.

Una opci6 per resoldre aquest problema és que 1’autoritat central signi el pseudonim pero utilitzant un
protocol de signatura cega. D’aquesta manera, 1’autoritat central donaria validesa al pseudonim perd no
sabria a qui correspon el pseudonim.

Proteccié contra abusos en les signatures cegues

Malgrat que les signatures cegues son interessants d’utilitzar en alguns escenaris, el cert és que la possibilitat
que un usuari signi un valor sense saber exactament el que signa pot comportar també alguns problemes de
seguretat. Per exemple, com ja hem estudiat anteriorment, la realitzaci6 d’una signatura digital és equivalent
al desxifrat d’un missatge. Per tant, un usuari A que hagués interceptat un missatge xifrat ¢ dirigit a B, podria
utilitzar un protocol de signatura cega per tapar c, fer-lo signar per B i d’aquesta manera obtenir el missatge
desxifrat. D’altra banda, en escenaris més complexos, el contingut del que signa B pot ser rellevant i A pot
voler-lo modificar per treure’n profit. Per exemple, imaginem-nos el cas descrit en I’apartat anterior en el
que 1’usuari A vol obtenir un pseudonim per autenticar-se. B només li proporcionara el pseudonim en funcid
dels privilegis que tingui A en el sistema. A més, el pseudonim ha d’incloure aquesta informaci6 per tal que
A el pugui fer servir. Un possible atac d’A seria presentar un pseudonim amb unes atribucions diferents de
les que el sistema li permet. Si B ha de realitzar una signatura cega, no podra verificar aquestes condicions i
podria arribar a signar condicions no desitjades.

Per evitar aquest tipus d’accions hi ha diferents estrategiques. La primera és utilitzar una clau especifica
per a les signatures cegues. Es a dir, una clau piblica que incorporés la propia semantica de I”autoritzacio.
Per exemple, qualsevol pseudonim signat amb la clau publica que tingués el valor concret PKgXSZ només
serviria per autenticar-se davant dels recursos Sy i S». Per a autentica-se davant del recurs S3, per exemple,
caldria tenir el pseudonim signat amb la clau piblica PKgi‘. A més, aquestes claus publiques de signatures
cegues només es farien servir en aquest context i mai s’utilitzarien per xifrar missatges, de manera que 1’atac
per al desxifrat no seria possible.

Tot i que aquesta proteccid que associa una semantica a una clau és factible, a la practica pot comportar la
gestié d’un volum de claus molt gran. Per evitar-ho una altra opcié és utilitzar el procediment de “remenar i
triar” per assegurar que B no signa res fraudulent. El procés funciona tal i com es mostra en la Figura 10.1.

L’usuari A, en comptes d’enviar un tnic valor tapat m’ a B, calcula miltiples valors tapats m),mb, - ,m,,. Es
important que cada valor s’hagi tapat amb un element diferent, és a dir, per a cada m, tindrem un valor f;
diferent, seguint la nomenclatura que hem utilitzat en I’esquema de signatura cega. Cada un d’aquests valors
tapats m/,mb, - -- ,m), conté certa informaci6 que B ha de poder validar abans de signar i una altra informacié
diferent per a cada un dels valors m}. Per exemple, en el cas dels pseuddnims per a I’autenticacio, la part
que ha de poder validar B és la part que indica a quins recursos permet accedir el pseudonim. Aquesta part
ha de ser la mateixa per a tots els valors. La part que és diferent per a cada valor m] és la que indicara el
pseudonim que A fara servir.

Una vegada A ha enviat els n valors tapats m},mj,--- ,m), a B, B demana a A que destapi n — 1 valors, és
a dir, A proporcionara els corresponents #; per a n — 1 valors que B haura triat aleatoriament. Una vegada
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Figura 10.1: Esquema del mecanisme de remenar i triar

destapats, B podra comprovar que la part que ha de validar coincideix en tots i cada un dels n — 1 valors que
ha destapat. Si és aixi, assumira que el valor que li resta per destapar (el qual no pot destapar perque A manté
el corresponent #; per fer-ho) també compleix les condicions estipulades. Per tant pot procedir a signar de
forma cega aquest valor.

Fixeu-vos que cada un dels valors que ha destapat A pot contenir un pseudonim diferent, de manera que B no
sap quin pseudonim hi haura en el valor que ha signat. D’altra banda, la probabilitat que A pugui enganyar a
B aconseguint que signi algun contingut que no vulgui es pot fer tant petita com es vulgui ja que el seu valor
5 1
ésde .

n

Signatures d’anell

Un altre dels protocols relacionats amb les signatures digitals sén les signatures d’anell, que van ser
formalitzades per Ron Rivest, Adi Shamir i Yael Tauman al 2001.

En un protocol de signatura d’anell (en angles ring signature) un usuari u; que pertany a
un grup d’usuvaris #Z = {uy,--- ,u,} (amb s € [1,7]) signa un missatge m, de manera que
un validador pot comprovar que la signatura ha estat realitzada per algun membre del grup
Z pero, alhora, és computacionalment impossible saber quin usuari individual del grup ha
realitzat la signatura.

La particularitat dels protocols de signatura en anell és que no necessiten cap mena de coordinador entre els
membres del grup, ni tampoc cap procediment d’inicialitzacié dels grups. A partir d’un conjunt d’usuaris
cadascun dels quals té un parell de claus publica-privada, qualsevol usuari pot seleccionar un conjunt de
possibles signants % (entre els quals hi és el propi usuari) i crear una signatura, sense necessitar 1’ajuda o
aprovaci6 dels altres signants, ni la col-laboracié de cap tercera part de confiancga.
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Aquest tipus d’esquemes poden ser ttils, per exemple, per a permetre filtrar informaci6 sense revel-lar la
identitat de qui ha fet la filtracio, perd oferint garanties sobre la font. Aixi, un metge d’un hospital pot
voler donar la seva opini6 sobre la gestié d’una crisi sanitaria a un periodista sense revel-lar la seva identitat
(per por a represalies), perd assegurant al periodista que és un metge col-legiat. Aixi, el metge podria crear
una signatura d’anell sobre el missatge on dona la seva opinid, seleccionant com a possibles signants un
conjunt de metges col-legiats a la seva eleccié. D’aquesta manera, el periodista podria verificar la signatura,
comprovant que és valida per al grup de signants i que tots ells sén metges col-legiats, i per tant podria estar
segur que qui ha signat el missatge és efectivament un metge col-legiat. Alhora, la identitat individual del
metge que ha signat el missatge quedaria oculta, i el periodista només sabria qui és amb probabilitat 1/r,
amb r el ndmero de possibles signants.

Les signatures d’anell basades en RSA

En aquesta secci6 presentarem un dels esquemes de signatures d’anell fent servir claus RSA. Els usuaris del
sistema disposaran doncs d’un parell de claus publica-privada del criptosistema RSA. Per tal de realitzar
una signatura d’anell, un usuari seleccionara un conjunt de claus publiques (que formaran 1’anell, el grup de
possibles signants del missatge entre els quals hi sera el propi usuari) i generara una signatura fent servir les
claus publiques dels altres membres de 1’anell i la seva clau privada. Aquesta signatura podra ser després
validada per un receptor, coneixent el missatge original i les claus publiques dels usuaris de 1’anell.

L’esquema fa servir quatre primitives criptografiques basiques:

* I’RSA.

* Un criptosistema de clau simetrica.
* Una funci6 hash.

* Una funcié de combinacid.

RSA

Farem servir # = {uy,--- ,u,} per descriure al conjunt de possibles signants de 1’anell, on u; € Z és I’usuari
que generara la signatura. Cada usuari u; € % disposa d’un parell de claus RSA: una de publica PK; = (n;, ¢;)
que és de domini public, i una de privada SK; = (n;,d;) que només el propi usuari coneix.

Com ja hem vist en el Capitol 6, 'RSA es basa en el fet que la funcié f;(x) =x% (mod n;) és computacio-
nalment impossible d’invertir si no es coneix la factoritzacié del modul n; (el que permet calcular I’exponent
privat d;). Per tant, només els usuaris que sén coneixedors de la clau privada SK;, poden calcular ffl (y) =y
(mod n;).

Criptosistema de clau simétrica i funcié hash

El protocol fa servir també un criptosistema de clau simetrica. Denotarem amb Ej(m) la funcié de xifrat
del missatge m amb la clau k, i amb £~ !(y) la funcié de desxifrat. Els missatges a xifrar i desxifrar seran
cadenes de b bits, i la mida de la clau del criptosistema simetric sera /.

Addicionalment, el protocol fa servir una funci6 hash 4, que pot rebre entrades de qualsevol mida i retornara
cadenes d’/ bits (que es faran servir com a clau del criptosistema de clau simetrica).

Funcié de combinacio

Per ultim, el protocol fa servir una funcié de combinacié amb clau, que incorpora totes les primitives anteriors
1 que és la base del protocol de signatura d’anell. La funcié de combinaci6 rep una clau k d’/ bits, un valor
d’inicialitzacié v de b bits, i un niimero arbitrari d’entrades y; també de b bits, i retorna una cadena de b bits:

Cev(1,y2, 3 9r) = Ex(r ® Ex(yr—1 O Ex(yr—2 B Er(- - @ Ex(y1®Vv)--+)))) =2

https://www.criptografia.cat v0.2.1 04/02/2026


https://criptografia.cat

10.5 Signatures d’anell 311

Lr > fr > Yr h Sl 1

NI O

Ey

/ B N

3 > f3 > U3 Y2 = fo [+ @2

Figura 10.2: Esquema de la signatura d’anell amb RSA

Tot i que a primer cop d’ull la funcié de combinacié pugui semblar complexa, fixeu-vos que no fa res més
que calcular, reiteradament, una xor entre dos valor, xifrant-ne després el resultat amb el criptosistema de
clau simetrica.

El punt clau de I’esquema recau en com s’aplica la funci6é de combinaci6 en la creacié de les signatures
d’anell. Doncs bé, d’una banda, la clau k que es fa servir en el criptosistema simetric correspon al hash del
missatge a signar, és a dir, k = h(m). D’altra banda, la funcié s’aplica a la seqiiencia d’entrada (y1,y2,- -, yr),
amb y; = f;(x;) per al conjunt de signants de 1’anell. Per dltim, es forca que la sortida z de la funcié de
combinacié hagi de ser igual al valor d’inicialitzacié v, és a dir:

Ck,v(ylayZa T ;yr) =V

Aquest dltim punt fa que sigui necessari coneixer com a minim una de les funciéns ff' per tal de poder
calcular tots els y; de la seqiiencia d’entrada, de manera que podrem assegurar que només els membres de
I’anell poden generar signatures valides per a aquell anell.

Addicionalment, aquest punt també és el que dona el nom de signatures d’anell a la construccié que
estem presentant: al forcar que el valor de sortida de la funcié de combinaci6 hagi de ser igual al valor
d’inicialitzacid, es crea una estructura de dependencies circular entre els valors, que té forma d’anell. La
Figura 10.2 mostra com es combinen les diferents primitives criptografiques en la funcié de combinacié.

