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Conceptes bàsics





1. Introducció a la criptografia

En aquest capítol es presenten, d’una banda, els fonaments de la criptografia i, d’altra banda, es
realitza un repàs històric de la criptografia premoderna.

Pel que fa als fonaments de la criptografia, descriurem els conceptes clau d’aquesta ciència, que
farem servir al llarg del llibre per anar presentant les diferents tècniques que es fan servir en
criptografia.

En relació amb el repàs històric, veurem com va sorgir la criptografia i quines tècniques es
feien servir des dels seus orígens fins a l’inici de la criptografia moderna. La resta del llibre se
centrarà precisament en descriure diversos aspectes de la criptografia moderna que, com veurem,
ha evolucionat molt des de les seves arrels.

1.1 Conceptes bàsics

.

La criptografia és la ciència que estudia l’escriptura de secrets, amb l’objectiu
d’ocultar el missatge que s’escriu.

Etimològicament, la paraula prové del grec i sorgeix de la unió de dos conceptes: kryptós, que vol
dir secret i graphein, que vol dir escriptura. Els orígens de l’escriptura secreta es remunten a fa
més de 4000 anys, però en aquells moments la criptografia es trobava lluny de considerar-se una
ciència. A mig camí entre art i joc d’enigmes, civilitzacions com l’antic Egipte van desenvolupar
els primers escrits on es transformava el missatge original. Es considera però que la criptografia
com a ciència no va començar a desenvolupar-se fins a mitjans del segle XX, amb les contribucions
realitzades per Claude E. Shannon.
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14 Capítol 1. Introducció a la criptografia

.

La criptoànalisi és la ciència que se centra en trencar les tècniques que desenvolupa
la criptografia, ja sigui per a descobrir el text amagat darrere un text xifrat o bé per
a demostrar les febleses d’un determinat esquema criptogràfic.

Així doncs, la criptoanàlisi és indispensable per a l’avenç de la criptografia, ja que s’encarrega
d’avaluar la seguretat dels criptosistemes que aquesta desenvolupa. Tot i que el mot criptoanàlisi és
bastant recent, tenim constància d’una criptoanàlisis realitzada al segle IX per un matemàtic àrab,
Al-Kindi.

.

El terme general criptologia es fa servir per englobar tant criptografia com cripto-
anàlisi.

En aquest llibre, ens centrarem en descriure les tècniques i algorismes que es fan servir per ocultar
informació, és a dir, en la criptografia. Tot i així, en aquest capítol farem una petita introducció a la
criptoanàlisi, per tal d’oferir unes nocions bàsiques dels models amb els quals s’avalua habitualment
la seguretat dels esquemes criptogràfics.

Tradicionalment, la criptografia es basava únicament en protegir la confidencialitat dels missatges.

.

La confidencialitat és una propietat que garanteix que la informació no es fa
pública a persones no autoritzades.

Els sistemes criptogràfics han evolucionat molt des dels seus orígens, i actualment poden oferir
altres garanties, més enllà de la confidencialitat. Sovint, l’ús de la criptografia ens permet també
garantir la integritat dels missatges o fins i tot el no-repudi.

.

La integritat és la propietat que garanteix que la informació no ha estat modificada.

Els sistemes que ofereixen integritat permeten detectar si hi ha hagut una modificació de la
informació.

.

El no-repudi és la propietat que garanteix que l’autor d’una determinada acció no
pugui negar haver-la realitzat.

Per tal de simplificar les explicacions, en criptografia es fan servir uns personatges ficticis, que
acostumen a interpretar sempre els mateixos papers. Aquests personatges van ser creats per Ron
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Rivest, Adi Shamir i Leonard Adleman, i el seu seu ús es troba molt extés.1 L’Alice (A) i en Bob
(B) són els dos personatges més populars i acostumen a ser dos usuaris que volen intercanviar algun
missatge. L’Eve (E) és un atacant passiu, que pot escoltar les comunicacions entre l’Alice i en Bob,
però no modificar-les. Mallory (M) és un atacant actiu, que pot escoltar les comunicacions entre
l’Alice i en Bob, i també modificar el contingut de la transmissió.

Anem doncs a descriure l’escenari tradicional en què s’aplica la criptografia fent servir els personat-
ges que acabem de presentar. En l’escenari bàsic, l’Alice vol enviar un missatge a en Bob a través
d’un canal insegur. Com que el canal és insegur, l’Eve pot escoltar la comunicació entre l’Alice i
en Bob. Amb aquest plantejament, l’Alice desitja enviar un missatge, m, a en Bob garantint-ne la
confidencialitat. Per fer-ho l’Alice aplica un algorisme de xifrat, E, al text que vol enviar (anomenat
text en clar) fent servir una determinada clau, k. El resultat d’aplicar l’algorisme de xifrat sobre
el text en clar és el text xifrat, c, que és el que s’enviarà a través del canal insegur. En Bob, quan
rebi el missatge xifrat, c, procedirà a aplicar un algorisme de desxifrat, D, al text xifrat fent servir
la mateixa clau, k, obtenint el text en clar original, m. Per tal que l’esquema pugui aplicar-se,
serà necessari doncs que l’Alice i en Bob disposin d’una clau compartida, k, que hauran hagut de
comunicar-se anteriorment a través d’algun canal segur (potser fins i tot trobant-se físicament).
L’Eve podrà recuperar el text xifrat de la comunicació c, però al no conéixer el valor de la clau, no
serà capaç de recuperar-ne el text en clar corresponent.

Figura 1.1: Escenari bàsic d’aplicació de la criptografia en les comunicacions entre dos usuaris.

Més formalment, direm que un criposistema queda definit per cinc paràmetres:

• El conjunt de possibles textos en clar, M
• El conjunt de possibles textos xifrats, C
• El conjunt de possibles claus, K
• E, una funció de xifrat, que detalla per a cada possible clau k ∈ K i missatge m ∈M, quin és

el corresponent text xifrat c ∈ C.
• D, una funció de desxifrat, que realitza el procés invers de la funció de xifrat, és a dir, una

funció tal que Dk(Ek(m)) = m, per a tot m ∈M i k ∈ K.

A partir d’aquest escenari bàsic, els escenaris en els quals s’aplica la criptografia avui en dia
són molt diversos i variats, alguns dels quals no s’assemblen gens a l’escenari tradicional. Així,
per exemple, la criptografia ens permet crear sistemes de credencials anònimes, que serviran per
autenticar-se de manera anònima; sistemes de compartició de secrets, on caldrà la col·laboració d’n
parts d’un conjunt d’m per recuperar el secret; criptomonedes, que oferiran mètodes de pagament

1Rivest, Shamir i Adleman van crear els personatges de l’Alice i en Bob a l’article “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”, publicat l’any 1978.
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totalment descentralitzats i segurs; i protocols de computació multipart, on diverses entitats podran
col·laborar per calcular funcions sobre dades confidencials.

1.1.1 Introducció a la criptoanàlisi

La criptoanàlisi se centra en analitzar els criptosistemes, amb l’objectiu d’avaluar-ne la seva
seguretat. Depenent de si l’anàlisi es focalitza en l’algorisme, la implementació o el sistema
complet que l’integra, distingim diferents atacs que el criptoanalista pot intentar realitzar contra un
esquema criptogràfic.

.

Els atacs clàssics intenten recuperar un text en clar a partir d’un text xifrat o bé
recuperar una clau.

Existeixen diferents escenaris o models en els quals avaluar els criptosistemes, en funció de la
informació de la qual disposa el criptoanalista per trencar els esquemes:

• En el model de només text xifrat (o COA, de l’anglès, ciphertext-only attack) l’atacant
només disposa d’un conjunt de textos xifrats.

• En el model de text en clar conegut (o KPA, de l’anglès, known-plaintext attack), l’atacant
disposa d’un conjunt de textos en clar i els seus corresponents textos xifrats.

• En el model de text en clar escollit (o CPA, de l’anglès, chosen-plaintext attack), el criptoa-
nalista pot obtenir els textos xifrats corresponents a un conjunt de textos en clar seleccionats
per ell mateix.

• En el model de text xifrat escollit (o CCA, de l’anglès, chosen-ciphertext attack), el criptoa-
nalista pot obtenir els textos en clar corresponents a un conjunt de textos xifrats seleccionats
per ell mateix.

Els models de text en clar i text xifrat escollit assumeixen normalment que el criptoanalista tria
una única vegada el conjunt de textos en clar (respectivament, textos xifrats) i pot demanar-ne els
corresponents textos xifrats (respectivament, en clar). Una variant d’aquests models, coneguda
com a model adaptatiu de text en clar/xifrat escollit (respectivament, CPA2 i CCA2), permet al
criptoanalista anar demanant els corresponents textos xifrats/en clar successivament, modificant els
textos que demana en funció de les respostes que ha rebut fins al moment.

Avui en dia gairebé tots els criptogràfs assumeixen el principi de Kerckhoffs:

.

El principi de Kerckhoffs afirma que, per a què un criptosistema pugui considerar-
se segur, aquest ho ha de ser encara que l’atacant conegui tots els detalls del
criptosistema, exceptuant-ne la clau.

És a dir, s’assumeix que l’atacant o el criptoanalista disposa de l’especificació completa de l’algo-
risme a trencar. Auguste Kerchoffs va formular aquest principi al segle XIX, i actualment, la versió
més extesa del seu principi afirma que la seguretat d’un criptosistema ha de dependre únicament de
la clau.

Tot i això, en productes criptogràfics comercials sovint es fa cas omís d’aquest principi i s’opta
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per l’alternativa, la seguretat per ofuscació (en anglès, security through obscurity). En aquest
paradigma, la seguretat dels sistemes es basa en amagar els detalls sobre l’algorisme de xifrat, amb
l’objectiu de dificultar-ne, suposadament, la criptoanàlisi. A la pràctica, però, normalment aquests
detalls s’acaben fent públics igualment, de manera que amagar l’algorisme és contraproduent ja
que únicament en dificulta l’avaluació de la seva seguretat. Alguns exemples de l’adopció d’aquest
paradigma són en els algorismes xifrat de telefonia mòbil GSM, que es van intentar mantenir ocults
sense èxit, o en el sistema de DRM dels DVDs, on calia pagar una llicència i signar un acord de no
revel·lació per tal de tenir accés als detalls de l’algorisme.

Més enllà dels atacs clàssics, que consideren únicament l’algorisme utilitzat, existeixen també atacs
de canal lateral i atacs d’enginyeria social.

.

Els atacs de canal lateral (en anglès, side-channel attacks) es basen en atacar un
criptosistema a través d’informació extreta d’una implementació física.

Hi ha diferents classes d’atacs de canal lateral, depenent de la informació que s’extreu de la
implementació per a realitzar l’atac. Així, els atacs de sincronització (en anglès, timing attacks)
analitzen el temps que es tarda en realitzar diferents càlculs; els atacs de monitoreig d’energia
estudien el consum energètic que té el dispositiu durant l’operació; el atacs electromagnètics
mesuren les fugues de radiació electromagnètica; els atacs acústics tenen en compte el so que es
produeix al realitzar els càlculs, etc.2

Més enllà dels atacs als algorismes i a les implementacions dels criptosistemes, els sistemes
d’informació en general són susceptibles també de patir atacs d’enginyeria social.

.

Els atacs d’enginyeria social es basen en manipular als usuaris d’un sistema per
tal d’obtenir informació que ens permeti trencar-ne la seguretat.

Així, els atacs d’enginyeria social es realitzen interactuant amb els usuaris, i sovint inclouen
l’engany d’aquests per tal d’obtenir dades confidencials. Per exemple, un atacant pot intentar trucar
a un usuari, fent-se passar per un tècnic informàtic i sol·licitant la clau de xifratge per tal de realitzar,
suposadament, alguna comprovació. Evidentment, la criptografia poc té a fer amb aquests tipus
d’atacs i, per aquest motiu, són dels més estesos i dels més perillosos.

1.2 Una mica d’història

Es diu que la història de la criptologia3 comença l’any 1900 abans de Crist, amb uns escrits realitzats
a la tomba de Khnumhotep II, un monarca de l’Alt Egipte. Als escrits trobats a la tomba s’hi troben
alguns jeroglífics inusuals, que l’escribà va escriure enlloc d’altres més comuns, suposadament amb
l’objectiu de dignificar el text. Tot i que en aquest cas no hi havia intenció d’ocultar el missatge, els
escrits suposen el primer cas en la història on hi havia una tranformació deliverada del text que

2Per a un exemple concret d’atac de monitoreig d’energia al criptosistema RSA podeu consultar el Capítol 7 del llibre
Understanding cryptography, de C. Paar i J. Pelzl.

3Una lectura recomanada per aprofundir en la història de la criptologia és el llibre The codebreakers, de David Khan.
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s’escrivia.

També a l’Antic Egipte apareixen els primers escrits amb la intenció, ara sí, d’ocultar el missatge
escrit. Es creu que l’objectiu era dotar el textos de cert aire de misteri i màgia, de manera que
cridessin l’atenció del lector i que aquest s’entretingués desxifrant-los, com si fos un joc o un
puzzle.

Uns quants segles després, l’ús de la criptografia va prendre un altre rumb i va començar-se a fer
servir per ocultar missages amb contingut crític en temps de guerra. Els espartans, potència militar
de l’antiga Grècia, van començar a fer servir, d’una banda, sistemes esteganogràfics i, d’altra banda,
van inventar la primera xifra de transposició coneguda, l’escítala.

Pel que fa a l’esteganografia,4 els primers usos que se’n coneixen daten de l’any 440 a.C.: Histiaeus
va rapar el cap d’un dels seus servents per tatuar-hi un missatge, deixant que el cabell del servent
tornés a créixer abans d’enviar-lo a Aristagoras, el receptor del misatge. Així, si l’esclau era capturat
per l’enemic durant el viatge, el fet que l’esclau transportava un missatge romandria ocult. També
en aquella època, Demaratus va enviar un missatge escrit en un parell de tabletes de cera, marcant
el missatge a la fusta que quedava sota la cera i cobrint les tauletes de nou de cera. Així, si les
tauletes eren interceptades, una revisió superficial de les mateixes no revel·laria que incorporaven
un missatge ocult.

Pel que fa a la criptografia, els espartans són coneguts també per la utilització del primer sistema de
criptografia militar, l’escítala, que descriurem posteriorment en l’apartat de xifres de transposició.
Es creu que l’escítala va ser el primer aparell utilitzat per la criptografia. Thucydides, un historiador
grec, recull l’ús d’aquest aparell per a xifrar un missatge dels èfors (uns magistrats de l’antiga
Grècia) al general espartà Pausanius.