El protocol de signatura d’anell basat en RSA

Una vegada presentades les diferents primitives criptografiques que intervenen en el protocol de signatura
d’anell basat en RSA, veiem ara com s’executa el protocol.

En primer lloc, descriurem a grans trets en que consisteix la creacié i validacié d’una signatura amb el
protocol de signatura en anell.

En el procés de realitzacié de la signatura, ’usuari que la genera calculara els y; corresponents a tots els
altres possibles signants fent servir les seves claus ptibliques i calculant y; = f;(x;) per a un conjunt x; de
valors aleatoris. Tenint en compte la construccié de la funcié de combinacid, per a un missatge i valor
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d’inicialitzacié concrets, aix0 determinara el valor y, corresponent al signant. Coneixent la funcié f;l, el
signant podra invertir el valor y; i trobar el valor x, tal que fs(x;) = ys. La signatura sera aleshores el conjunt
de tots els valors x; (incloent el del signant) amb les corresponents claus pibliques, i el valor d’inicialitzaci6.
Fixeu-vos que, a diferéncia d’una signatura convencional on no cal incloure la clau ptblica del signant, en
aquest cas cal incloure totes les claus publiques utilitzades perque qui posteriorment validi la signatura no té
coneixement ni de qui realment ha realitzat la signatura ni de quines claus ha utilitzat en I’anell.

En el procés de validacid, el validador podra comprovar que la signatura és valida, ja que podra recrear tots
els y; a partir dels x; i les claus publiques, i comprovar després que efectivament 1’equacié de la funcié de
combinacié es compleix per al valor v rebut. A més, el verificador no podra saber quin usuari ha signat
el missatge, ja que per a tots els usuaris de I’anell de possibles signants, en rep exactament la mateixa
informaci6 (el parell x;,y;).

En segon lloc, prosseguim a presentar el detall de I’execucié del protocol.

El procés de realitzacié de signatura s’inicia quan 1’usuari que vol realitzar la signatura del missatge m,
selecciona un conjunt d’usuaris, dels quals en coneix la clau publica, per formar part de 1’anell de possibles
signants Z. Es a dir, el signant obté r claus pibliques {PK; = (n;,¢;),i € {1,---r}}. Amb aquesta informaci6
i els seu propi parell de claus (SKs, PK;) (fem servir I'index s per referir-nos al signant) executa els segiients
passos:

1. El signant calcula els segiient valors:

o k=h(m)

o btalqueZ”>n,~pera1§i§r

* veg{o, l}b

o x;€r {01} peral <i<r,peri#s

o yi=filxj)peral <i<r,peri#s
2. Troba el valor ys que soluciona I’equacié: Cy,(y1,y2,- -+ ,yr) =V
3. Calcula: x; = f; ! (yy)

Per tant, el valor de la signatura del missatge m sera

G:{PK1> ,PK,,v,xl,--- u-xr}

Fixeu-vos que al Pas 1, I’'usuari signant calcula un conjunt de valors necessaris per a la resolucié de I’equacid
que descriu la funcié de combinacié. D’una banda, calcula la clau del criptosistema simetric k a partir del
hash del missatge a signar. També tria un valor b tal que 2° sigui major que tots els moduls de les claus
publiques dels usuaris de I’anell. Després, selecciona un valor d’inicialitzaci6 v aleatori de b bits, aixi com
r— 1 valors aleatoris x; (també de b bits). Finalment, per a cada valor x;, calcula I’y; corresponent fent servir
la clau publica de cadascun dels altres usuaris de 1’anell de possibles signants.

A continuacid, al Pas 2, el signant resol I’equaci6 plantejada per la funcié de combinacid, fent servir els
valors calculats al pas anterior, per tal de trobar el valor y;.

Una vegada calculat el valor y;, al Pas 3 el signant troba el valor x; tal que fs(x;) = y;. Aquesta operaci6 la
pot fer ja que el signant coneix el valor de la clau privada, SK; i, per tant, pot invertir la funcié i calcular
I !(y5) = x,. Noteu que aquest procés només el pot fer per al valor y;, perd no per cap altra valor y; (amb

i #5).

Finalment, al Pas 4 el signant genera la signatura ¢, que no és res més que el conjunt de tots els valors x;
(un dels quals haura calculat a partir de la seva clau privada, i els altres correspondran als valors aleatoris
obtinguts al Pas 1), el conjunt de totes les claus publiques dels usuaris de 1’anell (entre les quals hi haura la
del signant, que sera indistingible de les altres), i el valor d’inicialitzaci6 v.

Per tal de validar la signatura o, el verificador necessita tant el valor de la signatura 6 = {PK,-- , PK,, v, x1,- -

com el missatge m sobre el que s’ha realitzat la signatura. Amb aquestes dades, el verificador realitza els
segiients passos:

1. Calcula:
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e yi=fi(x;))peral <i<r
o k=nh(m)
2. Verifica que es compleixi la igualtat Cy, (y1,y2,"+ ,r) =V

Fixeu-vos que al Pas 1 de la validacid, el verificador procedira a recalcular tots els y;, aplicant les funcions
fi (que coneix ja que ha rebut també les claus publiques dels possibles signants) a cadascun dels valors x;
rebuts. També calculara la clau & a partir del hash del missatge rebut.

Per acabar la validacid, al Pas 2 el verificador comprovara que el resultat de la funcié de combinaci6 per als
valors y; calculats, la clau k corresponent al missatge i el valor d’inicialitzacié v rebut és també el valor v.
Fixeu-vos que, efectivament, el verificador no pot saber quin dels usuaris ha signat el missatge, ja que no pot
distinguir de cap manera I’usuari que ha signat de la resta d’usuaris de I’anell de possibles signants.

Exemple 10.5 Exemple de signatura d’anell basada en RSA

Per tal d’executar el protocol de signatura d’anell basada en RSA, caldra primer triar una funcié hash A
i una funci6 de xifrat simetric E. Amb 1’objectiu de simplificar al maxim 1’exemple i centrar-nos en el
calcul de la signatura d’anell, seleccionem dues funcions senzilles per a aquestes dues primitives, que no
oferiran la seguretat desitjada perd que ens permetran exemplificar el protocol. Aixi, d’una banda, farem
servir la funci6 identitat com a funci6 hash, de manera que /(x) = x per a qualsevol valor d’entrada x.
D’altra banda, farem servir una xor entre el missatge i la clau com a funcié de xifrat simetric, de manera
que Ex(x) =xdk.

Suposarem també que el conjunt d’usuaris %/ amb claus pibliques RSA conegudes que formaran part de
Ianell sera Z = {uy,u,us3,us} iles claus de cada un:

PK; = (28907,18541)

PK, = (41917,22491)

PK3 = (39407,26077)

PK4 = (32743,17539)

Per a aquest exemple, suposarem que 1’usuari que fa la signatura és s = 3. La seva corresponent clau
privada és SK3 = (39407,27013). Suposarem també que el missatge sobre el qual vol realitzar la signatura
és m = 16962.

El procés de signatura tindra els segiients passos:

1. Calcula:
o k=h(16962) = 16962
* b=16:jaque2'* =65536 >n;peral <i<4
o v=129424 g {0,1}16
x = {25816,11546,0,28447} amb x; €¢ {0,1}1°
* y1 = f1(25816) = 25816'%*! (mod 28907) = 15266
o v = fo(11546) = 11546%2*! (mod 41917) = 38905
o vy = f2(28447) = 28447'75% (mod 32743) = 11683
2. Troba el valor y3 que soluciona I’equacié: Cieo62,29424(15266,38905,y3,11683) = 29424 obtenint
com a solucio y3 = 33272
3. Calcula: x3 = f; '(33272) = 3327227°3 (mod 39407) = 4541

Per tant, el valor de la signatura sera:

0 = {PK1,PK>,PK3,PK4,v,X1,X2,X3,%4} =
= {(28907,18541), (41917,22491), (39407,26077), (32743,17539),29424,25816,
11546,4541,28447}

Al Pas 1, el signant realitza tots els calculs per obtenir els valors necessaris per plantejar I’equaci6 de la
funcié de combinacié. Aixo0 inclou generar alguns valors aleatoriament (el valor v i també x1, x2 1 x4), 1
calcular els valors y; corresponents als altres signants (y1, y2 1 y4). Noteu com el valor y3, corresponent
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al signant, no s’ha calculat encara en aquest pas, ja que precisament sera la incognita de 1’equacio6 de
la funcié de combinacid, i es calculara per tal d’assegurar que el resultat de la funcié de combinacié és
exactament el valor d’inicialitzacio.

Al Pas 2 el signant calcula el valor y3 resolent I’equacié donada per la funcié de combinacié. En la figura
segiient es mostra, graficament, el procés que pot seguir el signant per fer aquest calcul. El signant parteix
del valor d’inicialitzaci6 seleccionat v = 29424 i va calculant tots els valors que se’n deriven reseguint
I’esquema de la figura per dos camins diferents: d’una banda, en sentit horari i, d’altra banda, en sentit
antihorari. Aixo li permet anar fent tots els calculs fins a arribar a trobar el valor y3.

y1 = 15266 1 = 25816
v=29424 /

T4 = 28447 ya = 11683

24403

3 = 4541 ys = 33272 Y2 = 38905 zp = 11546

Una vegada sap que y3 = 33272, al Pas 4 el signant calcula el valor x3 amb la seva clau privada, i al Pas 4
genera la signatura.

El verificador, per verificar la signatura realitzara els segiients passos:

1. Calcula:
» y1 = f1(25816) = 25816'%*! (mod 28907) = 15266
o v = f(11546) = 11546%2*! (mod 41917) = 38905
o y3 = f3(4541) = 4541677 (mod 39407) = 33272
o y4 = f4(28447) = 28447'75% (mod 32743) = 11683

k=h(16962) = 16962
2. Verifica:
Ci6962,29424(15266,38905,33272,11683) = 29424

Fixeu-vos, que la verificaci6 de la signatura és molt més immediata, i passa per calcular tots els y; a partir
dels x; rebuts, i comprovar que I’equacié de la funcié de combinacié es compleix per als valors y; calculats.
En aquest cas, efectivament es compleix, i el verificador dona per valida la signatura.

Detalls sobre la combinacié de claus publiques

Per tal de simplificar la presentaci6 del protocol, la seccid anterior ha passat per alt un detall pel que fa als
calculs realitzats en el protocol. En aquesta seccid, presentarem doncs una petita modificacié en el protocol,
que permetra que operi correctament.

A T’hora de calcular una signatura, s’utilitzen conjuntament diferents claus RSA que pertanyen a diferents
usuaris, i que habitualment tindran moduls també diferents. A més, aquestes claus podrien tenir, fins i tot,
mides diferents. Per tal de poder realitzar la signatura considerant les diferéncies entre els moduls de les
diferents claus, al Pas 2 del protocol es tria un valor b tal que 2° > n; per a tots els mdduls de les claus de
I’anell, i aleshores es treballa sempre amb valors de b bits.