El primer ús conegut d’un criptosistema de substitució és atribuït als romans i, en concret, a Juli
Cèsar, que el feia servir per escriure a Ciceró i d’altres amics. En els següents apartats descriurem
també en detall aquesta xifra, així com les seves febleses.

Els primers textos on es parla de criptoanàlisi són atribuïts als àrabs. Al-Kindi, filòsof i matemàtic
àrab del segle IX d.C., va descriure com utilitzar el fet que la freqüència d’aparició de les lletres de
l’alfabet en un idioma determinat no és uniforme per trencar criptosistemes.

Ja al segle XIV, l’italià Leon Battista Alberti, va ser el primer occidental en documentar tècniques
de criptoanàlisi i va crear el primer xifrat de substitució polialfabètic, la xifra d’Alberti.

Uns quants segles després, al 1883, Auguste Kerckhoffs, criptògraf d’origen holandés, va publicar
un llibre sobre criptografia militar, on donava consells pràctics per al disseny de criptosistemes.
Un d’aquests consells afirmava que un criptosistema havia de ser segur encara que l’atacant en
conegués tots els detalls, a excepció de la clau feta servir per a xifrar. Aquest consell va rebre
una àmplia acceptació i va acabant-se convertint en el principi Kerckhoffs, principi el qual la gran
majoria de criptògrafs actuals respecten i segueixen.

L’any 1948 el matemàtic nordamericà Claude Elwood Shannon va crear els fonaments de la teoria
de la informació. L’any següent, al 1949, ell mateix va publicar l’article Communication Theory of
Secrecy Systems, que assentava les bases de la criptografia com a ciència i inaugurava la criptografia
moderna. Entre moltes altres contribucions, Shannon va definir els conceptes de secret perfecte, va
demostrar que la xifra de Vernam podia oferir aquest tipus de secret i va introduir el concepte de

4L’esteganografia és la pràctica que amaga un missatge dins d’un altre missatge, amb la intenció d’ocultar el primer.
Així, per exemple, hom pot intentar amagar un missatge de text en una imatge, fent servir els bits menys significatius de
cada píxel per tal de modificar al mínim la visualització de la imatge.
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redundància.

Figura 1.2: Línia de temps amb le fites clau de la criptologia pre-moderna.

A continuació descriurem els dos tipus de criptosistemes utilitzats en la criptografia història, les
xifres de transposició i les xifres de substitució, i en presentarem alguns exemples concrets.

1.2.1 Xifres de transposició

.

Les xifres de transposició es basen en canviar l’ordre dels caràcters del text en
clar d’entrada per tal de generar el text xifrat.

És a dir, les xifres de transposició reordenen el text d’entrada, de manera que el text en clar és una
permutació dels caràcters del text xifrat.
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Escítala

Els espartans (al segle V a.C.) feien servir un criptosistema de transposició conegut pel nom
d’escítala. La clau de xifrat era un pal o bastó d’un determinat gruix.

Per a xifrar, s’enrotllava una tira de papir al voltant del bastó i s’escrivia el missatge en sentit
longitudinal, és a dir, seguint la direcció del propi bastó. Després, es desenrotllava la tira de papir,
obtenint el missatge xifrat que podia ser enviat al receptor. Per tant, el gruix del bastó representava
la clau compartida.

Al rebre la tira de papir, el receptor, que també disposava d’un bastó del mateix gruix que el de
l’emissor, procedia a enrotllar la tira al voltant del bastó i podia així llegir el missatge original
enviat.

La tira de papir, per si sola, era difícil de llegir, ja que contenia les mateixes lletres que el missatge
en clar però desordenades per l’efecte de desenrotllar el papir. A més, si no es disposava d’un bastó
del gruix adequat, el resultat d’enrotllar el papir al bastó no revel·lava el missatge original.

Exemple 1.1 Exemple de xifra amb escítala

Xifrem el missatge THESEARESPARTASWALLS fent servir una escítala. Suposem que el gruix del
bastó utilitzat com a clau permet escriure quatre línies de text i que la longitud del bastó limita
cada línia a cinc caràcters. Aleshores, el missatge quedaria escrit en quatre línies que serien:

THESE
ARESP
ARTAS
WALLS

Al desenrotllar el papir del bastó, el missatge que quedaria escrit en la tira de papir (i que
correspondria al missatge xifrat) seria: TAAWHRRAEETLSSALEPSS.

Noteu com, efectivament, les lletres del missatge en clar han quedat desordenades, ocultant així
el missatge original.

Exercici 1.1 Xifreu el missatge THESEARESPARTASWALLS fent servir una escítala amb un gruix
de bastó que permeti escriure cinc línies de text i una longitud que permeti escriure quatre
caràcters per línia.

1.2.2 Xifres de substitució

En contraposició a les xifres de transposició, les xifres de substitució no desordenen el text en clar
per tal de xifrar, sinó que substitueixen les lletres del text en clar per altres símbols. Depenent de
la tècnica utilitzada per realitzar les substitucions, distingirem entre xifres de substitució simple,
polialfabètica i homofònica.

Substitució simple

La xifra de substitució simple és un dels mètodes més senzills per a xifrar text.
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.

La xifra de substitució simple consisteix a substituir cada lletra individual del
missatge en clar per una altra lletra.

La clau feta servir per xifrar és, aleshores, una taula que indica per cada lletra de l’alfabet d’entrada,
quina és la seva corresponent lletra de l’alfabet xifrat.

El procediment a realitzar per xifrar consisteix a buscar cada lletra del text en clar a la taula
utilitzada com a clau i substituir-la per la lletra indicada. Per a desxifrar, se segueix el mateix
procediment, fent servir ara la taula en sentit invers.

La mida de l’espai de claus (és a dir, el número de possibles taules que podem crear indicant
correspondències entre lletres) ve donada per les mides dels alfabets en clar i xifrat. Així, per
exemple, si fem servir un alfabet de 26 caràcters tant per al text en clar com per al text xifrat, l’espai
de claus té una mida de:

|K |= 26 ·25 ·24 · . . . ·1 = 26!

ja que, per al primer caràcter de l’alfabet en clar, podem triar 26 possibles lletres xifrades; per al
segon caràcter, en podrem triar 25 (les 26 disponibles excepte la que ja hem triat per al primer
caràcter); etc.

L’espai de claus de les xifres de substitució simple pot semblar prou gran per oferir un nivell de
seguretat adequat. Tot i així, aquestes xifres són en realitat molt fàcils de trencar, en part perquè
preserven la freqüència d’aparició de les lletres. En efecte, si una determinada lletra del text en clar
x queda xifrada sempre per una lletra de l’alfabet xifrat y, la freqüència d’aparició de la lletra y en
el text xifrat serà exactament la mateixa que la freqüència d’aparició d’x en el text en clar. Atès que
les freqüències d’aparició de les lletres en els textos escrits presenten marcades diferències, quan
els textos tenen certa longitud és fàcil identificar algunes lletres del text xifrat i acabar desxifrant el
missatge sense conéixer la clau feta servir per xifrar.

La Figura 1.3 mostra les freqüències d’aparició mitjanes de les lletres de l’alfabet en textos escrits
en català:

Es diu que Juli Cèsar va fer servir una variant de la xifra de substitució simple per escriure a
Ciceró i d’altres amics. La variant que feia servir Cèsar xifrava cada lletra de l’alfabet en clar
per la lletra que es troba tres posicions després en l’alfabet. Així, Cèsar feia servir les següents
correspondències:

A→ D
B→ E
C→ F
D→ G
E→ H
· · ·

X→ A
Y→ B
Z→ C

Una generalització immediata de l’esquema que feia servir Cèsar resulta de xifrar cada lletra per la
que es troba k posicions després en l’alfabet, on k pot ser qualsevol valor en [0,25] (en comptes de
fixar k = 3).5 Aquesta generalització és el que es coneix habitualment com a xifra de Cèsar.

5El nebot de Cèsar, Augustus, feia servir una variant de la xifra de Cèsar amb k = 1.
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Figura 1.3: Freqüències d’aparició de les lletres en català.

Si assignem a cada lletra de l’alfabet una representació numèrica, on la A és representada pel 0, la
B per l’1, etc., aleshores podem definir formalment la funció de xifrat de cada lletra del missatge
com a:

E(x) = x+ k mod 26

on k és la clau secreta que comparteixen l’emissor i el receptor.

Simètricament, la funció de desxifrat és:

D(y) = y− k mod 26

Exemple 1.2 Exemple de xifra de Cèsar

Volem xifrar el missatge m = THEDIEISCAST fent servir la xifra de Cèsar original, amb k = 3.
Procedim doncs a substituir cada lletra del missatge en clar per la lletra que es troba tres posicions
després a l’alfabet, obtenint el missatge xifrat:

c = WKHGLHLVFDVW

Si volem fer servir la formulació matemàtica, convertirem primer el missatge m en una seqüència
d’enters:

m′ = 19 7 4 3 8 4 8 18 2 0 18 19

Sumarem k = 3 a cada valor, reduint el resultat mòdul 26 (noteu que en aquest cas concret, no
cal reduir cap valor ja que tots són inferiors a 26):

c′ = 22 10 7 6 11 7 11 21 5 3 21 22

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


1.2 Una mica d’història 23

i finalment convertirem la seqüència xifrada a cadena de caràcters, obtenint el text xifrat c:

c = WKHGLHLVFDVW

Exercici 1.2 Desxifreu el missatge XADKTIWTCPBTDUWDCDGBDGTIWPCXUTPGSTPIW sabent que
ha estat xifrat amb una xifra de Cèsar amb k = 15.

Tant la xifra de substitució simple com la xifra de Cèsar són xifres de substitució monoalfabètiques:

.

Les xifres de substitució monoalfabètiques es caracteritzen per fer servir una
substitució de caràcters fixa, on una mateixa lletra del text en clar sempre corres-
pondrà a la mateixa lletra del text xifrat, independentment de la posició que ocupi
la lletra en el text en clar.

Substitució polialfabètica

Les xifres de substitució polialfabètiques van aparéixer bastants anys després que les xifres monoal-
fabètiques. Es creu que la primera xifra polialfabètica va ser creada per Leon Battista Alberti, sobre
l’any 1467. De totes maneres, alguns historiadors argüeixen que les xifres polialfabètiques van ser
ideades per Al Kindi molt abans (sobre l’any 800). La variant més popular de la xifra polialfabètica
és atrïbuida a Blaise de Vigenère (tot i que ell no en va ser l’inventor) i es coneguda com a xifra de
Vigenère.

.

Les xifres de substitució polialfabètiques es caracteritzen per fer servir múltiples
alfabets de substitució, fent que una mateixa lletra del text en clar pugui quedar
xifrada amb diferents lletres, depenent de la posició que aquesta ocupi en el text en
clar.

La xifra de Vigenère és una xifra de substitució polialfabètica periòdica, on es combinen diferents
xifres de Cèsar. El període n ve determinat per la mida (en caràcters) de la clau de xifrat de
Vigenère, i cada lletra individual de la clau es fa servir com a clau d’una xifra de Cèsar. Així, per a
un missatge m = m1,m2, · · · ,ml , una clau k = k1,k2, · · · ,kn i un alfabet de 26 caràcters, la funció
de xifrat és:

E(mi) = mi + ki mod n mod 26

De manera similar, la funció de desxifrat és:

D(ci) = ci− ki mod n mod 26
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Exemple 1.3 Exemple de xifra de Vigenère

Suposem que volem xifrar el missatge

m = VIGENERECIPHERWASCREATEDBYGIOVANBATTISTA

amb la clau:
k = ENEGIV

Procedim a convertir tant el missatge com la clau a la seva representació numèrica, i a calcular la
representació numèrica de la lletra xifrada corresponent a cada lletra en clar (sumant els valors
mòdul 26). Finalment, convertim la seqüència numèrica a caràcters i obtenim el missatge xifrat:

V I G E N E R E C I P H E R W A S C R E
21 8 6 4 13 4 17 4 2 8 15 7 4 17 22 0 18 2 17 4

E N E G I V E N E G I V E N E G I V E N
4 13 4 6 8 21 4 13 4 6 8 21 4 13 4 6 8 21 4 13

25 21 10 10 21 25 21 17 6 14 23 2 8 4 0 6 0 23 21 17
Z V K K V Z V R G O X C I E A G A X V R

A T E D B Y G I O V A N B A T T I S T A
0 19 4 3 1 24 6 8 14 21 0 13 1 0 19 19 8 18 19 0

E G I V E N E G I V E N E G I V E N E G
4 6 8 21 4 13 4 6 8 21 4 13 4 6 8 21 4 13 4 6

4 25 12 24 5 11 10 14 22 16 4 0 5 6 1 14 12 5 23 6
E Z M Y F L K O W Q E A F G B O M F X G

El missatge xifrat resultant és doncs:

c = ZVKKVZVRGOXCIEAGAXVREZMYFLKOWQEAFGBOMFXG

Exercici 1.3 Xifreu el missatge USINGASERIESOFINTERWOVENCAESARCIPHERS amb Vigenere,
fent servir com a clau KASISKI.

Amb les xifres polialfabètiques s’aconsegueix que una mateixa lletra del text en clar no sempre
quedi xifrada per la mateixa lletra, dificultant l’anàlisi de freqüències.

Un cas especialment interessant de xifra polialfabètica és la xifra de Vernam.

.

La xifra de Vernam és una xifra polialfabètica on el número d’alfabets que codifica
la clau és igual o major al número de caràcters del text en clar a xifrar.
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Quan es fa servir adequadament, amb claus aleatòries i d’un sol ús, la xifra de Vernam ofereix
secret perfecte. De fet, la xifra de Vernam és l’única xifra coneguda, encara avui, que ofereix
aquesta propietat.6

La xifra de Vernam és coneix també, en anglès, com a one-time pad. El nom prové dels primers
usos del xifrat, on les claus es distribuien als espies en llibretes de paper (a vegades de paper
altament imflamable), el que permetia fer servir la clau una vegada i destruir després el full de
paper que contenia aquella clau.

Substitució homofònica

Una altra alternativa per tal d’evitar revel·lar les freqüències d’aparició de les lletres en el text xifrat
és la que presenten les xifres homofòniques.

.

La xifra de substitució homofònica permet substituir cada lletra del missatge en
clar per un conjunt de lletres de l’alfabet xifrat.