Si apliquem el protocol tal com s’ha descrit a la secci6 anterior, cada vegada que s’aplica una funcié f; (o fl-_l)
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es genera una sortida menor a ;. Per tant, mai s obté com a resultat un valor entre n; i 2. Aquest interval
sera major o menor en funcié del modul n;, perd en tot cas fa que la funcid f; no generi una permutaci6 entre
tots els elements de b bits, ja que hi ha elements valids com a entrada que mai es generen com a sortida. Per
a evitar-ho, en comptes de fer servir la funcié f;, el protocol de signatura en anell basat en RSA fa servir la
funcié g; definida de la segiient manera:

(m) = gini+ fi(ri) si(qi+1)n; <2
& B m altrament

on g; 1 r; s6n enters no negatius tals que m = g;n; +r; 10 < r; < n;.

Aixi, per a valors m < n;, la funcié g; retornara el mateix que la funcié f; (noteu com aquests casos
corresponen a g; = 0). Per a valors d’m superiors al modul, intuitivament podem dir que la funci6 g; aplicara
la funcid f; al residu (als bits menys significatius) perd mantindra els bits més significatius. Aixo evitara
reduir la mida de la sortida. Finalment, per als casos excepcionals en els quals la primera expressié podria
generar un valor de més de b bits, la funcid g; simplement retorna el valor que rep a ’entrada.

Fixeu-vos que amb 1’ds de g;, s’aconsegueix generar totes les possibles sortides de b bits i, alhora, es manté
la propietat de I’RSA que es necessita per al protocol, ja que només 1’usuari que sap com invertir f; podra
invertir també g;.

Exemple 10.6 Exemple de calcul de g;

Suposem un usuari ¥; € % amb una clau piblica RSA PK; = (n;,e;) = (49,11). A T’hora de fer la signatura
d’anell, s’ha triat el valor b = 8, que compleix que 2% =256 > 49.

La imatge segiient mostra graficament els diferents intervals definits per a la funcié g; d’aquest usuari.

@G =95
|

gi=1 q; =2 g =3 g =4 v
49 98 147 196 245

0 256

Els possibles valors d’entrada m de la funcié g; es troben a I’interval [0,256) (corresponen als valors
que es poden representar amb b = 8 bits). La zona colorejada en verd correspon a la primera part de la
definicié de g;, en la qual (g; + 1)n; < 2°; 1a zona colorejada en vermell correspon a la segona part de la
defini6 de g;, que denota la resta de possibles valors d’entrada.

* El primer interval de la imatge, mostrat de color verd fosc, correspon als valors d’entrada inferiors
al modul (m < 49): el valor g; és 0, i la funcid g; retorna exactament el mateix que la funcié f;.
Aquests son els valors que hem fet servir a ’exemple de la secci6 anterior, per tal de poder explicar
el protocol sense haver de definir g;. Aixi, per exemple, per a m = 34, g;(34) = f;(34) = 41.

» La resta d’intervals mostrats en color verd més clar corresponen a valors d’entrada inferiors a
245. En aquests casos, 0 < g; < 5, i la funci6 g; aplica f; sobre el residu r;, perd manté la mida
de ’entrada. Aixi, per exemple, per al valor m = 65, ¢; = 1 i r; = 16. Aleshores, f;(16) =4, i
gi(65) =1-49+4 = 53. Fixeu-vos que, en aquest cas, la funcié g; retorna un valor superior al
modul.

e Per dltim, I’interval mostrat en vermell a la imatge correspon als valors d’entrada per als quals g;
retorna la mateixa entrada, i que corresponen als valors pels quals 1’expressi6 g;n; + f;(r;) podria
generar una sortida de més de b bits. Aixi, per exemple, per a m = 254, tindriem que ¢; =51r; =9.
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Aleshores, si calculéssim el resultat de I’expressi6 anterior:
gini+ fi(r)) =5-49+ £;(9) = 5-49 + 46 = 291

Perd 291 > 256, de manera que es produiria un overflow. Per a evitar-ho, la funcié g; retorna el
valor d’entrada, de manera que g;(254) = 254.

Noteu com aquest aquest interval mostrat en vermell conté valors per als quals I’aplicacié de
I’expressi6 g;n; + f;(r;) genera un valor de més de b bits, perd no necessariament tots els valors de
I’interval generen aquest overflow. Per exemple, si avaluem 1’entrada m = 249:

gini+ fi(r;)) =5-49+ f;(4) =5-494-2 = 247

veiem que efectivament no sobrepassa el valor maxim de 256. Ara bé, com que I’entrada m = 249
és superior a 245, 1’expressi6 que cal aplicar és: g;(m) = m i per tant g;(249) = 249.

Proves de coneixement nul

Un dels usos de la criptografia és la gestié de la informacié secreta. En ocasions la gestié d’aquesta
informacié pot comportar que ens interessi convencer a algi que coneixem certa informaci6 secreta perd
sense revelar aquesta informacié. Dit d’una altra manera, ens interessa un mecanisme per poder demostrar
que sabem un secret sense revelar-lo. Aquest concepte, batejat amb el nom de proves de coneixement nul, el
van introduir S. Goldwasser, S. Micali i C. Rackoff I’any 1985.

Una prova de coneixement nul (en angles zero-knowledge proof) és un protocol entre
dos usuaris pel qual I’usuari que actua de provador, P, permet demostrar que coneix un
cert valor secret s davant d’un usuari verificador, V, sense proporcionar el valor s. Al final
del protocol, V estara convengut que P coneix el valor s i alhora V no haura obtingut cap
informaci6 sobre aquest valor.

Per tant, una prova de coneixement nul ha de complir les segiients propietats:

1. Correccié: Si el provador coneix el valor s ha de poder convencer al verificador que efectivament el
coneix.

2. Robustesa: La probabilitat que el provador enganyi al verificador ha de ser molt petita. Es a dir,
si el provador no coneix el valor secret s, la probabilitat que la prova de coneixement nul s’executi
correctament és molt petita.

3. Coneixement nul: Un cop realitzada la prova de coneixement nul, el verificador no té cap informacid
sobre el valor secret s que el provador coneix. En particular, el verificador no pot provar a una tercera
persona, ni per mitja d’una prova de coneixement nul, que coneix el secret.

Un exemple grafic per entendre la mecanica de la majoria de les proves de coneixement nul és el que
van proposar J.J. Quisquater i L. Guillou. En aquest exemple tenim una cova, com la que es mostra a la
Figura 10.3. La cova té una entrada amb un tnic cami. En un punt de la cova, el cami es bifurca i fa una
volta fins a tornar-se a unir amb I’altra part del cami. Ara bé, el cami esta tancat per una porta que s’obre per
mitja d’una paraula secreta. En Pep (P) coneix aquesta paraula secreta i vol convencer a en Viceng (V) que
la coneix pero no vol donar-li aquesta clau. Per fer-ho executen la segiient prova de coneixement nul:

1. En Viceng és queda a I’entrada de la cova (punt A del grafic) mentre que en Pep entra dins i tria un
dels dos camins fins a arribar a la porta. Per tant, pot estar en el punt C o bé en el punt D depenent de
la tria que hagi fet.

2. Un cop en Pep ha arribat davant de la porta, en Viceng avanca fins a la bifurcacié (punt B). Des d’alli
tria un dels dos camins, el de la dreta o el de I’esquerra i li fa un crit a en Pep perque surti pel cami
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Figura 10.3: Grafic de la cova de I’exemple

que ha triat.
3. Com que en Pep coneix la clau que obra la porta no tindra cap problema per sortir pel costat que en
Viceng li ha demanat.

Comprovem ara si amb aquest exemple es compleixen les tres propietats que hem indicat anteriorment.

1. Si en Pep coneix la clau sempre podra sortir per costat que en Viceng li demana i per tant podra
demostrar que té el coneixement que vol provar.

Si tornéssim a fer ’experiment i el repetissim tantes vegades com volguéssim, en Pep sortiria sempre
pel costat que en Viceng li demanés, ja que coneix la clau que obre la porta i per tant no tindria cap
problema.

2. Si en Pep no coneix la clau de la porta no hauria de poder convencer al Viceng que si que la coneix.
Fixeu-vos que si no coneix la clau, al fer la prova el Pep tindria una probabilitat d’1 /2 d’encertar el
cami que li demanara més tard en Viceng, ja que si en endinsar-se en la cova I’encerta, després podra
sortir pel mateix costat i no li caldra utilitzar la clau de la porta que de fet no sap. Ara bé, si el procés
el repetim un altre cop, en Pep només té 1/4 de probabilitat d’enganyar-lo. Ja es veu que si repetim la
prova n vegades la probabilitat que en Pep enganyi al Viceng és d’1/2". Aix{ doncs, si en Viceng vol
estar segur amb probabilitat 0,999023 que en Pep sap la paraula secreta que obre la porta només cal
que realitzin la prova 10 vegades.

3. Un cop en Viceng ha pogut validar que en Pep coneix la clau, en Viceng no ha obtingut cap informacid
de la clau i tampoc pot utilitzar informacié de la prova que ha fet amb en Pep, malgrat 1’hagi repetida
10 vegades, per poder demostrar ell davant d’un tercer que coneix la clau.

L'exemple Com veurem més endavant, aquest exemple il'lustra com funciona una prova de conei-
rebuscat xement nul, perd obviament, pel nostre proposit, n’hi hauria prou en fer entrar en Pep
per la dreta i fer-lo sortir per 1’esquerra.

En general, les proves de coneixement nul funcionen d’aquesta manera, és a dir, son iteratives de manera que
en cada iteraci6 hi ha una probabilitat del 50% d’encertar. A més, en aquests tipus de protocols utilitzen
la tecnica anomenada challenge & response on el verificador déna al provador una informacié que ell ha
generat aleatoriament per tal que el provador la completi utilitzant el secret que coneix. Aquesta técnica
també s’anomena sovint cut & choose ja que fa referencia al tipic protocol de repartir un pastis entre dues
persones, en el que una fa les parts (talla) i 1’altre tria.
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Prova del coneixement del logaritme discret

A continuacié veurem un exemple concret d’una prova de coneixement nul aplicada al coneixement del
logaritme discret d’un valor, prova que va ser proposada per D. Chaum, J. Evertse i J. Van de Graaf al 1987.
Ja hem comentat anteriorment que el calcul del logaritme discret té una complexitat elevada, és a dir donats
uns valors y,g i p és dificil trobar per a quin valor x es compleix que y = g* (mod p). Per tant, aquesta
prova de coneixement nul permet al provador demostrar que coneix el valor x que compleix 1’equacié y = g*
(mod p) sense necessitat de revelar aquest valor.

El protocol funciona de la segiient manera. En primer lloc el protocol estableix tres parametres publics
(p,g,y), on p és un nombre primer gran, y és un nombre enter tal que y < p i g és un generador del grup
multiplicatiu Z,,. El provador ha de demostrar al verificador que coneix el valor x que satisfa I’equacid y = g*
(mod p). Per fer-ho el protocol realitza els segiients passos:

Pas Provador (P) Verificador (V)

1. TriaregrZ,\{0,1}
Calculac = g" (mod p) 5

2 & Tria un bit aleatori b g {0,1}
Calculah=r+b-x (mod p—1) LN

4. Verifica que
¢y’ =g" (mod p)

El protocol consisteix en repetir n vegades els 4 passos descrits anteriorment.
Comprovem com es compleixen les propietats d’una prova de coneixement nul.

1. Correcci6: en el cas que P conegui el valor x sempre podra calcular el valor & en el tercer pas del
protocol de manera que la validacié que fara V en el pas quatre sera correcta.

2. Robustesa: per vertificar la propietat de robustesa, analitzarem com s’ho faria P per intentar fer
creure a V que coneix x sense realment saber-ho. Per fer-ho, P ha de poder calcular el valor & del pas
3 sense coneixer r. Fixeu-vos que en cas que V i envii a P el valor b =0 en el pas 2, P calculara
h=r+b-x (mod p—1)=r (mod p— 1) sense necessitat de saber x i aquest valor sera correcte
i per tant superara la validaci6 del pas 4. Ara bé, si V tria b = 1 en el pas 2, aleshores P no pot
calcular el valor & correcte (li falta el coneixement de x) de manera que no podra concloure el protocol
correctament. Fixeu-vos que la probabilitat que aix0 passi és de 1/2, ja que és la probabilitat que té
V en el pas 2 de triar un 0 6 un 1. Per tant, si repetim el protocol n vegades, la probabilitat que P
enganyiaV ésd’ zi,l
Arribats a aquest punt, podriem pensar que no sembla que tingui sentit que V' en el pas 2 envii un 0, ja
que en aquest cas, P no necessita coneixer x. Per tant, podriem concloure, errdbniament, que en el pas
2,V podria enviar sempre un 1, forcant a P a coneixer x. Ara bé, aquesta estratégia no €s correcta.
Fixem-nos que si V sempre tria b = 1, P pot generar un valor r en el pas 1, perd en comptes d’enviar
c=g" (mod p) aV pot enviar ¢’ = ”Tj (mod p). Aleshores, en el pas 3, P envia r en comptes de

r+ x, pero la verificaci6 del pas 4 sera correcta perqué ¢’ -y = %r y=g =g"

Per tant, fixeu-vos que si P no sap si li arribara un 0 6 un 1 en el pas 2 (i P no coneix el secret) no sap
quina estrategia d’engany ha de seguir en el pas 1, és a dir si ha d’enviar c = g (mod p) o bé ¢’ = ”;—'
(mod p). Per tant, d’'una manera o d’una altra té una probabilitat d’1/2 d’enganyar.

3. Coneixement nul: el protocol també té la propietat de coneixement nul ja que després d’executar-lo,
V només coneix el valor g” rebut en el pas 1, valor que no té cap relacié amb el secret x. A més, el
valor & rebut en el pas 3, tan pot correspondre al valor  com al valor r 4 x i ambdds es presenten com
a valors aleatoris per a V i per tant no poden proporcionar cap informacié d’r.

r

Exemple 10.7 Exemple de protocol de prova de coneixement nul del logaritme discret Suposem
que els parametres del protocol seran p = 89 i g = 3. El provador P coneix el logaritme discret de y = 14
(mod 89) que és x =9. Suposarem que V tria el valor b = 1 en el pas 2. D’aquesta manera el protocol
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tindria els segiients valors.

Pas  Provador (P) Verificador (V)
1. Triar=20¢€g Zg \ {0,1}
Calcula ¢ = 3*° =73 (mod 89) ElEN
2. &=L Tria un bit aleatori b = 1
. Calculah=20+1-9=29 (mod 88) ==
4. Verifica que

c-y? =73-14" =43 (mod 89)
g" (mod p) =3%° =43 (mod 89)

Exercici 10.7 Voleu realitzar una prova de coneixement nul per demostrar que coneixeu el logaritme
discret en base 7 de y = 94 a Zog7, és a dir el valor x tal que y =7* (mod 97). El problema és que realment
no coneixeu el valor x perd voleu enganyar a un usuari fent una prova de coneixement nul i que es pugui
convencer que si que el coneixeu. Afortunadament per vosaltres, el generador pseudoaleatori que fa
servir el provador té una vulnerabilitat i vosaltres podeu saber el valor dels bits que genera en el pas 2 del
protocol. L’usuari en qiiesti6 vol fer una prova de coneixement nul que li asseguri que coneixeu el valor
amb probabilitat superior a 0,75. Desenvolupeu tot el protocol de prova de coneixement nul assumint que
el generador aleatori de V produeix els segiients bits: 010011100.... Doneu el detall de les operacions i
valors que s’intercanvien els usuaris en cada pas del protocol.

10.6.2 Aplicacions de les proves de coneixement nul

10.7

Les proves de coneixement nul tenen diferents camps d’aplicacié. El primer camp és en els sistemes
d’autenticacid. El tradicional metode de contrasenya comenca a ser insuficient per a certes aplicacions ja que
tant si aquesta, de forma incorrecta, es guarda en clar com si es guarda com a imatge d’una funcié hash en
algun moment I’usuari ha d’introduir-la en clar i és aleshores quan pot ser interceptada. A més, la utilitzacié
de la mateixa informaci per a diferents processos d’autenticacié pot donar lloc a atacs de repeticié en el que
un atacant utilitza informacié d’una autenticacié anterior per autenticar-se posteriorment. Utilitzant proves
de coneixement nul, donat que el verificador no pot obtenir cap informacié sobre el valor secret que té el
provador, la possibilitat d’atacs de repeticié desapareix.

Un altre camp on les proves de coneixement nul sén importants és en la verificaci6 de parametres en
protocols criptografics més complexos. Per exemple, en protocols de votaci6 electronica, els votants han de
proporcionar certs parametres per poder realitzar la votaci. Alguns d’aquests parametres han de ser secrets,
per preservar 1’anonimat del vot, perd a la vegada han de tenir certes caracteristiques per tal que el protocol
funcioni de forma correcta. Les proves de coneixement nul s’utilitzen per provar que un usuari coneix un
parametre del protocol amb certes caracteristiques sense haver de revelar cap informacié del parametre en
qliestio.

Protocol de transferéncia inconscient

Els protocols de transferéncia inconscient permeten que un usuari emissor “transmeti”’ informacié a un
altre usuari receptor de manera que al final de la transmissid, 1’usuari receptor només obté una part de la
informacid “transmesa”. A més, la particularitat d’aquests esquemes és que, d’una banda, I’emissor no sap
quina informacié finalment ha rebut el receptor i, d’altra banda, el receptor no obté cap informacié de la

informacié que no li ha arribat.

0-10T Aquest protocol es basa en la dificultat de calcular arrels quadrades modulars i amb la
relacié d’aquesta operaci6 i la factoritzacié d’enters.
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El concepte de protocol de transferéncia inconscient va ser presentat per M. O. Rabin I’any 1981. La proposta
de Rabin era un protocol en el qual I’emissor té un secret i, amb probabilitat 1/2 I’envia al receptor. Al final
del protocol, el receptor pot tenir el secret o no tenir-lo (amb probabilitat 1/2) perd I’emissor no pot saber si
I’ha rebut o no. Aquest seria el que es coneix com a protocol de transferéncia inconscient 0-1. En aquest
apartat, perd, ens centrarem en els protocols de transferéncia inconscient 1-2.

En un protocol de transferencia inconscient 1-2 (en angles 1-2 Oblivious Transfer)
I’usuari A té dos secrets 5o i s1. Al final de 1’execucié del protocol entre A i B, B obté un
dels dos secrets amb igual probabilitat. A més, A no pots saber quin secret ha rebut Bi B
no obtindra cap informacié sobre el secret que no ha rebut.

A continuaci6 veurem un exemple concret d’aquest tipus de protocol.

Protocol d’Even, Goldreich i Lempel

Aquest protocol va ser proposat el 1985 pels criptografs Shimon Even, Oded Goldreich, i Abraham Lempel.
La proposta utilitza el criptosistema RSA per tal de xifrar els valors secrets que hi intervenen. El protocol
permet I’intercanvi inconscient 1-2 dels secrets sg i 51 entre I'usuari A que és qui coneix els dos valors i
I’usuari B que és qui en rebra un dels dos. El funcionament del protocol aixi com les accions i els missatges
que s’intercanvien en el protocol es mostra graficament en el segiient esquema:

Pas Alice Bob
1. Secrets 5o 1 57.
Generacio de la clau:
n=p-qamb p,q primers
e-d=1 (mod ¢(n))

Genera xo, x| €g Zy, (enax)

2. Tria un bit aleatori b
Genera k €x Z,,
& Calcula v = x;, + k¢ (mod n)

3. Calculaky = (v—x¢)? (mod n)

Calcula k; = (v —x1)¢ (mod n)

Calcula s(, = so + ko (mod n)

/ (50,51)
Calcula s} =51 +k; (mod n) —

4, Coneixent el valor b
calcula s, = s), —k (mod n)

En el Pas 1, A genera el parell de claus publica-privada i dos valors aleatoris. Envia la clau publica i els valors
aleatoris a B. En el Pas 2, B triara un dels dos valors aleatoris i ’amagara utilitzant una clau. Fixeu-vos que
la clau que utilitza per amagar el valor aleatori triat €s k°. Com que k ha estat triat aleatoriament, k° també és
un valor aleatori i el resultat v també aparenta un valor aleatori per a A ja que no coneix ni k ni k. En el
Pas 3, A calcula dues claus kg i k1 que utilitzara per amagar els secrets s i 51 de la transferéncia inconscient
obtenint els valors s(, i s{. El punt important esta en com es calculen aquestes claus ko i k;. Si ens fixem per
exemple en ko, en el cas que B hagi triat el calor xq en el Pas 2 tenim que:

ko = (V—X())d = ()Co + k¢ —xo)d = (ke)d =k

Es a dir que A haur amagat el valor s amb la clau k que B ha triat en el Pas 2. Per tant, B podra descobrir el
valor sg en el Pas 3 simplement restant-ne el valor k. En el cas que B hagi triat x; en comptes de x( en el Pas
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2, podra recuperar el secret s1 ja que k; sera igual a k. Fixeu-vos que en aquest segon cas (B ha triat x;) B no
pot fer res amb el valor s;, per intentar esbrinar sy ja que no té cap informacié de ko ja que:

ko = (V—XO)d = ()C1 —k—xg)d 75 k

Exemple 10.8 Exemple de protocol de transferéncia inconscient 1-2 Suposem que Alice vol fer una
transferencia inconscient 1-2 a Bob dels secrets so = 221 s; = 34.