Així doncs, a diferència de les xifres de substitució simple, on una lletra de l’alfabet en clar
correspon a una única lletra de l’alfabet xifrat, en les xifres homofòniques una lletra del text en clar
pot correspondre a vàries lletres de l’alfabet xifrat. Això fa que l’alfabet xifrat hagi de tenir més
caràcters que l’alfabet en clar.

Per tal d’aconseguir amagar les freqüències d’aparició de les lletres, el que fan les xifres de
substitució homofòniques és assignar més alternatives de xifrat a les lletres de l’alfabet en clar
que apareixen més sovint, de manera que les freqüències d’aparició de les lletres en el text xifrat
s’assemblin el màxim possible.

Exemple 1.4 Exemple de xifra homofònica

Suposem que volem xifrar el missatge THEBEALEPAPERS fent servir subsitució homofònica amb
la següent clau:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
j B N P s T i S q l e h D W R f E d w y O M a X t Z
g Q z u H U p k L m A K x r v
J o C c V I Y F b n

G

i tenint en compte que si disposem de més d’una alternativa per a xifrar una lletra, seleccionarem
aleatòriament la lletra a xifrar d’entre les alternatives.

Noteu que, en aquest cas, l’alfabet del text en clar està format per 26 caràcters (les lletres de la A
a la Z en majúscula, sense incloure la Ç), mentre que l’alfabet xifrat disposa de 52 caràcters (les
lletres tant en majúscula com en minúscula).

6Secret perfecte: Claude Shannon va definir les mesures amb les quals s’avalua el nivell de secret que ofereix
una determinada xifra. Informalment, diem que un criptosistema ofereix secret perfecte si el text xifrat no ofereix cap
informació sobre el text en clar.
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Així, un possible text xifrat seria yHCBsjpGfgfzdw, que correspondria a seleccionar la lletra y
d’entre les tres alternatives per a xifrar T (y, x i n); la lletra H d’entre les tres alternatives per a
xifrar H (S, H i c); etc.

Per a desxifrar seguiríem el procés invers, buscant les lletres de l’alfabet xifrat a la taula i
extraient-ne la corresponent lletra en clar. En aquest cas, el desxifrat és únic. És a dir, per a un
mateix text en clar, podem generar diferents textos xifrats. En canvi, per a un text xifrat, només
hi haurà un únic text en clar.

Exercici 1.4 Genereu 5 textos xifrats diferents corresponent al missatge THEBEALEPAPERS fent
servir la xifra de substitució homofònica amb la següent clau:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
j B N P s T i S q l e h D W R f E d w y O M a X t Z
g Q z u H U p k L m A K x r v
J o C c V I Y F b n

G

Quina informació en pot extreure un criptoanalista que tingui accés als 5 textos xifrats (i sàpiga
que es tracta d’un xifrat homofònic)?

La xifra de Beale és una xifra homofònica que feia servir com a clau la declaració d’independència
dels Estats Units d’Amèrica.

La història diu que Thomas J. Beale va enterrar un tresor d’una expedició de miners que havien fet
fortuna a les mines de l’oest llunyà a la dècada de 1820. El tresor, format per or, plata i joies, tindria
actualment un valor d’uns 43 milions de dòlars. Beale va crear un conjunt de tres criptogrames que
descrivien, respectivament, la localització, el contingut i els noms dels propietaris del tresor enterrat,
i va deixar una capsa de ferro amb els criptogrames a un taverner anomenat Robert Morriss. Beale
va desaparéixer, i el taverner va donar la capsa amb els criptogrames a un amic just abans de morir.
L’amic, del qual no se’n coneix el nom, va aconseguir desxifrar el segon dels criptogrames fent
servir un criptosistema homofònic amb la declaració d’independència dels Estats Units d’Amèrica
com a clau. Per desxifrar el criptograma, l’amic va numerar cadascuna de les paraules de la
declaració i va anar substituint cada número del text xifrat per la lletra inicial de la paraula que es
trobava en la posició descrita pel número.

Es diu que l’amic no va ser capaç de trencar els altres dos criptogrames, motiu pel qual, l’any 1885,
decideix fer pública la història i els criptogrames, amb l’esperança que algú altre pogués trencar-los.
Des de llavors, hi ha hagut múltiples intents sense èxit de trencar els dos criptogrames restants.

De fet, les teories actuals apunten a què la història és en realitat un engany. Els arguments principals
que en qüestionen la seva veracitat són que el text en clar del segon dels criptogrames fa servir
paraules que no existien quan suposadament es van crear els criptogrames i que les característiques
estadístiques dels dos criptogrames restants no semblen coincidir amb les que s’esperaria d’un text
en anglès.
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1.3 Resum

En aquest capítol hem presentat els conceptes bàsics relacionats amb la criptografia i hem descrit
les fites històriques clau pel que fa al seu desenvolupament, tot introduint els criptosistemes que es
van anar dissenyant durant l’era de la criptografia precientífica.

Anomenem criptografia a la ciència que estudia l’escriptura de secrets. En canvi, la criptoànalisi
és la ciència que se centra en trencar les tècniques que desenvolupa la criptografia. Ambdues
ciències treballen paral·lelament, de manera que els avenços d’una ajuden a avançar l’altra. Fem
servir el mot general criptologia per englobar tant criptografia com criptoanàlisi.

Podem agrupar les xifres històriques en dos grans grups segons la tècnica que fan servir per xifrar:
les xifres de transposició i les xifres de substitució. Les xifres de transposició modifiquen l’ordre
dels caràcters del text en clar per generar el text xifrat. En canvi, les xifres de substitució canvien
els caràcters del text en clar per altres caràcters.
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1.4 Solucions dels exercicis

Exercici 1.1:

Tenint en compte les mides del bastó, procediríem a escriure el missatge longitudinalment:

THES
EARE
SPAR
TASW
ALLS

El missatge xifrat resultant seria, per tant: TESTAHAPALERASLSERWS.

Exercici 1.2:

En primer lloc convertim les lletres del missatge en la seva representació numèrica:

23 0 3 10 19 8 22 19 2 15 1 19 3 20 22 3 2 3 6 1 3 6 19 8 22 15 2

23 20 19 15 6 18 19 15 8 22

Seguidament, calculem x−15 mod 26 per cada valor x de la representació numèrica de les lletres:

8 11 14 21 4 19 7 4 13 0 12 4 14 5 7 14 13 14 17 12 14 17 4 19 7 0 13

8 5 4 0 17 3 4 0 19 7

Finalment, recuperem el missatge en clar, convertint la seqüència numèrica de nou a lletres:
ILOVETHENAMEOFHONORMORETHANIFEARDEATH

Exercici 1.3:

Convertim tant el missatge com la clau a la seva representació numèrica, i calculem el text en clar
sumant els dos valors mòdul 26:

U S I N G A S E R I E S O F I N T E R W O V E N C A E S A R C I P H E R S
20 18 8 13 6 0 18 4 17 8 4 18 14 5 8 13 19 4 17 22 14 21 4 13 2 0 4 18 0 17 2 8 15 7 4 17 18

K A S I S K I K A S I S K I K A S I S K I K A S I S K I K A S I S K I K A
10 0 18 8 18 10 8 10 0 18 8 18 10 8 10 0 18 8 18 10 8 10 0 18 8 18 10 8 10 0 18 8 18 10 8 10 0
4 18 0 21 24 10 0 14 17 0 12 10 24 13 18 13 11 12 9 6 22 5 4 5 10 18 14 0 10 17 20 16 7 17 12 1 18
E S A V Y K A O R A M K Y N S N L M J G W F E F K S O A K R U Q H R M B S

El text xifrat resultant és doncs ESAVYKAORAMKYNSNLMJGWFEFKSOAKRUQHRMBS.

Exercici 1.4:

Cinc possibles textos xifrats són:

• nHCBsJpsfjfGdK
• xHGBsJpCfJfCAb
• ycCBsjpzfgfsAw
• nczBzgpCfgfzFK
• xHsBCjpsfJfsFb

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


1.4 Solucions dels exercicis 29

Noteu que la solució no és única. A primer cop d’ull, un criptoanalista pot deduir que, amb
probabilitat molt alta, les lletres xifrades B, p i f corresponen a lletres del text en pla que només
tenen una única lletra xifrada assignada.
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2. Fonaments matemàtics

La criptografia és una disciplina amb un fort contingut matemàtic per diferents motius. Per una
banda, la matemàtica permet mesurar de forma precisa la quantitat d’informació que conté un
missatge i, per tant, també pot mesurar si quan el xifrem la quantitat d’informació que revela és
menor o no en revela cap, de manera que ens dóna una mesura de la qualitat del sistema de xifrat
que estem utilitzant. D’altra banda, l’explicitació de les funcions de xifrat i desxifrat de les quals
hem parlat en l’anterior capítol sovint es realitza utilitzant funcions i expressions matemàtiques.
Per aquest motiu, tenir uns bons coneixements de matemàtiques és fonamental per poder entedre el
correcte funcionament de la criptografia.

En aquest capítol es proporcionen conceptes bàsics d’aritmètica modular així com algunes propietats
dels nombres primers, necessaris en els criptosistemes de clau pública. D’altra banda, tal i com
veurem al llarg d’aquest llibre, els criptosistemes de clau pública, així com algunes funcions que
s’utilitzen en diferents protocols criptogràfics, basen la seva seguretat en problemes matemàtics
difícils de resoldre. És per això que per entendre el grau de seguretat d’aquests sistemes és important
comprendre quins són els problemes matemàtics que hi ha al darrere i quina dificultat té la seva
resolució. En aquest capítol s’enuncien els problemes matemàtics més utilitzats en criptografia i
se’n discuteix la seva complexitat.

Per últim, és important destacar que aquest capítol no pretén en cap cas proporcionar explicacions i
demostracions formals dels conceptes matemàtics i menys encara presentar-ne una visió complerta.
L’objectiu d’aquest capítol és dotar al lector de les eines necessàries per a entendre els criptosistemes
i protocols que es descriuran al llarg del llibre. Per a aquells lectors que vulguin aprofundir en les
nocions matemàtiques que es presenten en aquest capítol es recomana la lectura de les referències
bibliogràfiques que s’indiquen al llarg del text.
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2.1 Aritmètica modular

Normalment, en la nostra activitat quotidiana treballem amb els nombres reals amb els quals sabem
realitzar tot un seguit de càlculs com ara sumes, restes, divisions, multiplicacions, exponenciacions,
arrels quadrades, etc. Ara bé, una de les característiques dels nombres reals és que n’hi ha infinits, de
manera que la seva representació en un ordinador és impossible. Una possibilitat de resoldre aquest
problema és utilitzant conjunts que tinguin un nombre finit d’elements, podent-los representar tots
sense cap problema.

L’aritmètica modular és una part de la matemàtica que permet definir tant aquest tipus de conjunts
amb un nombre finit d’elements com també les operacions que permeten operar amb els elements
d’aquest conjunt, assegurant que l’operació de dos elements del conjunt continuarà proporcionant
un altre element del conjunt.

2.1.1 Estructures algebraiques: grups, anells i cossos

Des d’un punt de vista informal, podem definir una estructura algebraica com un conjunt d’elements
i unes operacions associades que permeten operar amb els elements del conjunt. Depenent de les
operacions que definim sobre el conjunt, quantes en definim i quines propietats tinguin, podem
classificar l’estructura algebraica en diferents tipus, els més coneguts dels quals són els grups, els
anells i els cossos.1

Per exemple, si prenem el conjunt dels nombres enters, que es representen per la lletra Z, el qual
té infinits elements Z = {...,−3,−2,−1,0,1,2,3, ...} i hi definim l’operació suma tal i com la
coneixem, l’estructura algebraica resultant, que podem denotar per (Z,+), és un grup. Això és així
donada la següent definició.

Definició 2.1 Un grup és una estructura algebraica en què l’operació definida compleix la
propietat associativa i, a més, el conjunt sobre el qual està definida l’operació conté l’element
neutre i l’element invers d’aquesta operació, que anomenarem invers additiu o oposat.

Per exemple, si prenem tres valors enters qualssevol, com ara el−3, el−1 i el 2, efectivament, veiem
que compleixen les propietats anteriors. Per la propietat associativa, tenim que ((−3)+(−1))+2=
(−3)+((−1)+2). D’altra banda, l’element neutre de la suma (aquell que sumat amb qualsevol
valor dóna ell mateix) pertany als enters, ja que com sabem el neutre de la suma és el 0. L’element
invers respecte la suma (aquell que sumat amb un element dóna el neutre de la suma) és el mateix
valor canviat de signe, que també pertany al conjunt de nombres enters. Evidentment, aquest
exemple concret no és cap demostració que (Z,+) és un grup però ens dóna una exemplificació
dels conceptes de propietat associativa, element neutre i element invers.

D’altra banda, també podem assegurar que l’estructura algebraica dels nombres naturals amb la
suma, (N,+) no és un grup ja que si bé la suma sobre els naturals si que té la propietat associativa
i l’element neutre és el 0, que sí que pertany als naturals, l’element invers per la suma de cada
element d’N no pertany a aquest conjunt, ja que els naturals només comprenen nombres positius (i
el 0) i els inversos per la suma d’aquests valors són nombres negatius.

Una altra propietat interessant de les estructures algebraiques és la commutativitat. Un grup

1Malgrat que les operacions que es poden definir en una estructura algebraica poden ser tan complicades com es
vulguin, a llarg d’aquest text ens restringirem a les dues operacions habituals de suma, +, i producte, ·, tal i com les
coneixem habitualment.
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s’anomena commutatiu si l’operació que hi ha definida és commutativa, és a dir, donats dos
elements del conjunt a i b es compleix que a+b = b+a.

De la mateixa manera que hem definit una estructura algebraica amb una operació, en podem
definir d’altres amb dues operacions diferents. Per exemple, la següent estructura algebraica està
formada pels nombres reals amb les operacions de suma i producte: (R,+, ·). En aquest cas,
podem caracteritzar-les en funció de les propietats que presentin cada una de les operacions, fet
que proporciona la definició d’anell i de cos.

Definició 2.2 Un anell és una estructura algebraica amb dues operacions on una d’elles
presenta estructura de grup commutatiu, l’altra operació compleix la propietat associativa i, a
més, ambdues propietats compleixen la distributivitat d’una respecte l’altra.

Exemple 2.1

L’estructura algebraica (Z,+, ·) és un anell ja que com hem comentat anteriorment (Z,+) és un
grup, a més és commutatiu i es compleix la propietat distributiva de la suma respecte el producte,
és a dira, ∀a,b,c ∈ Z, a · (b+ c) = (a ·b)+(a · c).

aRecordeu que el símbol ∀ es llegeix com "per a qualsevol element".

Dels elements d’una estructura algebraica n’hi ha alguns d’especialment rellevants, com ara
l’element neutre de cada una de les operacions. Són aquells que operats amb qualsevol element del
grup no n’afecten el seu resultat (és a dir, el 0 per a la suma i l’1 per al producte). Com hem vist,
en la definició de grup s’exigia que l’element neutre de la suma estigués contingut en el conjunt
d’elements. Ara bé, en un anell no s’ha indicat cap condició sobre l’existència o no del neutre del
producte. Per tant, podem enunciar la següent definició:

Definició 2.3 Un anell amb unitat és un anell que conté el neutre respecte el producte.

Exemple 2.2 (Z,+, ·) és un anell amb unitat ja que 1 ∈ Z i 1 és el neutre del producte,
perquè compleix que ∀a ∈ Z, a ·1 = 1 ·a = a.

L’element unitat en un anell és important perquè ens permet definir el concepte d’element invers.

Definició 2.4 Donat un anell amb unitat, direm que un element a és invertible si existeix un
altre element b tal que a ·b = b ·a = 1, on 1 és l’element unitat.

Amb la definició d’element invertible, ja podem definir l’estructura algebraica més important que
hi ha, el cos.

Definició 2.5 Una estructura algebraica és un cos, quan aquesta és un anell amb unitat on
qualsevol element, llevat de l’element neutre de la suma, és invertible.

Notació 2.1. Utilitzarem l’asterisc per denotar el subconjunt d’elements invertibles. Per exemple,
Z∗ = {1,−1} ja que són els únics elements que tenen invers. D’altra banda, R∗ = R\{0} ja que
tots els reals llevat del zero són invertibles.

Així, l’anell (Z,+, ·) tot i ser un anell amb unitat no és un cos perquè no tots els elements tenen
invers. Per exemple, l’invers de 2 és 1

2 , i aquesta fracció no pertany als Z. De fet, els únics elements
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que tenen inversos en Z són l’1 i el −1. D’altra banda, els nombres reals amb la suma i el producte
(R,+, ·) si que són un cos perquè tots els elements, llevat del 0, tenen invers en els R.

2.1.2 Divisibilitat als enters

Com acabem de veure, els enters amb la suma i el producte són un anell, però no tenen estructura de
cos perquè no tots els elements tenen invers respecte el producte. Aquest fet fa que quan calculem
una divisió entre dos nombres enters el resultat no sempre sigui un nombre enter. Ara bé, el que si
que podem fer és caracteritzar els elements de l’equació resultant d’una divisió entera. Aquesta
caracterització la proporciona el següent teorema.2

Teorema 2.1 Donats dos elements a,b ∈ Z qualssevol (amb b ̸= 0), ∃ q,r ∈ Z únics, tals que
a = b ·q+ r, on 0≤ r < |b|

El que ens indica aquest teorema és que si dividim l’element a per un element b tenim com a
resultat un quocient, q, i un residu, r. A més, com ja sabem, el residu sempre serà més petit que
b ja que si no ho fos podríem continuar dividint i tindríem un quocient q+1, i això ho podríem
realitzar de forma repetida fins que el residu sigui més petit que b.

Una vegada caracteritzats els elements de la divisió entera, podem definir el concepte de divisibilitat
als enters.

Definició 2.6 Donats a,b ∈ Z, diem que b divideix a si i només si ∃ q ∈ Z tal que a = b ·q. Ho
denotarem per b|a.

Un dels entrebancs que sovint hi ha amb el concepte de divisibilitat és la multiplicitat de definicions
que en són equivalents. Així, que l’element b divideixi a l’element a és equivalent a dir qualsevol
de les següents expressions:

• b és factor d’a
• b és divisor d’a
• a és divisible per b
• a és múltiple de b

La noció de divisibilitat és important perquè ens permet definir altres eines com ara el màxim comú
divisor o caracteritzar alguns nombres, com ara els nombres primers.

Definició 2.7 Donats dos elements a,b ∈ Z direm que d és el màxim comú divisor d’a i de b si
d divideix tant a com b i donat qualsevol altre valor c que també divideixi a i b, tenim que c < d.
Denotarem el màxim comú divisor com gcd(a,b) = d (de l’anglès, greatest common divisor).

Dels nostres estudis previs en matemàtiques molt probablement el càlcul del màxim comú divisor
el sabem fer a partir de la descomposició dels nombres a i b en factors primers i prendre’n els
comuns amb els menors exponents. És a dir, si volem calcular el gcd(16,28), com que sabem que
16 = 24 ·1 i 28 = 22 ·7 ·1 podem concloure que el gcd(16,28) = 22 = 4. Ara bé, aquest sistema per
calcular el màxim comú divisor no és gens eficient perquè implica haver de factoritzar els nombres
pels quals volem calcular-ne el màxim comú divisor. L’operació de factoritzar, com veurem més
endavant en aquest mateix capítol, és un procés molt poc eficient computacionalment, per això

2Recordeu que el símbol ∃ es llegeix com "Existeix".

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


2.1 Aritmètica modular 35

es fa servir l’Algorisme d’Euclides que permet calcular el màxim comú divisor de forma eficient,
independentment de la mida del nombres. L’Algorisme d’Euclides es basa en el següent teorema:

Teorema 2.2 — Teorema d’Euclides. Siguin a,b,q,r ∈ Z tals que a = b · q+ r aleshores
gcd(a,b) = gcd(b,r).

Aquest teorema ens indica que podem calcular el màxim comú divisor de dos valors, a i b, calculant
el màxim comú divisor de dos valors diferents, b i r, els quals són tots dos més petits que els
anteriors, b < a i r < b. Així, calcular el màxim comú divisor consistirà en fer un càlcul recursiu
en el que es van dividint els nombres entre ells fins arribar a la condició final, que es concreta en el
fet que gcd(x,0) = x,∀x ∈ Z.

Exemple 2.3 Càlcul de màxim comú divisor utilitzant l’Algorisme d’Euclides

Si volem calcular el màxim comú divisor de 2756 i 2621 podem realitzar les següents divisions
successives:
2756 = 2621 ·1+135
2621 = 135 ·19+56
135 = 56 ·2+23
56 = 23 ·2+10
23 = 10 ·2+3
10 = 3 ·3+1
3 = 1 ·3+0

D’aquestes divisions i en base al Teorema d’Euclides tenim que:
gcd(2756,2621) = gcd(2621,135) = gcd(135,56) = gcd(56,23) = gcd(23,10) = gcd(10,3) =
gcd(3,1) Per tant, com que l’últim residu no nul és el 1, tenim que gcd(2756,2621) = 1

Exercici 2.1 Calcula el màxim comú divisor de 35 i 48.

Una vegada definit el màxim comú divisor de dos nombres, podem donar la definició de nombres
coprimers.

Definició 2.8 Dos elements a i b s’anomenen coprimers quan el gcd(a,b) = 1.

Un altre teorema important que ens servirà més endavant per a calcular inversos modulars, és la
Identitat de Bézout, que permet expressar el màxim comú divisor de dos elements com a combinació
lineal dels mateixos.

Teorema 2.3 — Identitat de Bézout. Siguin a,b ∈ Z tals que gcd(a,b) = d. Aleshores,
existeixen uns únics valors λ ,µ ∈ Z tals que λa+µb = d.

Tot i que la Identitat de Bézout només ens indica l’existència d’aquests dos valors, podem utilitzar
el càlcul del màxim comú divisor amb l’Algorisme d’Euclides per calcular-ne exactament els valors
λ i µ , tal i com es mostra en el següent exemple.
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Exemple 2.4 Càlcul dels coeficients de la Identitat de Bézout

El càlcul dels coeficients de la Identitat de Bézout es pot realitzar utilitzant la descomposició
que en resulta de l’Algorisme d’Euclides. Així, si volem calcular el coeficients de la Identitat
de Bézout per als valors 2756 i 2621, primer farem el càlcul de les divisions successives de
l’Algorisme d’Euclides:
2756 = 2621 ·1+135
2621 = 135 ·19+56
135 = 56 ·2+23
56 = 23 ·2+10
23 = 10 ·2+3
10 = 3 ·3+1

Posteriorment, en cada equació n’aïllarem el residu:
2756− (2621 ·1) = 135
2621− (135 ·19) = 56
135− (56 ·2) = 23
56− (23 ·2) = 10
23− (10 ·2) = 3
10− (3 ·3) = 1

i finalment substituirem en cada equació el valor corresponent per acabar obtenint-ne una sola
amb els valors 2756 i 2621:
1 = 10− (3 ·3) = 10− ((23− (10 ·2)) ·3) = (10 ·7)− (23 ·3) = ((56− (23 ·2)) ·7)− (23 ·3) =
(56 · 7)− (23 · 17) = (56 · 7)− ((135− (56 · 2)) · 17) = (56 · 41)− (135 · 17) = ((2621− (135 ·
19)) · 41− (135 · 17) = (2621 · 41)− (135 · 769) = (2621 · 41)− ((2756− (2621 · 1)) · 796) =
(2621 ·837)− (2756 ·796)
Així, tenim que
1 = 2621 ·837+2756 · (−796)
i per tant els coeficients de la Identitat de Bézout per a 2756 i 2621 són−796 i 837 respectivament.

Exercici 2.2 Calcula els coeficients de la indentitat de Bezout de 35 i 48.

Com ja hem indicat anteriorment, a més del màxim comú divisor, el concepte de divisibilitat també
ens permet definir els nombres primers.

Definició 2.9 Direm que un nombre p ∈ N, amb p > 1, és primer si només és divisible per ell
mateix i per 1.

L’últim concepte relacionat amb la divisibilitat als enters que definirem és la funció fi d’Euler, la
qual, com veurem més endavant, és la base del funcionament de l’algorisme de xifrat RSA.

Definició 2.10 — Funció fi d’Euler. La funció fi d’Euler d’un valor natural n, φ(n), es defineix
com el cardinal del conjunt de nombres coprimers amb n més petits que n. És a dir:

φ(n) = #{a, 0≤ a < n, tal que gcd(a,n) = 1}
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Exemple 2.5 Càlcul de funció fi d’Euler

Si volem calcular el valor de φ(10) seguint la definició d’aquesta funció, ens caldrà calcular tots
els nombres més petits que 10 que són coprimers amb 10, és a dir, que el gcd(x,10) = 1. Si els
calculem resultarà que són els següents {1,3,7,9}, per tant, el valor de la funció fi d’Euler serà
el nombre d’elements d’aquest conjunt, és a dir 4.

φ(10) = #{1,3,7,9}= 4

Més enllà de calcular tots els elements coprimers amb n i comptar-los hi ha tècniques més eficients
per calcular la funció fi d’Euler. La més eficient que es coneix consisteix a descompondre el valor
n en factors primers. Un cop descompost el valor, s’utilitzen les següents propietats:

• Si p és un nombre primer, φ(p) = p−1. Això és fàcil de veure perquè tots els elements més
petits que p seran coprimers amb p donat que no tenen cap factor en comú, justament pel fet
que p és primer.

• Si n = p ·q tals que p i q són coprimers, aleshores φ(n) = φ(p) ·φ(q).
• Si n és una potència d’un primer, n = pk, aleshores φ(pk) = pk− pk−1 = pk−1(p−1)

Com podem veure, malgrat que aquesta sigui la millor manera de calcular la funció d’Euler, donat
que implica descompondre el valor en factors primers, no és una tasca computacionalment eficient
quan els valor del nombre és molt elevat.

Exercici 2.3 Calcula quin és el valor de φ(527).

2.1.3 Aritmètica modular amb enters

En el primer aparat d’aquest capítol hem vist quines són les propietats que ha de tenir una estructura
algebraica per a ser un grup, un anell o un cos. Com ja hem comentat, els cossos són estructures
algebraiques molt versàtils gràcies a les propietats que presenten les seves operacions. Els exemples
d’anells o cossos que hem vist en l’apartat anterior, i els que coneixem normalment, són exemples
on el conjunt d’elements és un conjunt infinit. Així, el conjunt dels enters amb la suma i el producte
(Z,+, ·) és un anell, però els enters és un conjunt d’elements infinit. Igualment, el conjunt dels
reals amb la suma i el producte (R,+, ·) és un cos, però, de nou, els reals són un conjunt infinit.
Per tant, ens podem preguntar si podem crear estructures algebraiques que siguin anells o cossos,
però que tinguin un nombre finit d’elements. I la resposta a aquesta pregunta és afirmativa.

Definició 2.11 Definirem el conjunt dels enters mòdul n, per a n ≥ 2, i el denotarem per Zn,
com tots els nombres enters entre 0 i n−1, és a dir Zn = {0,1, · · · ,n−1}.

Com és evident, els enters mòdul n és un conjunt finit, ja que conté exactament n elements. Per
tant, si aconseguim definir una operació suma i una operació producte que tinguin les propietats
que hem enumerat en anteriors apartats, això ens permetrà construir anells i cossos amb un nombre
finit d’elements. Per definir tant la suma com el producte a Zn utilitzarem la definició de suma
i producte d’enters que ja coneixem. Ara bé, caldrà anar en compte perquè és important que les
operacions siguin operacions internes, és a dir, quan operem dos elements d’un conjunt cal que el
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resultat sigui un element del mateix conjunt. Això amb els conjunts en els que estem acostumats
a treballar ja passa, perquè si sumem (o multipliquem) dos elements enters en dóna un enter i si
sumem (o multipliquem) dos nombres reals, el resultat també és un nombre real. Ara bé, si prenem
la suma tal i com la coneixem i considerem ara el conjunt Z5 = {0,1,2,3,4} veurem que cal anar
amb compte perquè si fem la suma de dos elements de Z5, per exemple 4+4 el resultat és 8, que
no és un element del conjunt Z5. Per tal de resoldre aquest problema el que farem és pensar Zn

com una reducció de tots els enters. Si tenim una manera per “reduir” qualsevol enter a un valor de
Zn ja haurem aconseguit l’objectiu, perquè per una banda tenim definides la suma i el producte de
manera que el resultat és un enter, i amb l’eina de reducció, podríem reduir el resultat de l’operació
a un element de Zn.