Pas Alice Bob
1. Secrets so =221 51 = 34.
Generacio de la clau:

n=19-29 =551
e=191d =451
Genera:
xo = 130,x; = 525 aleatoris.
(e=19,n=551,
x9=130,x,=525)
2. Tria un bit aleatori b =0
Genera k = 174
Calcula:
& v=130+174!° =304 (mod 551)
3. Calcula:
ko = (304 — 130)*! = 174 (mod 551)
Calcula:
ki = (304 — 525)%1 =26 (mod 551)
Calcula:
5o =22+ 174 =196 (mod 551)
Calcula:
g (s5=196,5]=60)
§) =34+26 =60 (mod 551) R
4. Coneixent el valor b = 0 calcula

so=196—174 =22 (mod 551)

10.7.2 Aplicacions de la transferéncia inconscient

Com ja hem dit abans aquest protocol per si sol pot no tenir gaire interes pero €s la base d’altres esquemes
com poden ser la signatura de contractes. Suposem 1’escenari en el qual dos usuaris A i B volen signar
digitalment un contracte perd cap d’ells vol enviar primer la signatura a 1’altre per no estar en desavantatge.
Vegem com es pot aplicar la transferéncia inconscient 1-2 per solucionar aquesta situacio.

L’usuari A descompon la seva signatura en 2n trossos d’m bits cada un, que denotarem per {a;, 1 <i < 2n}.
L’'usuari B fa el mateix amb la seva signatura i obté els trossos {b;,1 <i < 2n}. Aleshores:

1. A divideix els seus 2n trossos de la seva signatura en n parells, per exemple (azj_1,azj) per j=1,--- ,n
ienvia a B un element de cada parell utilitzant una transferéncia inconscient 1-2, per la qual cosa B
repazj | obéayj, per j=1,---,n, perd A no sap quin dels elements ha rebut B (recordem que cada
element del parell té un 50% de probabilitat de ser enviat).

2. Simultaniament al pas 1, B fa exactament el mateix amb els seus 2n trossos de la seva signatura: els
divideix en parells i envia un element de cada parell a A utilitzant una transferéncia inconscient 1-2.

3. AiBs’envien 'un a I’altre el primer bit de tots els seus trossos a; i b; peri = 1,--- ,2n, després el
segon bit, i aix{ fins al final. Si A vol enganyar B, només té la probabilitat d’1/2" d’aconseguir-ho ja
que B ja té n dels 2n nombres secrets del pas 11 A no sap quins sén. Simetricament, es pot aplicar el
mateix si B vol enganyar a A.
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Fixeu-vos que d’aquesta manera, A i B poden intercanviar la signatura del contracte i cap d’ells no estd mai
en avantatge de més d’un tnic bit.

Protocols de recuperacié privada d’informacié

Els protocols de recuperacié privada d’informaci6 (coneguts també com a PIR per les seves sigles en angles,
Private Information Retrival) sén una versié més laxa dels protocols de transferéncia inconscient presentats
al capitol anterior. En ambdoés tipus de protocols, un emissor envia dades a un receptor, amb la particularitat
que I’emissor no sap quina informacié finalment ha rebut el receptor. Els protocols es diferencien doncs en
la informacié que rep el receptor: mentre que en els protocols de transferéncia inconscient el receptor no
obté cap informaci6 de la dada que no li ha arribat, en els protocols de recuperacié privada d’informacié el
receptor pot rebre informacié addicional.

En els protocols de PIR hi intervenen, com a minim, dues parts: un servidor que emmagatzema una base de
dades i un usuari que vol fer una consulta sobre la base de dades. L’ objectiu del protocol de recuperacié
privada d’informacié és permetre a I’usuari recuperar un item de la base de dades sense que el servidor
sapiga quin item s ha recuperat. Com comentavem al paragraf anterior, els protocols accepten que 1’usuari
recuperi més informaci6 de la solicitada: I’objectiu del protocol és protegir la privadesa de la consulta de
I’usuari envers del servidor que emmgatzema les dades.

Un protocol de recuperacié privada d’informacié sobre una sola base de dades (en
angles, single-database Private Information Retrival protocol) és un protocol d’intercanvi
d’informaci6 entre dos usuaris: una base de dades i un client. La base de dades té un
conjunt d’n bits D = b1 b, - - - b, i 'usuari vol recuperar el bit en la posici6 i de la base de
dades D sense revel-lar a la base de dades I’'index del bit que s’ha recuperat i.

Aixi doncs, un exemple de protocol de recuperacid privada trivial consistiria en que 1’emissor enviés la
totalitat de les dades al receptor cada vegada que aquest fes una consulta. D’aquesta manera, efectivament,
I’usuari rebria el bit d’interes i, alhora, I’emissor no sabria quin bit volia recuperar el receptor. Obviament,
aquest protocol és molt ineficient (la complexitat de la comunicacid és de I’ordre de la mida de la base de
dades), i se’n coneixen d’altres que milloren la complexitat d’aquesta versi6 trivial.

Dr’altra banda, hi ha protocols de PIR que es basen en la replicaci6 de la base de dades. En aquests protocols,
es creen k copies de la base de dades, que s’emmagatzemen en servidors diferents. Aleshores, s’assumeix
que els diferents servidors no poden comunicar-se entre ells (és a dir, no poden col-laborar en la seva tasca
d’intentar esbrinar quina consulta ha fet I’'usuari). L’usuari extreu informaci6 parcial de cadascuna de les
copies, i la combina per tal de recuperar la informacié que volia consultar. Els diferents servidors de bases
de dades no aprenen res, individualment, sobre la consulta que ha fet I’usuari.

Un protocol de recuperacio privada d’informacié amb k copies de la base de dades
(en angles, k-database Private Information Retrival protocol) és un protocol d’intercanvi
d’informaci6 entre un usuari i k servidors de base de dades. Cada servidor de base de dades
té una copia completa de la base de dades, un conjunt d’n bits D = b1b; - - - b,,, 1 I’'usuari
vol recuperar el bit en la posici6 i de la base de dades D interactuant individualment amb
cadascun dels servidors i sense revel-lar a cap servidor 1’index del bit que vol recuperar i,
assumint que els servidors no poden comunicar-se entre ells i, per tant, no poden compartir
la informacié que coneixen de la consulta de 1’usuari.

A continuacié veurem el protocol de Kushilevitz i Ostrovsky, un exemple de protocol de PIR sobre una tnica
base de dades i, després, el protocol de Chor et al., un exemple de protocol de PIR basat en la replicaci6 de
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la base de dades.

Protocol de Kushilevitz i Ostrovsky

Notacid Direm que a € QR(n) si a € Z, és un residu quadratic. Per contra, direm que a €
ONR(n) si a € Z, no és un residu quadratic.

Aquest protocol va ser proposat el 1997 per Eyal Kushilevitz i Rafail Ostrovsky. La proposta utilitza el
criptosistema probabilistic de Golwasser i Micali, per a xifrar la consulta que 1’usuari realitza, de manera
que la base de dades calcula el resultat sense coneixer els indexs que 1’usuari esta consultant.

En aquest protocol la base de dades és una matriu de bits, que té s files i # columnes, i que denotarem per
Mg = (m;j). Aixi, el bit que es troba a la fila i columna j correspon al bit m;;, i la base de dades té s x
bits emmagatzemats. L’usuari fara una consulta per recuperar un bit especific de la base de dades, que
correspondra al bit que es troba a la fila i’ columna j', m; ;.

El funcionament del protocol aixi com les accions i els missatges que s’intercanvien en el protocol es mostra
graficament a I’esquema segiient:

Pas Usuari Base de dades
Indexs del bit a recuperar i’ j'. Matriu de bits My, = (m;;)
1. Generaci6 de la clau:
n = p-q amb p,q primers aleatoris
a €g ONR(n)
2. Calcula:

rj€rlnppertotl < j<t

x-—{ ar; (mod n), j=j
g ri (mod n), j#J

3. Calcula:
zizl'[;:lyijv 1 gigsamb
o x? (mod n) sim;j=0
YIT\ x; (mod n) simgj=1
{z1, 2}
<—

4. Recupera el bit m; ; comprovant
si z} és un QR:
Si zy € QR(n), llavors my y =0
Sizy € ONR(n), llavors my j = 1

En el Pas 1, I'usuari que vol consultar la base de dades genera aleatdriament un parell de claus publica i
privada del criptosistema de Goldwasser-Micali. La clau publica correspon als valors (n,a), mentre que la
clau privada son els primers que factoritzen n: (p,q). El valor a es tria aleatoriament entre els valors que no
s6n residus quadratics modul 7, de manera que no existeix cap x tal que x> = a (mod 7).

Una vegada I’usuari ha generat el parell de claus, procedeix a calcular els valors que codifiquen la consulta
que vol fer a la base de dades. Aixi, en el Pas 2 I’usuari genera ¢ valors aleatoris r;, un per cada columna de
la matriu que conforma la base de dades, i procedeix a calcular els ¢ valors x;, cadascun dels quals fa servir
el corresponent valor aleatori r;. Els valors x; es calculen elevant al quadrat els r;, a excepci de I'x; (el
valor que correspon a la columna que conté el bit d’interes), que es calcula elevant el valor aleatori al quadrat
i multiplicant-lo per a. D’aquesta manera, els valors x; sén residus quadratics a excepcié de I'x;/, que no ho
€s. L'usuari envia aleshores els ¢ valors x; i el valor n a la base de dades.
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Xifrat amb Donada una clau publica (n,a) i un bit en clar m, la funcié de xifrat del criptosistema
l\GAF‘ld‘I’_”Osse" de Goldwasser-Micali és: E(m) = a”r> (mod n), amb r un valor aleatori de Z.
icali

Fixeu-vos, d’una banda, que el Pas 2 €s equivalent a xifrar una tira de ¢ bits amb el criptosistema de
Goldwasser-Micali, on tots els bits sén 0 a excepcié del que es troba a la columna ;' (que és la columna on
hi ha el bit que I’'usuari vol recuperar). D’altra banda, noteu com al rebre els valors x; i el valor del modul #,
la base de dades no aprén res sobre els indexs de la consulta que I’usuari esta realitzant: com que la base de
dades no coneix la factoritzacid del modul n, no pot distingir els x; que s6n residus quadratics del que no ho
és 1, per tant, desconeix quina és la columna d’intereés per a I’usuari.

Al Pas 3 la base de dades procedeix a calcular el resultat de la consulta. Per fer-ho, calcula un valor z; per a
cada fila de la matriu, que correspon al producte dels x; que ha rebut de I’usuari, elevant-los al quadrat si el
bit mm;; de la matriu és un 0. Després, la base de dades envia el resultat de la consulta, és a dir, el conjunt d’s
valors z;, a ’usuari.

Finalment, I’usuari recupera el resultat de la consulta a partir de les dades enviades per la base de dades
al Pas 4, comprovant si el valor zy (corresponent a la fila d’interes) és o no un residu quadratic: si ho és,
aleshores el bit recuperat de la base de dades, m; i és 0; per contra, si zy no €s un residu quadratic, aleshores
el bit recuperat €s 1. En efecte, el valor z; conté el producte dels x; elevats al quadrat si corresponen a un bit
0 de la matriu i sense elevar al quadrat si corresponen a un bit 1 de la matriu. Si recordem com s havien
construit els x;, veurem com aquests son residus quadratics a excepcié de I’x 7, que no ho és. Per tant, el
valor zy sera un producte de residus quadratics si m; i €s 0 (I'inic valor que no ho era s’ha elevat al quadrat
al Pas 3). En canvi, si my y €s 1, el producte z; contindra un factor que no és un residu quadratic (precisament
el que es troba en la posici6 j'), fent que el resultat z; no sigui un residu quadratic.