Per obtenir aquesta funció de reducció de tots els enters a Zn només ens cal recuperar el teorema de
divisió entera que hem vist anteriorment. Efectivament, si volem reduir un element enter a a un
enter entre 0 i n−1 només cal fer la divisió entera de a entre n. Aquesta divisió tindrà un residu
únic. A més, com que hem dividit per n, aquest residu serà un valor entre 0 i n−1 que és justament
el que ens interessa. També direm que reduïm l’element a mòdul n, i escriurem a (mod n).

Si tornem ara a l’exemple dels enters mòdul 5, que recordem que és el conjunt format per Z5 =
{0,1,2,3,4}, veiem que la suma que proposàvem 4+4 donava com a resultat 8. Ara bé, si reduïm
el 8 tal i com hem descrit anteriorment, tenim que la divisió entera de 8 entre 5 dóna com a quocient
1 i de residu 3. Per tant, podem concloure que el 8 equival a un 3 a Z5 i que per tant, la suma que
teníem ens queda 4+4 = 8 = 3 a Z5. De la mateixa manera que hem pogut definir la suma, podem
fer el mateix amb el producte. Així 3 ·4 = 2 a Z5 ja que si dividim 12 (que és el resultat de 3 per 4)
entre 5 tenim 2 de residu. 3

Exercici 2.4 Quants elements té el conjunt Z25?

Una vegada definit el conjunt dels enters mòdul n i les operacions de suma i producte dins d’aquest
conjunt, ja podem enunciar el següent teorema:

Teorema 2.4 L’estructura algebraica (Zn,+, ·) amb la suma i el producte tal i com els hem
definit anteriorment i per a qualsevol valor n≥ 2 és un anell commutatiu amb unitat.

D’aquesta manera, hem pogut definir un anell sobre un conjunt d’elements finits, com és el cas de
Zn. Per fer operacions de suma i producte a Zn ens caldrà únicament operar de forma normal amb
els enters i un cop obtingut el resultat final reduir-lo al mòdul on treballem. A més, aquesta reducció
al mòdul la podem fer al final dels càlculs o en qualsevol moment, per exemple, per simplificar els
valors amb els que estem treballant.

Exemple 2.6 Càlculs en anells modulars

Si volem saber el valor de l’expressió 5 · (4+14)−3 ·8 a Z10 podem fer el següents càlculs:

5 · (4+14)−3 ·8 (mod 10)

5 · (18)−24 (mod 10)

90−24 (mod 10)

3Les equacions a Zn s’anomenen equacions modulars. Per indicar l’equació modular 4+4 a Z5 escriurem el següent:
4+4 = 3 (mod 5).
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66 (mod 10)

6 (mod 10)

on l’últim pas prové del fet que el residu de dividir 66 entre 10 és 6.

Fixeu-vos que una altra manera de realitzar el càlcul és que en el primer pas, haguéssim reduït
tant el 18 com el 24 mòdul 10, això és hagués proporcionat l’expressió
5 · (8)−4 (mod 10)
més fàcil de gestionar per la mida dels valors. Aquesta expressió també hagués proporcionat el
mateix resultat final, ja que
5 · (8)−4 (mod 10) = 40−4 (mod 10) = 36 (mod 10) = 6 (mod 10)

Fixeu-vos que fins ara només ens hem referit a operar amb sumes, restes i multiplicacions. Això és
així perquè, fins al moment, hem pogut assegurar que l’estructura algebraica que hem construït és
un anell. Però en un anell no necessàriament tots els elements tenen invers pel producte. Arribats a
aquest punt, ens podem preguntar si l’estructura algebraica (Zn,+, ·), a més d’un anell és també un
cos.

Pel Teorema 2.4, (Zn,+, ·) és un anell commutatiu amb unitat. P er veure si (Zn,+, ·) és un cos,
atenent-nos a la definició de cos que hem donat, només ens cal comprovar dos fets. El primer és
que aquest anell té unitat. I el segon, que tot element de l’anell, llevat del neutre de la suma, és
invertible. La primera comprovació és trivial, ja que sabem que l’element 1, que és la unitat del
producte, sempre pertany a Zn (ja que hem dit que n≥ 2). Ara bé, la segona propietat no sempre és
certa, i dependrà del tipus de valor n.

Teorema 2.5 L’estructura algebraica (Zp,+, ·) és un cos si i només si el valor p és un nombre
primer.

Aquest teorema ens indica que, per exemple, l’estructura algebraica (Z17,+, ·) és un cos perquè
17 és un nombre primer. Per tant, qualsevol element a Z17, que recordem que està format pels
elements {0,1,2,3,4, · · · ,15,16}, té invers pel producte. El fet que qualsevol element tingui invers
és molt rellevant perquè permet fer divisions amb elements d’aquest conjunt. En efecte, si volem
calcular 2

3 només hem de saber quan val l’invers de 3, és a dir 3−1 i multiplicar aquest valor per 2.

Inversos modulars

Com acabem de veure, l’últim teorema de l’apartat anterior ens indica que l’estructura algebraica
(Zp,+, ·) és un cos si p és primer. Per tant, sabem que per a qualsevol element de Zp, llevat del
zero, podem calcular-ne el seu valor invers. Vegem com fer-ho.

En primer lloc, és important recordar la definició d’element invers. Per exemple, si volem calcular
l’invers de 3 a Z17 sabem que estem buscant un valor que multiplicat per 3 valgui 1 a Z17. A més,
com que sabem que Z17 és un cos sabem que l’invers de 3 ha de pertànyer a Z17, per tant ha de ser
un valor del conjunt {0,1,2,3,4, · · · ,15,16}. Si multipliquem cada un d’aquests elements d’aquest
conjunt per 3, un dels productes ens donarà 1. En efecte, si fem el producte 3 ·6 = 18 veiem que el
resultat, reduït a mòdul 17, és 1. Així doncs, l’invers de 3 mòdul 17 serà 6.

Evidentment, aquest sistema que acabem de descriure no és bo per calcular inversos modulars en
cas que el valor de p sigui molt gran, ja que ens requeriria fer molts productes. Una manera eficient
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de calcular inversos és utilitzant la Identitat de Bézout.

Fixeu-vos que si volem calcular l’invers de x ∈ Zp, on p és primer, com que x és més petit que
p i p és primer, tenim que gcd(x, p) = 1, ja que si el màxim comú divisor d no fos 1, p no seria
primer perquè es podria dividir per d. Ara bé, si gcd(x, p) = 1, per la Identitat de Bézout, sabem
que existeixen dos elements λ i µ tals que x ·λ + p ·µ = 1. Però fixeu-vos que si aquesta equació
l’expressem modularment a Zp ens queda x ·λ + p ·µ = 1 (mod p) i si la reduïm modularment
obtenim l’equació equivalent x ·λ = 1 (mod p) donat que p a Zp val 0 (ja que el residu de dividir
p entre p és 0). Per tant, el valor que multiplicat per x dóna 1 mòdul p és justament λ . Dit en altres
paraules, un dels coeficients de la Identitat de Bézout és el que ens proporciona l’invers modular.

Exemple 2.7 Càlcul d’invers modular

Si volem calcular l’invers de 9 mòdul 11 calcularem els coeficients de la Identitat de Bézout tal i
com hem mostrat en exemples anteriors, utilitzant l’algorisme de les divisions successives:
11 = 9 ·1+2
9 = 2 ·4+1
De la segona equació tenim 1= 9−(2 ·4) i de la primera equació 2= 11−(9 ·1). Si les combinem
ens queda: 1= 9−(11−(9 ·1) ·4)= 9−(11 ·4)+(9 ·4)= 5 ·9−11 ·4. Per tant, els coeficients de
la Identitat de Bézout de 9 i 11 són 5 i−4 respectivament ja que gcd(9,11) = 1 = 5 ·9+11 ·(−4).
Per tant, si reduïm aquesta equació mòdul 11 ens queda 5 ·9 (mod 11) = 1, és a dir, l’invers de
9 mòdul 11 és 5. Això és fàcil de comprovar, perquè 9 ·5 = 45 i el residu de dividir 45 per 11 és,
efectivament, 1.

Exercici 2.5 Troba l’invers de 7 a Z37

Exercici 2.6 Realitza els següents càlculs a Z37

• 20+20
• 20 ·4
• 202

• 20
7

Exercici 2.7 Per què l’estructura algebraica (Z37,+, ·) és un cos?

El Teorema d’Euler

L’aritmètica modular conté innombrables resultats, que tot i ser molt interessants queden fóra de
l’abast d’aquest llibre. En aquest apartat ens centrarem únicament amb el Teorema d’Euler, que és
la pedra angular del funcionament de l’algorisme de clau pública RSA.

Teorema 2.6 — Teorema d’Euler. Sigui n un nombre natural i φ(n) la seva funció fi d’Euler.
Si gcd(x,n) = 1, aleshores:

xφ(n) = 1 mod n

Aquest teorema ens indica que quan estem en un anell modular, qualsevol valor coprimer amb el
mòdul elevat a la funció d’Euler del mòdul és igual a la identitat. La importància d’aquest teorema
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en l’RSA és que permet demostrar, com veurem més endavant, que quan xifrem un missatge i
posteriorment el desxifrem, el resultat que obtenim és el text en clar original.

Una altra implicació del Teorema d’Euclides és el següent resultat que ens permet calcular inversos
modulars per mitjà d’exponenciacions:

Proposició 2.1 Sigui x ∈ Zn tal que gcd(x,n) = 1, l’invers d’x a Zn és xφ(n)−1.

Demostració: La demostració d’aquesta proposició és immediata fent servir el Teorema
d’Euclides. Efectivament si multipliquem x per xφ(n)−1 tenim xφ(n) que val 1 a Zn pel Teorema
d’Euclides, cosa que prova que són inversos.

Exemple 2.8 Càlcul d’invers modular

Si volem calcular l’invers de 2 a Z11, com que gcd(2,11) = 1, podem calcular la funció d’Euler
del mòdul φ(11) = 10 i posteriorment calcular la següent potència:

210−1 = 29 = 512 = 6 (mod 11)

Per tant, l’invers de 2 mòdul 11 val 6.

Elements primitius

Quan treballem amb cossos finits, el fet que el conjunt d’elements que tenim sigui finit junt amb el
fet que les operacions entre elements han de ser internes, ens trobem en situacions que no es donen
quan treballem amb conjunts de mida infinita. Un exemple d’aquest cas el trobem en la definició
d’ordre d’un element.

Definició 2.12 L’ordre d’un element a ∈ Zn és el mínim exponent i ∈ N; i > 0 tal que ai = 1
mòdul n.

Exemple 2.9 Ordre d’un element

L’ordre de l’element 5 a Z42 és 6 ja que 51 = 5, 52 = 25, 53 = 41, 54 = 37, 55 = 17, 56 = 1.

Una vegada definit el concepte d’ordre, podem definir el concepte d’element primitiu.

Definició 2.13 Un element g ∈ Zn és un element primitiu si té ordre φ(n).

Fixeu-vos que en el cas que el mòdul del nostre conjunt sigui un nombre primer p, tenim que
l’element g serà primitiu a Zp si té ordre φ(p). Com que p es primer sabem que φ(p) = p−1, per
tant, l’ordre de g serà p−1. Això vol dir que si prenem g i anem calculant potències ens generarà
p−1 elements diferents. Ara bé, fixeu-vos que Zp té p elements diferents i, en concret, llevat del 0
tots són invertibles (ja que Zp és un cos). Per tant, Z∗p té p−1 elements i podem concloure que les
p−1 potències diferents de g generen tots els elements invertibles de Zp. Per exemple, si prenem
Z7 = {0,1,2,3,4,5,6}, veiem que els seus elements invertibles són Z∗7 = {1,2,3,4,5,6}. Tenim
que 3 és un element primitiu, i podem comprovar que les seves potències poden generar tots els
elements invertibles: 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1.
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Sistemes d’equacions modulars

En apartats anteriors hem vist la resolució d’equacions modulars utilitzant els mecanismes estàn-
dards de resolució d’equacions però tenint en compte que el conjunt on treballem és Zn. Ara bé, es
pot donar el cas que ens interessi resoldre un sistema d’equacions definides sobre diferents mòduls,
com per exemple:{

3x+5 = 0 (mod 11)
3x−2 = 0 (mod 5)

En aquest cas, el Teorema xinès dels residus ens proporciona informació sobre l’existència d’una
solució.

Teorema 2.7 — Teorema xinès dels residus. Siguin n1 i n2 dos elements naturals tals que
gcd(n1,n2) = 1 aleshores, el sistema d’equacions modulars:{

x = a1 (mod n1)

x = a2 (mod n2)

té una única solució mòdul n = n1 ·n2 definida per l’equació:

x = λ ·n2 ·a1 +µ ·n1 ·a2 (mod n)

on λ i µ són els coeficients de la Identitat de Bézout µ ·n1 +λ ·n2 = 1.

Exemple 2.10 Resolució d’un sistema d’equacions modular

Si volem resoldre el sistema d’equacions següent:{
3x+5 = 0 (mod 11)
3x−2 = 0 (mod 5)

En primer lloc ens cal expressar les equacions en el format adequat. És a dir:{
x = 2 (mod 11)
x = 4 (mod 5)

A continuació, calcularem els elements de la Identitat de Bézout de 11 i 5, que són µ = 1 i
λ =−2, ja que 1 ·11+(−2) ·5 = 1. Per tant, la solució serà:

x = λ ·n2 ·a1 +µ ·n1 ·a2 (mod n) =−2 ·5 ·2+1 ·11 ·4 (mod 55) = 24 (mod 55)

Residus quadràtics i arrels quadrades modulars

Quan treballem amb estructures algebraiques finites, una de les operacions que també ens interessarà
realitzar són arrels quadrades. Com veurem en aquest apartat, no tots els elements tindran arrels
quadrades i, a més, en cas que en tinguin en poden tenir més de dues.
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Definició 2.14 Sigui p un nombre primer. Direm que y ∈ Zp és un residu quadràtic si existeix
un valor x ∈ Zp tal que x2 = y. En cas que no existeixi aquest valor, direm que y no és un residu
quadràtic.

En el cos Zp, hi ha el mateix nombre d’elements que són residu quadràtic que elements que no ho
són, és a dir un total de p−1

2 elements. A més, hi ha una manera fàcil de calcular si un element és
un residu quadràtic aplicant la següent expressió:

y
p−1

2 =

{
1 si y és un residu quadràtic
−1 si y no és un residu quadràtic

Un cop sabem que un valor és un residu quadràtic, podem calcular-ne les seves arrel quadrades, ja
que sabem que existeixen. Amb la fórmula anterior, és molt simple comprovar si un valor és un
residu quadràtic o no ho és. Ara bé, calcular-ne les arrels quadrades suposa una mica més de feina.
De tota manera, per a nosaltres ens serà suficient saber que existeixen algorismes eficients4 que
poden calcular arrels quadrades d’un residu quadràtic a Zp encara que el valor p sigui molt gran,
això sí, sempre que p sigui un nombre primer.