Fixeu-vos que el procés que permet recuperar els bits de la base de dades consisteix a calcular si un valor
és 0 no un residu quadratic modul n. Aquest és un problema computacionalment intractable quan n és un
valor compost pero, en canvi, és molt simple de calcular si el modul és un valor primer, o bé si es coneix la
factoritzaci6 d’n. Aix{ doncs, I’usuari que fa la consulta coneix els dos primers p i g tals que n = pgq, i és
aquest coneixement el que 1i permetra calcular si el valor zz és 0 no un residu quadratic.

Es interessant notar que aquest protocol és un protocol de recuperacié privada d’informacié, ja que com
a resultat de la consulta I’usuari obté més informacié de la que ha demanat. Aixi, mentre que 1’usuari
Ginicament estava interessat a recuperar un unic bit, my 7, I'usuari rep de la base de dades els z; corresponents
a totes les files. Per tant, I’usuari podria seguir el mateix procediment de recuperacié per a tots els z;, i
obtindria aix{ tota la columna j’ de la base de dades, és a dir, tots els m; j/ per a 1<i<s.

Exemple 10.9 Exemple de protocol Kushilevitz i Ostrovsky (recuperacié d’un 1) Suposem que
un usuari vol consultar una base de dades que esta formada per una matriu de bits amb tres files i cinc
columnes. L’usuari esta interessat a recuperar el valor situat a la segona fila, tercera columna, fent servir el
protocol de Kushilevitz i Ostrovsky.
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Pas  Usuari Base de dades
Indexs del bit a recuperar 2, 3. Matriu de bits M35 = (m;;)
1 0 0 0 1
M3zys=10 0 1 0 O
1 0 0 1 1
1. Generacio de la clau:

p =59,q = 19 (aleatoriament)
n=59-19=1121
325 €gr ONR(n)
2. Calcula:
r={25,711,77,47,779} (aleatoris)
x = {625,1071,1047,1088,380} ja que
x; =252 (mod 1121) = 625
xy =711% (mod 1121) = 1071
x3 =325-77% (mod 1121) = 1047
x4 =477 (mod 1121) = 1088
x5 =779% (mod 1121) = 380

(1121,{625,1071,
1047,1088,380})
%

3. Calcula:
z=1{1083,437,171} ja que
71 = 625-1071%-1047% - 1088%- 380 =
= 1083 (mod 1121)
2 = 6252107121047 - 10882 - 3802 =
=437 (mod 1121)
73 = 625-10712-1047% - 1088 - 380 =
=171
{1083,437,171}
<—

4. Recupera el bit my3 comprovant
si zp és un QR:
437 € ONR(n)
Per tant, my3 = 1.

Exemple 10.10 Exemple de protocol Kushilevitz i Ostrovsky (recuperacié d’un 0)

Per tal de veure una execucié del protocol on es recuperi un bit que sigui 0 en comptes d’ 1, podem refer
I’exemple anterior suposant que 1’usuari volia recuperar el bit en la posicié (1,3). En aquest cas, fixeu-vos
que els passos 1, 2 i 3 serien exactament els mateixos que a I’exemple anterior, ja que el bit a recuperar
es troba també en la columna 3, de manera que 1’tnica diferencia estaria en 1’dltim pas. Ara, al Pas 4,
’usuari recuperaria el bit m;3 comprovant si z; = 1083 és un residu quadratic: 1083 € QR(n) (ja que
2092 = 1083 (mod 1121)) i, per tant, 1’usuari aprendria que m;3 = 0.

De manera analoga, ’usuari podria recuperar també el bit a la posici6 (3,3), ja que amb la informaci6
rebuda, pot recuperar qualsevol valor de la tercera columna. Al Pas 4, ’usuari recuperaria el bit m33
comprovant si z3 = 171 és un residu quadratic: 171 € QR(n) (ja que 76> = 171 (mod 1121)) i, per tant,
I’usuari aprendria que m33 = 0.

Els dos exemples anteriors demostren la propietat diferenciadora dels protocols de recuperacié privada
d’informaci6 envers dels protocols de trasferéncia inconscient: tot i que 1’usuari només volia recuperar el
bit a la posicié (2,3) de la base de dades (que corresponia a la consulta del primer exemple), 1’usuari ha
pogut recuperar informacié addicional de la resposta de la base de dades. En efecte, I’'usuari ha pogut obtenir
també el bit en la posicié (1,3), sense necessitat de realitzar cap nova consulta a la base de dades, a partir de
la informaci6 obtinguda a la primera execuci6 del protocol.
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Protocol de Chor et al.

Aquest protocol va ser proposat el 1998 per Chor, Goldreich, Kushilevitz i Sudan, i es basa en replicar la
base de dades entre diversos servidors incomunicats entre ells per assegurar que la consulta de 1’'usuari no es
revela a cap dels servidors individuals. L’usuari interactuara amb cadascun dels servidors, i reconstruira el
resultat de la consulta a partir de la informacid parcial que li arriba de cadascuna de les copies de la base de
dades.

En aquest protocol la base de dades és una matriu de bits quadrada, que té s files i s columnes, i que denotarem
per M,; = (m;;). Com al protocol anterior, 1’usuari fara una consulta per recuperar un bit especific de la
base de dades, que correspondra al bit que es troba a la fila i’ columna j', my ;.

Per tal de descriure el protocol, definirem la funcié de canviar bits (bif flipping), f(x,i), com una funcié que
rep una seqiiencia x d’z bits i un enter i < n, 1 retorna una seqiiencia també d’n bits que resulta de canviar el
bit en la posicid i de la seqiiencia x (deixant la resta de bits iguals).

Exemple de bit || Per a la seqiiencia de bits x = 01010, f(x,1) = 11010 f(x,3) =01110.
flipping

El funcionament del protocol aixi com les accions i els missatges que s’intercanvien en el protocol es mostra
graficament a I’esquema segiient, per a una execucié on la base de dades es troba replicada en quatre servidors
diferents, que denotarem per DB*’ amb u,v € {0,1} (és a dir, DB®, DB®', DB'? i DB!!):

Pas Usuari Base de dades
Indexs del bit a recuperar ' j. Matriu de bits M., = (m;;)
1. Calcula:

10 ={x;€g{0,1}} pertot 1 <i<s
Y ={yj€r{0,1}} pertot 1 < j <s
X! = f0.1)
"' =r007)

2. Cada BD"' calcula:
2 = D=1 mij
vjlyi=1

3. Recupera el bit my ; calculant:

my = Z00 @ZOI @ZIO D le

En el Pas 1, I’usuari que vol consultar la base de dades genera dues seqiiencies d’s bits aleatories (x? i y°).
Després, genera dues seqiiencies addicionals (x! i y!), també d’s bits, que correspondran a una copia de les
seqiiencies aleatories generades en les quals s’ha modificat dnicament un bit. Aixi, la seqiiéncia x! sera
una copia d’x” amb el bit i’ canviat (és a dir, x! = £(x°,#')); i la seqiiéncia y' sera una copia d’y’ amb el
bit j/ canviat (és a dir, y' = f (yo, J')). Lusuari enviara ara a cada base de dades dues de les seqiiéncies
calculades (una de les que codifiquen 1’index i’ i una de les que codifiquen 1’index j). Aixi, 1’usuari enviara
a DB les seqiiencies X0, yo; a DB les seqiieéncies X0, yl; a DB'0 les seqiiéncies xl, yo; i finalment a DB!!
les seqiiencies x!, y'. Fixeu-vos que cada base de dades rep un parell de seqiiéncies diferent, i que cada
seqiiencia individual és enviada a dues bases de dades.
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Al Pas 2, cada servidor de bases de dades calculara la seva resposta. Per fer-ho, calculara una xor de tots els
bits de la matriu de la base de dades m;; indicats per les dues seqiiencies de bits que ha rebut, x* i y'. En
concret, calculara la xor de tots els bits m;; per a tots els index i tals que x és un 1; i per a tots els index j
tals que % és un 1. Aixi, per exemple, la base de dades BD"' calcular el valor 2! resultant de la xor entre
els valors de la matriu m;; amb els i tals que x? és liels jtals que y} és 1. Cadascuna de les bases de dades
retornara el bit z*¥ calculat a 1’usuari.

Finalment, al Pas 3, Iusuari recupera el bit m; y calculant una xor dels quatre bits individuals que ha rebut
(un de cada base de dades). Noteu com aquesta operacié permet recuperar €l valor del bit m; ;: degut a la
construcci6 de les seqiiencies de bits, tots els bits que es tenen en compte a les xors que fa cada base de
dades ho fan un nimero parell de vegades, a excepci6 del bit seleccionat, que només es té en compte una
vegada. Aixi, quan I’usuari fa una xor de tots els bits z*¥ rebuts, els que han aparegut un nimero parell de
vegades es cancel-len, i el resultat €s per tant el bit consultat m; ;.

Exemple 10.11 Exemple d’execucié del protocol de Chor et al. Suposem que un usuari vol consultar
una base de dades que esta formada per una matriu de bits amb quatre files i quatre columnes. L usuari
esta interessat a recuperar el valor situat a la segona fila, tercera columna, fent servir el protocol de Chor
et al.

Pas  Usuari Base de dades
Indexs del bit a recuperar 2, 3. Matriu de bits My

4= (m

1 0 0 1

0 0 1

Maxa = 1 00
1 10

l])

S = O

1. Calcula:
1% =1{0,0,1,0} (aleatoriament)
0= {0,1,0,0} (aleatdriament)
I'= £({0,0,1,0},2) = {0,1,1,0}
' = f({0,1,0,0},3) = {0,1,1,0}

20y DBOO
2 ol
X% pplo
xy! DB”
2. BD" calcula:
00 _ L
20 = Byy0=1Mij =
vjly)=1
=m3y = 1
BD! calcula:
01 _ -
20 = Oy mij =
vilyj=1
=m3pdmzz=100=1
BD'0 calcula:
10 _ L
27 = By =y mij =
vijly)=1
=myyPmzp=001=1
BD!'! calcula:
11 _ e
2 = Dyl =y Mij =
Vjlyj=1
00—1 00
«— DB = my ©my3 Omzy Gmaz =
01 _1
&= pBY! =0000100=1
10_1
<— DB
1_q
&= pB!!

3. Recupera el bit m;3 calculant:
my3=10161461=0
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Fixeu-vos en els calculs que realitzen els diferents servidors de base de dades al Pas 2.

BDY rep x° = {0,0,1,0} iy° = {0,1,0,0}, de manera que calcula la xor dels bits de la matriu que
es troben a la fila i € {3} (ja que el bit a la posicié 3 d’x° és 1’tnic bit que és 1) i a la columna
j € {2} (ja que el bit a la posici6 2 d’y° és I'tinic bit que és un 1 d’y%). Per tant, % = mj;.