Quan deixem els nombres primers com a base de la nostra estructura algebraica i adoptem elements
que són producte de primers, les coses es compliquen.

Proposició 2.2 Siguin p i q dos nombres primers i n el seu producte, n = p ·q. Aleshores, a Zn

hi ha exactament φ(n)
4 residus quadràtics i cada un d’ells té exactament quatre arrels quadrades.

Un punt important a tenir en compte és que si un element y és residu quadràtic a Zn i n = p · q,
aleshores y també és residu quadràtic a Zp i a Zq. Aquest fet ens proporciona un sistema per
calcular arrels quadrades d’un residu quadràtic y a Zn, ja que per calcular-les només ens caldrà
calcular les arrels quadrades de y a Zp i a Zq i combinar-les.

Exemple 2.11 Càlcul d’arrels quadrades a Zn amb n = p ·q producte de dos primers

Calculem les arrels quadrades de 4 a Z15.

Donat que 15 és producte de dos primers, sabem que 4 té 4 arrels quadrades a Z15, que denotarem
per x1,x2,x3,x4. Per calcular-les, calcularem primer les arrels quadrades de 4 a Z3 i a Z5.

Aquest cas és molt simple perquè sabem que, en els reals, les arrels de 4 són 2 i -2. Per tant, les
arrels quadrades de 4 a Z3 seran els valors y1 = 2, y2 = 1 i les arrels quadrades de 4 a Z5 seran
els valors z1 = 2, z2 = 3

Ara bé, sabem que les arrels quadrades de 4 a Z15 que busquem també ho han de ser a Z3 i a Z5.
Això fa que puguem plantejar el següent sistema d’equacions:

4L’algorisme de Tonelli-Shank permet, en temps polinomial, calcular arrels quadrades d’un residu quadràtic a Zp,
per a qualsevol valor p primer.
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{
x = yi (mod 3)
x = zi (mod 5)

Si ens hi fixem, aquí tenim un sistema d’equacions modulars que podem resoldre amb el Teorema
xinès dels residus, tal i com hem explicat en l’apartat anterior. En aquest cas, com que els
coeficients de la Identitat de Bézout per 3 i 5 valen 2 i −1, respectivament, ja que 1 = 2·3−1·5,
la solució del sistema amb el Teorema xinès dels residus ens queda:

m = 2·3·zi−1·5·yi

Per tant, només ens queda substituir els valors de yi i zi per i = {1,2} per trobar les quatre arrels
quadrades de 4 a Z15 que seran {7,2,13,8}.

Hem vist que decidir si un element és un residu quadràtic a Zp és fàcil en el cas que p sigui
un nombre primer. Ara bé, decidir-ho a Zn amb n producte de dos primers és un problema
computacionalment intractable. Com també ho és el càlcul de les arrels quadrades. Si ens fixem
amb l’exemple anterior, per calcular les arrels quadrades xi hem hagut de calcular primer les yi i les
zi per posteriorment combinar-les. Ara bé, això ho hem pogut fer perquè coneixíem la factortizació
del mòdul, en aquest cas sabíem que n = 3 ·5. Ara bé, si no coneixem la descomposició del mòdul,
no podrem calcular les arrels quadrades. De fet, el següent teorema mostra l’equivalència del càlcul
d’arrels quadrades i la factorització del mòdul.

Teorema 2.8 Sigui n = p · q, on p i q són primers imparells diferents. Si x i y són arrels
quadrades essencialment diferents d’un element de Zn aleshores gcd(x+ y,n) és un dels dos
factors p o q.

Dit d’una altra manera, el teorema anterior ens indica que saber calcular arrels quadrades a Zn és el
mateix que saber calcular la factorització del nombre n.

Exemple 2.12 Equivalència entre arrels quadrades i factorització

Suposem que volem calcular la factorització del valor n = 925219 però no tenim un algorisme
per factortizar-lo. D’altra banda, sabem que les quatre arrels quadrades de 524422 a Z925219
valen {272635,402576,522643,652584}.

Si prenem dues d’aquestes arrels quadrades que siguin essencialment diferents, per exemple,
{272635,402576}, i calculem gcd(272635+ 402576,925219) = gcd(675211,925219) = 947
podem veure que efectivament 947 és un dels primers que formen el valor 925219 ja que
si els dividim 925219

947 = 977 la seva divisió és exacta i ens proporciona l’altre factor primer:
925219 = 947 ·977.

El concepte arrels essencialment diferents fa referència al fet que les dues arrels no poden ser
l’inversa una de l’altra. És a dir, si ens hi fixem, per exemple, les arrels {272635,652584}
compleixen que 652584 =−272635 (mod 925219). Això fa que si haguéssim agafat aquestes
dues arrels per fer el càlcul del màxim comú divisor no haguéssim aconseguit cap resultat ja que
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652584+272635 = 0 (mod 925219).

Noteu que hem pogut factoritzar un valor “únicament” calculant un màxim comú divisor, una
operació que és computacionalment simple fent servir l’Algorisme d’Euclides. El truc ha estat
que tenim totes les arrels quadrades d’un element.

2.1.4 Aritmètica modular amb polinomis

En els apartats anteriors hem vist una manera de construir cossos finits, en concret cossos finits
que tinguin un nombre primer d’elements. La pregunta que ens podríem fer ara és si podem crear
cossos finits on la quantitat total d’elements no sigui un nombre primer. La resposta a aquesta
pregunta és afirmativa i a continuació veurem com és possible crear cossos finits on el nombre total
d’elements sigui una potència d’un nombre primer.

Quan en l’apartat anterior hem parlat d’estructures algebraiques no hem fet menció d’una altra
estructura algebraica força coneguda que també és una anell. Aquesta estructura és l’anell de
polinomis amb coeficients als reals, que denotarem per (R[x],+, ·). Com ja sabem, un element
a(x) ∈ R[x] és un element del tipus a(x) = a0 +a1x+a2x2 +a3x3 + · · ·+asxs on ai ∈ R i as ̸= 0 (s
és el grau d’a(x)). Amb els polinomis sabem perfectament sumar-los (sumant les components del
mateix grau) i també multiplicar-los (component a component). A més, igual com teníem amb la
divisió dels enters, en el cas que el grau d’un polinomi a(x) sigui més gran que el grau del polinomi
b(x) també podem dividir el polinomi a(x) entre el polinomi b(x) i obtindrem dos polinomis q(x) i
r(x) on es complirà que a(x) = b(x) ·q(x)+ r(x) i a més el grau de r(x) és més petit estricte que el
grau de b(x).

Exemple 2.13 Operacions bàsiques amb polinomis

Donats els polinomis:
a(x) = 3+ 1

2 x+2x2

b(x) = 1+ x

Suma de dos polinomis:
a(x)+b(x) = 3+ 1

2 x+2x2 +1+ x = 4+ 3
2 x+2x2

Producte de dos polinomis:
a(x) ·b(x) = (3+ 1

2 x+2x2) · (1+ x) = 3+ 7
2 x+ 5

2 x2 +2x3

Divisió de polinomis:
a(x) = q(x) ·b(x)+ r(x) = (2x− 3

2) · (x+1)+ 9
2

Amb els anells de polinomis podem definir algorismes anàlegs als que hem vist per als enters. Així
podrem calcular el màxim comú divisor de dos polinomis o els coeficients de la Identitat de Bézout.

Com és evident, el nombre d’elements de (R[x],+, ·) és infinit ja que el nombre d’elements d’R ho
és. Ara bé, podríem intentar limitar el nombre de coeficients a utilitzar canviant el conjunt R pel
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conjunt Zn. Noteu que (Zn[x],+, ·) continua tenint infinits elements perquè tot i que hem limitat
el nombre de coeficients que podem triar en el polinomi (ara només poden ser enters entre el 0 i
n−1) continuem tenint el grau del polinomi il·limitat. Per tant, ens cal que el nostre conjunt, a més
de tenir el nombre de coeficients limitat, també tingui el grau del polinomi limitat.

Per limitar el grau del polinomi podem utilitzar un mecanisme anàleg al que hem fet als enters.
Prenem tots els polinomis de Zn[x] i els dividim per un polinomi de grau fixat k. Com que la divisió
d’un polinomi de grau qualsevol per un polinomi de grau k sempre ens donarà com a residu un
polinomi de grau més petit o igual que k−1, si prenem tots els residus d’aquesta divisio haurem
aconseguit especificar tots els polinomis de Zn[x] que tenen grau com a molt k−1, és a dir elements
del tipus a(x) = a0 +a1x+a2x2 + · · ·+ak−1xk−1 on ai ∈ Zn. Si ens hi fixem, aquí sí que el nombre
total d’elements d’aquest conjunt és un nombre finit, i concretament valdrà nk. Aquest conjunt el
denotarem com Zn[x]/a(x) i seran els polinomis amb coeficients a Zn mòdul el polinomi a(x).

Així doncs, podem prendre el conjunt Zn[x]/a(x) i definir-hi una suma i un producte estàndards de
polinomis. Si volem que les operacions siguin internes, és a dir que la suma i productes d’elements
de Zn[x]/a(x) continuïn estan en el mateix conjunt haurem de fer el mateix que fèiem en els enters,
és a dir reduir el resultat modularment.

Teorema 2.9 Donat un nombre p primer i un polinomi m(x) ∈ Zp, l’estructura algebraica
(Zp/m(x),+, ·), amb la suma i productes de polinomis modulars és un anell commutatiu amb
unitat.

Exemple 2.14 Operacions a (Z2[x]/(x3 + x+1),+, ·)

Com que estem a Z2 i el polinomi és de grau 3 el conjunt tindrà un total de 23 elements que seran
els següents:
Z2[x]/(x3 + x+1) = {0,1,x,x+1,x2,x2 +1,x2 + x,x2 + x+1}

Donats els elements:
a(x) = x2 + x+1
b(x) = x+1

Suma de dos elements:
a(x)+b(x) = x2 + x+1+ x+1 = x2 +2x+2 = x2, ja que estem a Z2 i 2 = 0 (mod 2).

Producte de dos elements:
a(x) ·b(x) = (x2 +x+1) · (x+1) = x3 +2x2 +2x+1 = x3 +1 = x, on l’última igualtat s’obté de
dividir el polinomi x3 +1 entre x3 + x+1 i quedar-se amb el residu, que val x.

Exercici 2.8 Quants elements té el conjunt Z2[x]/(x6 + x+1)?
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Exercici 2.9 Realitza els següents càlculs a Z3[x]/(x2 + x+1)

• (x+1)+(2x+1)
• (x+1) · (x+3)
• x+1

2x+2

En el cas dels nombres enters hem vist que el concepte de nombre primer ens servia per definir
estructures algebraiques a Zp que fossin cossos. Per tal de poder tenir la mateixa equivalència en
els polinomis ens caldrà tenir un concepte similar al de nombre primer però per als polinomis. És
el concepte de polinomi irreductible.

Definició 2.15 Un polinomi a(x) ∈ Zp[x] és irreductible a Zp si al descomposar-lo com a(x) =
b(x) · c(x) amb b(x),c(x) ∈ Zp[x] aleshores b(x) o c(x) són constants, és a dir b(x) ∈ Zp o
c(x) ∈ Zp.

Amb aquesta definició ja estem en condició de poder definir cossos finits de mida pk.

Teorema 2.10 Donat un nombre p primer i un polinomi m(x) ∈ Zp irreductible a Zp i de grau
k, aleshores l’estructura algebraica (Zp[x]/m(x),+, ·), amb la suma i productes de polinomis
modulars és un cos finit amb pk elements.

Fixem-nos que si l’estructura algebraica (Zp[x]/m(x),+, ·) és un cos, podem calcular l’invers de
qualsevol dels seus elements. Per fer-ho, simplement utilitzarem les mateixes tècniques que hem
descrit per als enters, però en aquest cas operant amb polinomis.

Exemple 2.15 Càlcul d’inversos amb polinomis

Suposem l’estructura algebraica (Z2[x]/(x3 + x+1),+, ·). Com que x3 + x+1 és irreductible a
Z2, aquesta estructura algebraica és un cos. Calculem l’invers de l’element a(x) = x2 + x+1,
és a dir, hem de trobar el polinomi b(x) ∈ Z2[x]/(x3 + x+1) tal que a(x) ·b(x) = 1. Per fer-ho,
hem de calcular els elements de la Identitat de Bézout entre a(x) i x3 + x+1 que és el mòdul on
estem treballant.

Si calculem les divisions successives de l’Algorisme d’Euclides per trobar el màxim comú divisor
obtenim:
x3 + x+1 = (x2 + x+1) · (x+1)+ x
x2 + x+1 = (x) · (x+1)+1
tenim que el gcd(x3 +x+1,x2 +x+1) = 1, com ja sabíem. Ara si aïllem els dos residus de cada
equació:
1 = x2 + x+1− (x) · (x+1)
x = x3 + x+1− (x2 + x+1) · (x+1)

A partir d’aquestes equacions, podem calcular els coeficients de la Identitat de Bézout, igual que
hem fet en els enters. Fixeu-vos, que com que els coeficients del polinomi són elements de Z2 no
tenim en compte el signe ja que −1 = 1 (mod 2). Així obtenim que:
1 = (x3 + x+1) · (x+1)+(x2 + x+1) · (x2)
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Si prenem aquesta equació mòdul x3 + x+ 1 tindrem que el primer terme val 0 i per tant ens
queda:
1 = (x2 + x+1) · (x2)
és a dir, l’invers de l’element x2 + x+1 que buscàvem és el polinomi x2. Ho podem comprovar
fent el producte de x2 + x+1 per x2 i veient que si el dividim pel mòdul, x3 + x+1, el residu ens
dona 1.

2.2 Nombres primers

Els nombres primers han estat estudiats abastament ja que són la base de tots els nombres, donat
que qualsevol nombre enter es pot descompondre de manera única com a producte de primers. Tot i
això, hi ha moltes propietats d’aquest tipus de nombres que encara no s’han pogut sistematitzar i
grans qüestions obertes de la matemàtica giren al voltant dels nombres primers.

.

Com ja hem indicat anteriorment en la Definició 2.9, un nombre primer és aquell
enter positiu > 1 que només es pot dividir per ell mateix i per la unitat.

Primers de
Mersenne

Els primers del tipus 2p− 1 s’anomenen primers de Mersenne. Aquests tipus de
nombres són primers només en el cas que p sigui primer, però no es cert que qualsevol
valor p primer generi un nombre 2p − 1 primer. Per exemple, per p = 2 sí que
es compleix ja que 22− 1 = 3 que és primer. Però per p = 11 no és cert, perquè
211−1 = 2047 que no és primer.

Els nombres primers s’estudien des de l’antiguitat i ja Euclides, 300 anys a.C. va demostrar que hi
havia infinits nombres primers. Tot i això, i malgrat els diferents estudis sobre nombres primers,
encara no s’ha pogut establir una fórmula que permeti donar la seqüència de nombres primers, i per
tant, la única forma de trobar-los és anar generant nombres i comprovar si són primers o no ho són.
En aquest sentit, el primer més gran que s’ha trobat (al gener del 2016) és el nombre 274,207,281−1
que és un primer de Mersenne de més de 22 milions de xifres.

Tot i que no es coneix quina és la seqüència de nombres primers, sí que hi ha alguns resultats que
permeten tenir estimacions sobre el nombre de primers que hi ha en un interval. Per exemple, el
teorema dels nombres primers ens en dóna una aproximació.

Teorema 2.11 — Teorema dels nombres primers. Sigui π(n) el nombre de primers més petits
que un valor n, aleshores, es compleix que:

lim
n→∞

π(n)
n

ln(n)
= 1

És a dir, podem aproximar el nombre de primers més petits que n calculant-ne el seu logaritme. En
la següent taula es pot veure la diferència entre aquesta aproximació i el nombre real de primers
que existeixen per a valors petits on s’han pogut calcular tots els nombres primers i comptar-los.
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n π(n) n
ln(n)

10 4 4.34
100 25 21.7

1000 168 144.8
106 78498 72382
109 50847478 48254942

Si ens fixem en la taula, tot i que la diferència entre l’aproximació i el nombre real de primers
sembla que cada vegada sigui més distant, si calculem el quocient dels dos valors podem veure que
efectivament cada vegada és més proper a 1.

A l’hora de trobar nombres primers, el teorema que acabem d’enunciar ens dóna una estimació de
la probabilitat que, donat un nombre aleatori qualsevol, aquest sigui primer. Efectivament, utilitzant
l’aproximació que ens proporciona aquest teorema, sabem que trobar un nombre primer entre n
i 2n té una probabilitat de p = 2

ln(2n) −
1

ln(n) ja que el nombre total de primers en l’interval serà
2n

ln(2n) −
n

ln(n) i això caldrà dividir-ho pel nombre d’elements de l’interval, és a dir n. Per posar
aquests valors en context, si fem els càlculs, veurem que la probabilitat que donat un valor triat
aleatòriament entre 1 ·1020 i 2 ·1020 sigui primer és d’un 2%. Per tant, si el procés per aconseguir
un primer passa per seleccionar un valor a l’atzar, mirar si és primer i sinó buscar-ne un altre,
clarament el cost de mirar si un nombre és primer cal que sigui computacionalment reduït si volem
ser eficients en la generació de nombres primers.

2.2.1 Tests de primalitat

Com veurem al llarg del llibre, per a diferents criptosistemes i protocols criptogràfics, és necessari
poder disposar de nombres primers molt grans. A l’hora de generar-los, donat que no tenim una
fórmula que ens en doni la seqüència, el procés que es realitza consisteix a seleccionar un nombre
aleatori molt gran i verificar-ne si és primer o no.

Per tal de comprovar si un nombre és primer s’utilitzen els test de primalitat, que no són més que
algorismes que reben com a entrada un nombre i proporcionen com a sortida informació sobre la
condició de primer del nombre donat. De test de primalitat n’hi ha de dos tipus: deterministes i
probabilístics.

.

Un test de primalitat determinista és aquell que donat un nombre natural ens
indica, de manera inequívoca, si és o no un nombre primer.

Una manera de determinar la primalitat d’un nombre seria fent-ne la descomposició en nombres
primers. Si aquesta descomposició retorna més d’un factor diferent al propi nombre la conclusió
és que el nombre no és primer i, en cas que els factors retornats siguin el propi nombre i l’1 es
determinarà que el nombre sí que és primer.

Per exemple, podem utilitzar l’algorisme de factorització per prova de divisions, com el que es
mostra en el següent codi en SAGE5, que ens retornarà un sol valor (el nombre proporcionat) en

5El SAGE és un programari matemàtic molt potent de codi obert basat en Python. Podeu descarregar-vos-el de
http://www.sagemath.org/. Tots els fragments de codi que es mostren en aquest capítol són codificats en SAGE.
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cas que aquest sigui primer.

d e f t r i a l _ d i v i s i o n ( n ) :
i f n < 2 :

r e t u r n [ ]
p r i m e _ f a c t o r s = [ ]
f o r p i n p r i m e s _ f i r s t _ n ( i n t ( n * * 0 . 5 ) ) :

i f p*p > n : b r e a k
w h i l e n % p == 0 :

p r i m e _ f a c t o r s . append ( p )
n / / = p

i f n > 1 :
p r i m e _ f a c t o r s . append ( n )

r e t u r n p r i m e _ f a c t o r s

Noteu que el bucle extern només prova primers p fins a
√

n. No cal provar divisors més grans que√
n, perquè si n té un divisor més gran que

√
n, aleshores l’altre divisor serà més petit que

√
n.

Evidentment aquest algorisme no és gens eficient, i per tant, per a verificar la primalitat de nombres
molt grans és totalment desaconsellable. En l’actualitat, l’algorisme més eficient que proporciona
un test de primalitat determinista és el proposat pels matemàtics indis Agrawal, Kayal i Saxena
l’any 2002. Malgrat ser el test determinista més eficient, no s’utilitza a la pràctica ja que per a
valors elevats els temps de resposta són massa grans.

Per tal d’obtenir test de primalitat amb una complexitat suficientment baixa per a poder generar
nombres primers prou grans en un interval de temps prou petit cal recórrer als tests de primalitat
probabilístics.

.

Un test de primalitat probabilístic és aquell que donat un nombre natural ens
indica si és primer amb una certa probabilitat.

Així doncs, un test de primalitat probabilístic ens pot indicar que un nombre és primer sense que
realment ho sigui. De fet un test de primalitat probabilístic ens retornara el que es coneix com a
pseudo-primer. El gran avantatge dels tests probabilístics és que són extremadament eficients i, a
més, es pot determinar el valor de la probabilitat amb el que es poden equivocar i fer-lo tant petit
com es vulgui.

Test de primalitat de Fermat

El test de primalitat de Fermat és un test de primalitat probabilístic basat en el teorema petit de
Fermat. El teorema petit de Fermat és un cas particular del Teorema d’Euler que hem vist en
apartats anteriors.

Teorema 2.12 — Teorema petit de Fermat. Sigui p un nombre primer, aleshores ap−1 = 1
(mod p) per a qualsevol valor a tal que 1≤ a < p.

En base a aquest teorema, podem definir el test de primalitat de Fermat de la següent manera:
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d e f F e r m a t _ t e s t ( n , k ) :
i f n <= 1 :

r e t u r n s t r ( n ) + ’ no é s pr imer ’
i f n <= 3 :

r e t u r n s t r ( n ) + ’ é s pr imer ’
f o r i i n r a n g e ( k ) :

a = r a n d i n t ( 2 , n −2)
i f ( a ^ ( n −1))%n != 1 :

r e t u r n s t r ( n ) + ’ no é s pr imer ’
p = n u m e r i c a l _ a p p r o x ( 1 − ( 1 / 2 ) ^ k )
r e t u r n s t r ( n ) + ’ é s p r i m e r amb p r o b a b i l i t a t ’ + s t r ( p )

Nombres de
Carmichael

Els nombres de Carmichael són nombres extremadament rars. Un nombre de Carmicha-
el n, tot i no ser primer, compleix la congruència de Fermat per a tots els valors a, tals
que 1≤ a < p i gcd(n,a) = 1. Per aquest motiu, el test de primalitat Fermat aplicat al
nombre de Carmichael n = 340561 (que no és primer, ja que 340561 = 13 ·17 ·23 ·67)
ens pot arribar a donar que és un nombre primer amb probabilitat 0,999.

Fixeu-vos que la idea és prendre el nombre que volem analitzar i assignar-lo com al mòdul de
l’equació. Pel teorema petit de Fermat sabem que si el nombre és primer, l’equació modular sempre
ens donarà 1. Ara bé, si el nombre no és primer l’equació modular pot donar 1 o pot donar un
valor diferent de 1. A més, si n no és primer, en general, la meitat dels valors a més petits que
n complirà l’equació i l’altra meitat no. Això ens porta a assegurar que si anem triant valors a
diferents la probabilitat que l’equació sigui certa sense que n sigui primer és cada vegada més petita.
En particular, la probabilitat es redueix a la meitat. Per aquest motiu, si repetim el test de Fermat k
vegades i ens indica que el valor n és primer, la probabilitat que aquest ho sigui serà 1− (1

2)
k.

Test de primalitat de Miller-Rabin

El test de primalitat de Miller-Rabin és un test que combina la condició del teorema petit de Fermat
amb la particularitat dels residus quadràtics en aritmètica modular. Tal i com hem vist en l’Apartat
2.1.3, en el cas que n és primer l’equació x2 = 1 (mod n) té únicament dues solucions, mentre que
si n no és primer, en té quatre. Així, aquest fet, juntament amb el teorema petit de fermat es poden
unir creant el test de primalitat de Miller-Rabin implementat en el següent algorisme:

d e f M i l l e r _ R a b i n _ t e s t ( n , k ) :
tmp = n−1
s = 0
w h i l e tmp%2 == 0 :

tmp = tmp / / 2
s= s +1

r = ( n −1) / (2^ s )
f o r i i n r a n g e ( k ) :

a = r a n d i n t ( 2 , n −2)
y = a ^ r%n
i f ( y != 1) and ( y != n − 1 ) :

j = 1
w h i l e ( j >= ( s − 1 ) ) and ( y != ( n − 1 ) ) :

y = ( y^2)%n
i f y ==1:

r e t u r n s t r ( n ) + ’ no é s pr imer ’
j = j +1

i f y != n −1:
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r e t u r n s t r ( n ) + ’ no é s pr imer ’
p = n u m e r i c a l _ a p p r o x ( 1 − ( 1 / 4 ) ^ k )
r e t u r n s t r ( n ) + ’ é s p r i m e r amb p r o b a b i l i t a t ’ + s t r ( p )

L’avantatge d’aquest test respecte el de Fermat és que no està afectat pels nombres de Carmichael.
A més, a cada iteració la probabilitat d’errar disminueix en 1/4 en comptes d’1/2 aconseguint
una probabilitat més alta d’encertar un primer amb menys iteracions que el test de Fermat. En
l’actualitat, per la seva eficiència, aquest test, o alguna de les seves variants, és un dels més utilitzats
en les aplicacions criptogràfiques.

2.3 Problemes matemàtics difícils

Com veurem al llarg d’aquest llibre, la seguretat dels algorismes criptogràfics que es fan servir
avui en dia recau en la dificultat que un atacant pugui realitzar els càlculs necessaris per trencar el
criptosistema. Així, tal i com hem definit anteriorment, la seguretat de la majoria dels criptosistemes
moderns és una seguretat computacional i no pas una seguretat teòrica.

Per tal de poder definir problemes que siguin difícils de resoldre per un atacant, ens caldrà primer
definir què vol dir que un problema sigui difícil des d’un punt de vista computacional. A continuació,
repassarem diferents funcions matemàtiques que presenten certa unidireccionalitat en el sentit que
el seu càlcul en una direcció és molt simple però el càlcul de la seva inversa és molt complicat, fet
que s’utilitza en el disseny de criptosistemes i protocols criptogràfics.

2.3.1 Complexitat d’un algorisme

La teoria de la complexitat algorísmica és molt complexa en si mateixa, de manera que en aquest
apartat només en donarem unes nocions molt bàsiques.

La complexitat de càlcul d’un algorisme es mesura pel temps T que requereix la seva execució i
s’expressa com a funció de la mida n de l’entrada de l’algorisme. Més que fer servir complexitats
exactes que s’expressarien com a f (n), se solen emprar ordres de magnitud, és a dir O(g(n)), de
tal manera que f (n) = O(g(n)) vol dir que hi ha constants c i n0 tals que:

f (n)≤ c|g(n)| ; per a n≥ n0

El propòsit que hi ha en fer servir ordres de magnitud és que l’explicitació de g(n) sigui més simple
que f (n).

Exemple 2.16 Ordre de la complexitat

Si la complexitat exacta d’un algorisme és f (n) = 36n+10, podem escriure que f (n) = O(n),
ja que

36n+10≤ 37n ; per a n≥ 10

Per la mateixa raó, si f (n) és un polinomi de grau t en n, podem escriure f (n) = O(nt).

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


2.3 Problemes matemàtics difícils 53

.

Un algorisme polinòmic és aquell que el seu temps d’execució és T = O(nt) per
a alguna constant t. En el cas que t = 0 direm que l’algorisme és constant, lineal si
t = 1, quadràtic si t = 2, etc.

Un algorisme exponencial és aquell que el seu temps d’execució és T = O(th(n))
per a alguna constant t i un polinomi h(n).

Per a valors d’n grans, les diferents classes de complexitat impliquen temps molts diferents
d’execució. Per exemple, si suposem una màquina capaç d’executar 1012 instruccions per segon, la
taula següent ens mostra els temps d’execució per a les classes d’algorismes que acabem de definir.

Classe Complexitat Operacions per n = 1012 Temps
Constant O(1) 1 10−12 segons

Lineal O(n) 1012 1 segon
Quadràtic O(n2) 1024 31.709 anys

Cúbic O(n3) 1036 3,17 ·1016 anys
Exponencial O(2n) 103·1011

102,999·1011
milions d’anys.

2.3.2 Producte de primers i factorització d’enters

Un dels problemes matemàtics difícils és la factorització d’enters. Si tenim dos nombres primers
p i q és molt fàcil calcular els seu producte n = p · q. Això és així independentment de la mida
dels valors p i q perquè els algorismes que realitzen la multiplicació d’enters són algorismes molt
eficients i per tant, la mida dels nombres afecta molt poc al temps de resolució del producte.

Ara bé, donat un valor n que sabem que és producte de dos primers, és molt difícil trobar quins són
aquests dos primers, és a dir, factoritzar-los, en el cas que n sigui prou gran.