* BD! rep x° = {0,0,1,0} i y! = {0,1,1,0}, de manera que calcula la xor dels bits de la matriu que
es troben a la fila i € {3} (ja que el bit a la posicié 3 d’xY és I'tinic bit que és 1) i a la columna
J €{2,3} (jaque els bits a les posicions 21 3 d’y" sén els bits que tenen com a valor 1). Per tant,
21 = m3p ®ms;.

* BD'"rep x! ={0,1,1,0}iy° = {0,1,0,0}, de manera que calcula la xor dels bits de la matriu que
es troben a les files i € {2,3} i ala columna j € {2}. Per tant, z%! = mp ® m3,.

* BD"'repx! ={0,1,1,0}iy! = {0,1,1,0}, de manera que calcula la xor dels bits de la matriu que
es troben a les files i € {2,3} i a les columnes j € {2,3}. Per tant, z'! = moy ® mp3 ® m3y ©ms;3.

D’altra banda, noteu perque ’usuari pot recuperar el valor m,3 quan fa una xor dels valors rebuts de les
quatre bases de dades:

myp="@ @0 =
= (m32) © (m32 ©m33) O (Mo ©m32) © (M2 Smoz D3y Smz3) =
= mo D mop D mo3 D m3y Dmzy D mzr Dmzr Dmzz Dm33 =
=my3
Efectivament, my3 és I’tinic bit que no apareix un nimero parell de vegades, de manera que és 1’tnic bit

que no s’anul-la, fent que el resultat de 1’operacid resulti en el bit de la base de dades que 1’usuari volia
recuperar.

Finalment, és interessant destacar per que és necessari que els servidors de base de dades no col-laborin
entre ells per intentar revel-lar la consulta que 1’usuari realitza. Per exemple, si els servidors BDY i BD!!
col-laboressin i compartissin la informacié que tenen de la consulta, podrien calcular:

x' = f(x°,7):{0,1,1,0} = £({0,0,1,0},i) =i’ =2
y' =£0°7):{0,1,1,0} = £({0,1,0,0},j) = j' =3

recuperant aixi els indexs de la consulta de 1’usuari, (2,3). En canvi, cada base de dades individual, només
coneix un x* i un y*, que sén seqiiencies aleatories de bits que no aporten cap mena d’informacié sobre la
consulta que fa I’usuari.

10.9 Protocol multipart segur

En algunes aplicacions ens pot interessar que un conjunt d’usuaris realitzi un cert calcul de forma que, tot i
que cada usuari aporta una entrada per a la realitzacid del cacul, al final del procés cada usuari només podra
obtenir el resultat del calcul perd no podra obtenir els valors d’entrada d’altres usuaris. Aquests tipus de
protocols es coneixen com a protocols multipart segurs.

En un protocol multipart segur (en angles multiparty computation) un conjunt d’n
participants cooperen per a avaluar el valor d’una funcié f sobre un conjunt de valors
(vi,++,v,) aportats pels participants. Com a sortida del protocol, cada usuari u; obté
I’avaluaci6 de la funcié f(vy,---,v,) perd no obté cap informacié sobre el contingut dels
valors vjpera j € [1,n]i j#i.

Com en la majoria de protocols criptografics, una solucié simple en aquest escenari és la utilitzacié d’una
tercera part de confianca en la qual tothom confia. Aquesta tercera part és la que pot realitzar I’avaluaci6 de
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la funci6 f i, com que tothom hi confia, tothom esta segur que un cop cada usuari li ha lliurat el seu tros
d’informacid, no el mostrara a cap altra part.

Justament, el que proporcionen els protocols multipart segurs és un mecanisme per poder prescindir de la
tercera part de confianca. En els segiients apartats veurem dos exemples concrets de protocol multipart segur.

El problema del milionari

Un exemple d’un protocol de calcul segur a multiples bandes, en aquest cas a dues bandes, €s el protocol
proposat per C. Yao I’any 1982, conegut com el problema del milionari. En aquest escenari, dos milionaris A
i B volen saber qui és el més ric perd no volen revelar el valor de la seva fortuna. Es a dir, la funcié que volem
avaluar de forma segura és una comparacié de la mida de dos valors en que cada un dels dos participants
aporta un valor.

Per tal de simplificar una mica el problema (de fet, seria equivalent a fitar la fortuna que tenen els participants)
transformarem aquest problema en un problema equivalent que consistira en que 1’ Alice i en Bob volen saber
qui és més gran sense dir quina edat té cada un. Suposarem que tots dos sén honestos i que utilitzen les seves
edats reals.

Suposarem que 1’ Alice té x anys, en Bob y i cap dels dos no en té més de 100, és a dir 1 < x,y < 100. Per a
realitzar aquest protocol utilitzarem un criptosistema de clau publica. Aixi, tant A com B tindran cada un
d’ells un parell de claus publica i privada que seran (E4,Dy4) i (Ep, Dp) respectivament. D’altra banda també
assumirem que ambdés usuaris coneixen la clau piblica de ’altre participant. A més, A i B també es posen
d’acord en la mida maxima que tindran dos dels valors utilitzats en el protocol, ¢, i #,. Aix{ poden assegurar
que els valors p, i py, triats en el pas 6 sén més petits que aquests dos valors.

El protocol funciona tal i com es descriu en I’esquema de la Taula 10.5.

Taula 10.5: Protocol del milionari

Pas  Alice Bob
1. Triat, €Eg Z Triat, € Z
2. Calcula Calcula
ke = Ep(ta) ky = Ex(ty)
Ky=kys—x Kp=kp—y
L
4, &
5. Calcula: Calcula:
fi=Da(Kp+1i) per 1 <i<100 fl =Dp(K,+1i) per 1 <i<100
6. Tria p, <t Tria pp < t,
Calcula: Calcula:
gi = fi (mod p,) per1<i<100 gi=f! (mod pp) per 1 <i <100
assegurant que [g; — g;| > 2 assegurant que |g; — g/ > 2
perai# j,1 <i, j<100 perai# j,1 <i, j<100
Crea la seqiiencia: Crea la seqiiencia:
G={g1," " ,8u8+1+1,g2+1, G ={g1, .88 1+ 1.8 0+ 1,
g0+ 1,pa} 8/100+1»Pb}
7. 9,
8. &
9. Comprova: Comprova:
Si G, =1, (mod py), aleshores y > x Si Gy =1, (mod p,), aleshores x >y
sindy < x sind x <y

Com es pot veure en el protocol, la idea és que tant A com B creen una seqiiencia de valors, en aquest cas
100 que és el maxim de 1’edat dels participants. La particularitat d’aquestes seqiiencies és que, per exemple,
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prenent la seqiiencia G que genera 1’usuari A, per a index inferiors o iguals a I’index que determina I’edat de
I’usuari A, el valors sén congruents amb el valor aleatori que ha triat B, si I’edat d’A és major que la d’B.

Les conclusions sobre qui té més edat que cada usuari obté en el pas 9 sén correctes. Per exemple, el
raonament respecte a la comprovacié de 1’usuari B seria la segiient: Si A té més edat que B, és a dir
x >y aleshores el valor de la posici6 y de la seqiiéncia que A envia a B en el pas 7 és G, = g,. Per tant,
Gy = fy (mod p,). Com que fy = Da(Kp+y) = Da(kp —y+y) = Da(kp) i kp = Ea(t,) ens queda que
fy Da(EA(tp)) =1ty i per tant Gy, =15, (mod py).

D’altra banda, si x <y aleshores el valor G, verifica que:

Gy=g+1#g=H=n (mod pq)

Exercici 10.8 L’Alice i el Bob han estat de sort i els ha tocat la loteria, que reparteix com a maxim
5 milions. I Alice ha tingut més sort que en Bob i li han tocat 4 milions, mentre que al Bob n’hi han
tocat 2. Com que cap d’ells vol dir quina quantitat li ha tocat, decideixen saber qui és més ric utilitzant el
protocol del milionari. Desenvolupeu el protocol per tal que els dos puguin saber qui ha guanyat més
diners sense saber quants diners li han tocat a I’altre. Suposarem que utilitzem com a sistema de clau
puiblica 'RSA i el parell de claus puiblica-privada d’A val [(e4 = 2573,145911), (da = 197,n4 = 5911)],
mentre que el parell de B val [(e = 3109,np = 5191), (dgp = 1795,np = 5191)].

El problema del milionari socialista

En aquest segon protocol, A i B tenen cada un la seva fortuna, representada pels valors x i y respectivament,
pero en comptes de saber qui €s més ric el que volen saber és si la seva fortuna és igual o no. L’execuci6
d’aquest protocol és més elaborada que la de I’exercici anterior ja que el nombre de missatges que s’inter-
canvien és més elevat, a causa que el protocol utilitza com a subprotocol, en diverses etapes, el protocol
d’intercanvi de claus de Diffie i Hellman.

El protocol defineix dos parametres generals: un nombre primer p i un valor i € Z,, tal que h # 1. El valor
de p ha de ser més gran que la fortuna tant d’Alice com del Bob, ésadirx < piy < p.

El funcionament del protocol es mostra en 1’esquema de la Taula 10.6.

Com es pot veure en el protocol, els primers 6 passos corresponen a un intercanvi de claus de Diffie-Hellman
que permeten que A i B comparteixin dos valors f i g. Donat que la verificaci6 final podria ser erronia en cas
que els valors ay,az,b1, by fossin 0, per aquest motiu es realitza la validacié del pas 5.

Al final del protocol, en cas que la darrera comprovaci6 del valor sigui correcta, tant A com B poden estar
convencuts que els dos tenen la mateixa fortuna, ja que:

Panfl — fr(fs)il _ frfs _ hazbz(rfs) (mod 17)

pero d’altra banda,

= ((QaQ;, "))

=((n'g )( g) e

— (plr—s A ))azbz

( (r—s (halbl)(x y))azbz

— paba(r—s) parbiazbs(x—y)

— PP (halblazbz(x y)) (mod p)

i com que els valors ay,az,b1,b; han estat triats aleatoriament per A i B, I’tnica possibilitat que ¢ = P, P, !
(mod p) és en el cas que x =y, és a dir, que A i B tinguin la mateixa fortuna.
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Taula 10.6: Protocol del milionari socialista

Pas  Alice Bob
1. Tria a;,a; €g Zp Tria by, by €g Zp
2. Calcula Calcula
h™ (mod p) k"' (mod p)
h® (mod p) kP2 (mod p)
(h1,h92)
3 — D
4 (hP1 nb2)

5. Verifica que:
RPr £ 1 (mod p)
hP2 # 1 (mod p)

Verifica que:
h* 21 (mod p)
h® #£1 (mod p)

6. Calcula:
g=(h")* (mod p)
f=(h*2)2 (mod p)

Calcula:
¢=(h")" (mod p)
f = (h*2)" (mod p)

7.  Triar €gr Zp

Trias €g Z)

8. Calcula:
Py=f" (I’IlOd p)
Qu=hg" (mOd p)

Calcula:
P, = f° (mod p)
Qp = h'g" (mod p)

9 (Pa,Qa)
10 (Pb-,Qb)
11.  Comprova que: Comprova que:
P, # P, (mod p) P, # P, (mod p)
O # Oy (mOd p) 0 # Oy (mOd P)
12, Calcula: (0,0, ")® Calcula: (0,0, )"
» —1\ap
13, (a0, ")
L0 12
14, (QaQy, ")
15. Calcula: Calcula:

¢ = ((Qu0;")")® (mod p)

c=((Qa@,")™)" (mod p)

16. Comprova que:
c=P,P;' (mod p)

Comprova que::
c=P,P;" (mod p)

En cas que la comprovacié no sigui correcta voldra dir que les fortunes no sén iguals pero cap dels dos sabra

qui té una fortuna més gran.
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Resum

En aquest capitol hem estudiant diferents protocols criptografics que permeten assolir diferents objectius,
tots ells relacionats amb la seguretat de la informacié. En primer lloc, hem vist com dos usuaris es poden
intercanviar un missatge de forma secreta sense haver intercanviat préviament cap clau, utilitzant el protocol
de tres passos de Shamir. També hem vist com funcionen els esquemes de comparticié de secrets, que
permeten que un secret es descompongui en diferents fragments de manera que amb la unié d’un nombre
fixat de fragments es pot recuperar el secret perd amb menys sigui impossible.

D’altra banda, hem estudiat també altres protocols en que la seva aplicaci6 directa pot no ser del tot Obvia.
Un exemple sén les signatures cegues, on el signatari no coneix el missatge que esta signant i aquest fet es pot
aprofitar per a protocols d’autenticacié anonima. Un altre exemple estudiat sén les proves de coneixement
nul on un usuari pot demostrar davant d’un altre que coneix un secret sense revelar-ne cap informacié del
mateix. També hem vist com funciona un protocol de transferéncia inconscient on la comunicacié entre dos
usuaris es fa de forma probabilistica de manera que I’emissor envia dos missatges i el receptor només en rep
un. Ara bé, ni ’emissor sap quin missatge ha rebut el receptor ni el receptor pot triar quin dels dos rebre ja
que té una probabilitat del 50 % de rebre’n un dels dos.

Finalment, hem analitzat dos exemples de protocols multipart segurs. En els protocols multipart segurs, n
usuaris volen obtenir 1’avaluaci6 d’una funcié f(xj,xp,--- ,x,) proporcionant cada un d’ells una entrada de
la funcié6 x;. El punt clau del protocol és que tots els usuaris han d’obtenir el resultat de 1’avaluacié de la
funcié perd no poden obtenir cap informacié sobre les entrades que han proporcionat la resta d’usuaris. Els
exemples estudiats han mostrat protocols en els que hi intervenien dos usuaris, un d’ells permet avaluar la

funcié “menor o igual” i I’altre permet avaluar la funcié d’igualtat.
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Solucions dels exercicis

Exercici 10.1:

Amb aquests parametres, I’usuari A enviara de forma secreta el missatge m = 20 a B amb el protocol de la
Taula 10.7:

Taula 10.7: Exercici 1
Pas Alice Bob

l. ¢ =20" (mod 101)=30 %
2. 6 =(30)13 mod 101 =77
3. 3= mod101=9 >
4

m=(9)"" mod 101 =20

Exercici 10.2:

El polinomi per generar els fragments estara compost pel terme independent 11, tindra com a graum — 1 =
3 —1=21icom a coeficients podem triar aleatoriament, per exemple, els nombres x; = 8 i x; = 7. D’aquesta
manera el polinomi ens queda determinat per a(x) = 7x*> +8x+ 11 mod 13

Per generar els fragments prenem 5 valors qualssevol menors que p i calculem les seves imatges pel polinomi
a(x). Prenent com a valors {1,2,3,4,5} tindrem:

a(l) = 7+8+4+11=0 (mod 13)

a2) = 28+16+11=3 (mod 13)
a(3) = 63+24+11=7 (mod 13)
a(4) = 1124324+11=12 (mod 13)
a5) = 175+40+11=5 (mod 13)

Per tant els fragments dels participants sén: (1,0),(2,3),(3,7),(4,12),(5,5).
Exercici 10.3:

Donat que tenim un sistema de compartici6 llindar amb m = 3 podem triar, d’entre els diferents fragments,
(58,137),(11,48),(50,99),(80,50), (104,33), (39, 114), qualsevol conjunt de 3 punts per recuperar el secret.
Per exemple, si triem (50,99), (80, 50), (39, 114) podem plantejar el segiient sistema d’equacions:

S+a;-50+ay-50> = 99 (mod 149)
S+ar-80+ay-80> = 50 (mod 149)
S+a;-39+ay-39> = 114 (mod 149)

Com que només ens interessa resoldre el sistema per la variable S, que és el secret, podem aplicar el metode
de Cramer i obtenim:

99 50 116
50 80 142

14 39 31|36 4 113-45 (mod 149)
1 50 116 | 120 - mo

1 80 142
1 39 31
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Exercici 10.4:
El gestor ha utilitzat el polinomi a(x) = S+ ajx +apx?, on S és la clau del sistema.

Quan els tres usuaris es reuneixen poden escriure el segiient sistema:

fi+2 = S+a+a
Hh4+x = S+2a1+4a
f3+2 = S+3a;+9%;

on fi, f2, f3 son els fragments respectius d’A, Bi C i x és la trampa que ha fet I’usuari B.

La soluci6 per la incognita S en aquest sistema €s la mateixa que pel sistema en el que cap participant fa
trampa, ja que I’enunciat indica que han recuperat el mateix secret, per tant:

fi = Stata
H = S4+2a+4a
fr = S+3a1+9%

Aixi doncs podem plantejar la segiient igualtat:

A+2 1 1 j 11
HL+x 2 4 m 2 4
HL+2 39 s 39
111 R
1 2 4 1 2 4
1 39 1 39
i si realitzem les operacions dels determinants ens queda que 6x = 3 i finalment x = 3-6~! =7, sempre

treballant a Z13. Per tant, la trampa que ha fet I'usuari B ha estat sumar 7 al seu fragment.
Exercici 10.5:

Per comprovar que efectivament, amb els valors m; =29 i r; = 90 es pot obrir el compromis de Pedersen
C(my) = 24, cal calcular el valor del compromis com 272%-94% (mod 113) = 27?°-94% (mod 113) =
66-62 (mod 113) =4092 (mod 113) = 24 que efectivament coincideix amb C(m).

Si el compromis de m; és C(my) =91 i el compromis de m; val C(m;) = 24 podem calcular C(m; +my)
com C(m)-C(my), és adir 24-91 (mod 113) = 37. Tot i poder-lo calcular, aquest compromis de la suma
no es pot obrir perqué per fer-ho necessitariem el valor r, que permet obrir C(m).

Exercici 10.6:
La soluci6 de I’exercici es mostra en la Taula 10.8.
Exercici 10.7:

Com que A vol fer creure a B que coneix el logaritme discret amb un probabilitat de 0,75 aix0 vol dir que
caldra executar de forma satisfactoria 3 vegades del protocol. Com que A coneix el generador pseudoaleatori
sap que en la primera execuci6 del protocol, al Pas 2, V triara b = 0, en la segona execuci6 del protocol triara
b =11en la tercera execucio triara b = 0. Per tant, per tal d’enredar a V:

* En el primer protocol, en el pas 1 triarem qualsevol valor aleatori, per exemple r = 45 que sera el
mateix valor que retornarem en el pas 3, h = 45. La validacid6 del pas 4 feta per V sera correcta.
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Pas  Alice Bob
1. Genera 5 claus puibliques:
(3,8,10,11,14)
Prepara els 5 missatges per signar:
my = (3|5) = (35),mz = (85)
m3 = (105),mq = (115),ms = (145)
Genera els 5 valors per tapar-los:
(5,8,15,23,4)
1 =5'9 =718 (mod 899)
tp =819 =872 (mod 899)
13 =15 =773 (mod 899)
t4 = 23" = 895 (mod 899)
ts = 41° =473 (mod 899)
Tapa els 5 missatges:
my % m =35.718 = 857 (mod 899)
my 2 mh = 85-872 =402 (mod 899)
m3 25 mly = 105773 =255 (mod 899)
my mjy = 115-895 =439 (mod 899)

ms = mls = 145-473 = 261 (mod 899)
=2

2. — Triai =2 €p Zs
3. Enviaels valors #;

/ / / / /!
(m sty sy oy i)
%

. 11,13,14,15
menys el #, seleccionat. (~—~>+

4, Destapa els valors i comprova que
el servei sigui S = 5 (dltim digit)

m) o, my =35

mly 25 m3 = 105

ml, 25 my =115

mly B> ms = 145

Signa el valor no destapat:

1 =371
P sh = 402619 =371 (mod 899)

5. Destapa el valor per obtenir la

signatura de m;

sh sy =T =833

que veiem que coincideix
85%1% = 833 (mod 899)

Taula 10.8: Solucié de I’Exercici 10.6

* En la segona execucid del protocol, en el pas 1 triarem, per exemple, r = 5. Per0 enviarem a V el
valor ¢ = %r mod p = g—i mod 97 = 56. Aleshores en el pas 3 enviarem & = r =5 i la validacié que

fara V en el pas 4 també sera correcta ja que ¢ -y” = 56-94! =26 mod 97 i g" = 7° = 26 mod 97.
* En la tercera execucid, aplicara la mateixa estrategia que en la primera.

Exercici 10.8:

La solucié d’aquest exercici es mostra en la Taula 10.9.
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Taula 10.9: Exercici 7

Pas  Alice (x =4) Bob (y=2)
1. Triat, = 1349 ex Z Triat, = 1547 g Z
2. Calcula Calcula
kq = Ep(t,) = 1465 kp = Ea(tp) =2212
K, =k, —x=1461 Ky =kp—y=2210
K,=1461
K,=2210
4. —
5. Calcula: Calcula:
4 (Kp+ 1) =4217 | =Dp(K,+1)=1177
=Dy (K +2 = 1547) 5 =Dp(K,+2) =573
=Dy (Kp+3) =3556 1 =Dp(K,+3) = 4426
=Dy (Kp+4) =3569 f1=Dp(K,+4) =69
fs =Da(Kp+5) =884 fi=Dp(K,+5) =674
6. Tria p, =239 <1 Tria pp, =739 <1,
Calcula: Calcula:
= fi (mod p,) =154 = f] (mod p,) =438
= f2 (mod p,) = 113 g, =/, (mod py) =573
g3 f3 (mod p,) =210 g =f3 (mod py) =731
g4 = f4 (mod p,) =223 g4 = f3 (mod pp) =69
= f5 (mod p,) = 167 = f¢ (mod p,) =674
Crea la sequenma Crea la seqiiencia:
G ={154,113,210,223,168,239} = {438,573,732,70,675,739}
7. G,
8. &
9. Com que Com que:

G, =70 #1349 =1, (mod 739),
aleshores y < x i per tant A té
més diners que B.

G, =113=1547 =1, (mod 239),
aleshores x > y i per tant A té
tants o més diners que B.
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