Podeu veure la diferència entre aquestes dues operacions executant les següents comandes de
SAGE.

p= n e x t _ p r i m e ( 2 ^ 1 0 0 )
q= n e x t _ p r i m e ( 2 ^ 1 0 1 )
p r i n t ’ Temps p e r m u l t i p l i c a r ’ , p , ’ p e r ’ , q , ’ : ’
t ime n=p*q
p r i n t ’ Temps p e r f a c t o r i t z a r ’ , n , ’ : ’
t ime f a c t o r ( n )

D’algorismes per a la factorització d’enters n’hi ha de diferents tipus i la seva complexitat depèn de
la forma dels primers que generen el valor a factoritzar. Si ens centrem en algorismes de factorització
genèrics, per a valors de p i q propers i grans però sense cap caracterització concreta, el millor
algorisme de factorització que es coneix s’anomena garbell sobre el cos de nombres generalitzat,

en anglès general number field sieve (GNFS) i té una complexitat O(e(
3
√

64
9 +O(1))(ln(n)

1
3 (ln(ln(n))

2
3 )

Com veurem en els propers capítols, la dificultat en la factorització d’enters de mida molt gran és la
base de la seguretat del criptosistema RSA.
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2.3.3 Exponenciació i logaritme discret

Els enters modulars, Zp amb p primer, són un grup multiplicatiu cíclic. Això vol dir que podem
trobar un element g que s’anomena generador, tal que les seves potències generen tots els elements
de Zp, llevat del zero. Per exemple, si considerem Z7 = {0,1,2,3,4,5,6} veiem que el 3 és un
generador perquè Z7 = {0,1 = 36,2 = 32,3 = 31,4 = 34,5 = 35,6 = 33}. A més, la distribució de
les potències del generador entre els elements de Zp és una distribució uniforme.

En aquest entorn és on trobem un altre dels problemes matemàtics que s’utilitzen en cripotografia.
De nou, tenim una operació molt fàcil de realitzar: donats dos elements x,y ∈ Zp calcular la seva
potència, és a dir z = xy (mod p). Aquesta operació és molt eficient de realitzar perquè l’únic
càlcul que realitzem són productes, amb una divisió per reduir el resultat al mòdul desitjat. Ara bé,
l’operació inversa, la que donats dos elements x,z ∈ Zp permet trobar l’element y tal que z = xy

(mod p) és un problema pel qual no se’n coneix cap algorisme eficient. Fixeu-vos que aquest
càlcul és l’equivalent a calcular el logaritme de z en base x, però en els enters mòdul p. Per això,
aquest problema se’l coneix com a problema del logaritme discret.

El problema del logaritme discret és la base de la seguretat de diferents esquemes i protocols cripto-
gràfics, els més coneguts dels quals són l’intercanvi de claus de Diffie i Hellman i el criptosistema
d’ElGamal.

2.3.4 Quadrats i arrels quadrades modulars

Un altre problema problema matemàtic que s’utilitza en criptografia és el càlcul d’arrels quadrades
en un anell multiplicatiu sobre Zn quan el valor n és un producte de dos primers p i q.

Com ja hem comentat anteriorment, multiplicar dos nombres és molt ràpid, de manera que calcular
el quadrat d’un nombre ha de ser forçosament també molt ràpid, perquè és el producte d’un nombre
per ell mateix. A més, si una vegada hem fet el producte en volem calcular el seu equivalent mòdul
n, això també és molt ràpid, perquè només cal que dividim el resultat pel mòdul i ens quedem amb
el residu. Per tant, calcular quadrats a Zn és pot fer de manera molt eficient. Ara bé, l’operació
inversa, és a dir, donat un element x ∈ Zn trobar-ne l’arrel quadrada (l’element y tal que x = y2

(mod n)), és una operació molt costosa. De fet, tal i com s’enuncia en el Teorema 2.8, aquest
problema és equivalent a factoritzar ja que per calcular les arrels d’un valor a Zn, on n = pq, ja hem
vist que ens caldrà trobar les arrels quadrades a Zp i a Zq, i per tant, ens cal factoritzar n.
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2.4 Resum

En aquest capítol hem presentat els conceptes matemàtics bàsics utilitzats en criptografia, centrats
en l’aritmètica modular. Conceptes com la divisibilitat de nombres enters, el màxim comú divisor o
el Teorema d’Euler són cabdals per poder comprendre les operacions criptogràfiques que realitzen
els algorismes de xifrat. Així, l’aritmètica modular és la base que ens permetrà entendre el
funcionament de la majoria dels criptosistemes utilitzats en l’actualitat, tant els de criptografia de
clau simètirca, com l’AES, com els de clau pública com l’RSA o ElGamal.

Ja centrats en la criptografia de clau pública, és important tenir clares les característiques dels
nombres primers, ja que aquests acostumen a ser la matèria prima en la que es basen els criptosis-
temes. Aquests valors sovint formen part de les claus o dels paràmetres dels esquemes i per tant
conèixer-ne la seva distribució i comprendre com es poden obtenir és vital per poder implementar
qualsevol criptosistema de clau pública.

Finalment, i continuant amb la criptografia de clau pública, hem analitzat diferents problemes
matemàtics que tenen una asimetria en la seva resolució i que es fan servir en criptosistemes de clau
pública. Com hem vist, aquest problemes presenten una simplicitat d’execució quan els mirem en
un sentit però són d’una dificultat extrema quan els volem realitzar en el sentit invers. Per exemple,
multiplicar dos primers grans p i q pot ser immediat mentre que trobar-ne els que composen un
nombre n pot implicar càlculs de milers d’anys. És important conèixer quins són aquests problemes
matemàtics per tal d’entendre quines són les bases de seguretat dels criptosistemes que els fan
servir.
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2.5 Solucions dels exercicis

Exercici 2.1:

gcd(35,48) = 1 ja que si calculem les divisions successives tenim: 48 = 35 ·1+13
35 = 13 ·2+9
13 = 9 ·1+4
9 = 4 ·2+1
4 = 4 ·1+0
i l’últim residu no nul és l’1.

Exercici ??:

Per calcular el coeficients de la indentitat de Bézout utilitzarem les igualtats de l’Algorisme
d’Euclides de l’exercici anterior i n’aïllarem el residu:
48−35 = 13
35− (13 ·2) = 9
13−9 = 4
9− (4 ·2) = 1
i substituirem en cada equació el valor corresponent per acabar obtenint-ne una sola amb els valors
35 i 48:
1 = 9− (4 ·2) = 9− ((13−9) ·2) = (3 ·9)− (13 ·2) = (3(35− (13 ·2))− (13 ·2) = (35 ·3)− (8 ·
13) = (3 ·35)− (8(48−35))) = (11 ·35)− (8 ·48)
Així, tenim que
1 = 11 ·35+(−8) ·48
i per tant els coeficients de la Identitat de Bézout per a 35 i 48 són 11 i −8 respectivament.

Exercici 2.3:

φ(527) = φ(17 ·31) = φ(17) ·φ(31) = (17−1) · (31−1) = 16 ·30 = 480.

Exercici 2.4:

El conjunt Z25 està format per tots els residus de dividir per 25, per tant tindrà 25 elements que són
Z25 = {0,1,2,3,4, · · · ,22,23,24}

Exercici 2.7:

L’estructura algebraica (Z37,+, ·) és un cos ja que el nombre 37 és primer. Això fa que tots els
elements més petits que 37, és a dir tots els elements inclosos en Z37, siguin coprimers amb 37 i
per tant tinguin invers, condició necessària i suficient perquè (Z37,+, ·) sigui un cos.

Exercici 2.5:

L’invers de 7 a Z37 val 16 ja que 7 · 16 = 112 = 1 (mod 37). El valor 16 el podem calcular
de diferents maneres. Per exemple, calculant 7φ(37)−1 = 735 = 16 (mod 37) o bé calculant els
coeficients de la Identitat de Bézout de 7 i 37, és a dir 7 ·16+37 · (−3).

Exercici 2.6:

Realitza els següents càlculs a Z37

• 20+20 = 40 = 3 (mod 37)
• 20 ·4 = 80 = 6 (mod 37)
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• 202 = 400 = 30 (mod 37)
• 20

7 = 20 ·16 = 320 = 24 (mod 37), ja que 16 és l’invers de 7 tal i com hem calculat anterior-
ment.

Exercici 2.8:

El conjunt Z2/(x6 + x+1) té un total de 26 = 64 elements ja que són tots els polinomis de grau 5
amb coeficients binaris.

Exercici 2.9:

Realitza els següents càlculs a Z3/(x2 + x+1)

• (x+1)+(2x+1) = 2 (mod (x2 + x+1))
• (x+1) · (x+3) = x2 + x = 2 (mod (x2 + x+1))
• x+1

2x+2 = (x+1) · x = 2 (mod (x2 + x+1)), ja que x2 + x+1 = 0 per ser el mòdul i per tant:
x2 + x = 2 ja que els coeficients del polinomi són de Z3.
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Criptografia de clau simètrica





3. Les xifres de flux

Ja hem vist en anteriors capítols que un criptosistema incondicionalment segur necessita tants bits
de clau com bits de text a xifrar. El xifratge de Vernam és el criptosistema que aconsegueix aquesta
seguretat incondicional, però el preu que en paga és la ineficiència del xifratge. Aquesta ineficiència
recau justament en el fet que la clau ha de tenir la mateixa longitud del text a xifrar. Això comporta
que la longitud de les claus sigui molt gran i, per tant, sigui més difícil guardar-les en secret. A
més, es dóna la paradoxa que si tenim un canal segur per intercanviar les claus, aleshores també
podem utilitzar-lo per intercanviar els missatges, ja que tenen la mateixa longitud.

Les xifres de flux sorgeixen com una aproximació optimitzada al xifratge de Vernam. La idea és
construir una clau suficientment llarga, com a mínim de la longitud del missatge, a partir d’una
clau inicial curta. Això s’aconsegueix utilitzant el que s’anomena un generador pseudoaleatori.
Aquest generador expandeix una clau petita, anomenada llavor, obtenint-ne una de molt més llarga.
L’operació d’expansió cal que tingui certes característiques ja que la seqüència que en resultarà és
la que s’utilitzarà per xifrar el text en clar. Caldrà doncs, veure quines propietats hauran de complir
les esmentades seqüències i estudiar quin tipus de generadors hi ha per obtenir-les.

Les xifres de flux són xifres de clau compartida ja que la llavor (que es fa servir per obtenir la
seqüència xifrant) és utilitzada tant per a xifrar com per a desxifrar, i és per tant compartida entre
l’emissor i el receptor.

Una alternativa al xifratge de flux és el que s’anomena xifratge de bloc. Aquest xifratge s’inclou
també dins dels critosistemes de clau compartida ja que la clau que s’utilitza per a xifrar i desxifrar
és la mateixa i la comparteixen emissor i receptor. La diferència bàsica entre el xifratge en flux i
el xifratge de bloc és la utilització de memòria en els algorismes de xifratge. En el Capítol 4 es
tracten amb més detall les xifres de bloc.

Com veurem en aquest capítol, el xifrat de flux utilitza una clau diferent per cada bit d’informació.
Aquesta clau depèn de l’estat inicial del generador, però també de l’estat del generador en el
moment de xifrar un bit concret. Per tant, dos bits iguals es poden xifrar de maneres diferents
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depenent de l’estat en què es trobi el generador. En el proper capítol veurem que en el xifratge en
bloc això no passa. Les xifres en bloc actuen sense memòria, i per tant el text xifrat només depèn
del text en clar i de la clau.

3.1 Criptografia de clau simètrica o compartida

En aquest capítol introduirem les xifres de clau compartida.

.

Les xifres de clau simètrica o compartida són aquelles en els quals l’emissor
i el receptor comparteixen una mateixa clau, que és la que utilitzen per xifrar i
desxifrar missatges.

És a dir, en les xifres de clau compartida, la clau que s’utilitza per xifrar és la mateixa que es
fa servir per desxifrar i per tant, en qualsevol moment, l’emissor pot passar a fer de receptor i a
l’inrevés, utilitzant sempre les mateixes claus.

Per les seves característiques, les xifres de clau compartida no poden oferir la propietat de no-repudi.
Com veurem més endavant, existeixen altres construccions que sí que ens permetran oferir aquesta
propietat.

Els dos tipus de xifres de clau simètrica més utilitzats són les xifres de flux i les de bloc. La
diferència entre els dos tipus de xifres radica en com es processa la informació: a les xifres de
flux la informació es xifra bit a bit, és a dir, els bits es xifren de manera invididual, mentre que els
criptosistemes de bloc xifren un bloc sencer de n bits alhora.

3.2 Definició de les xifres de flux

D’una manera esquemàtica, un criptosistema de flux es pot expressar tal com mostra la Figura 3.1.

Tant l’emissor com el receptor disposen d’una mateixa clau c (anomenada llavor del generador), i
d’un mateix algorisme determinista Alg, anomenat generador pseudoaleatori. Al proporcionar
la clau k com a entrada a l’algorisme, aquest dóna com a sortida una seqüència s que s’anomena
seqüència xifrant.

Per tal de xifrar el missatge, l’emissor va sumant cada bit del missatge m amb cada bit de la
seqüència xifrant s, obtenint el missatge xifrat y. Quan el receptor rep el missatge xifrat y, utilitza
el mateix algorisme determinista Alg i la clau k, que comparteix amb l’emissor, per tal d’obtenir
la mateixa seqüència xifrant. Així sumant bit a bit el missatge que li arriba y, amb la seqüència
resultant de l’algorisme s, obté el text en clar m enviat per l’emissor. Al llarg de tot aquest capítol
les seqüències amb les que treballarem seran binàries i les operacions a les que ens referirem seran
totes mòdul 2.1

Per tal que aquest criptosistema sigui segur, és bàsic que la seqüència xifrant no sigui coneguda, és
a dir que en cap moment es pugui saber quin serà el següent bit de sortida. Idealment, el que es
necessita per a la seguretat incondicional és que la clau, en aquest cas la seqüència xifrant, sigui

1De forma equivalent, podem pensar la suma mòdul 2 com una XOR.
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Figura 3.1: Esquema general de flux

completament aleatòria. En el nostre esquema no es pot donar aquesta condició ja que el generador
que utilitzem ha de ser determinista per tal que emissor i receptor obtinguin la mateixa seqüència
quan donen com a entrada la mateixa clau secreta. Així doncs, la seqüència xifrant tindrà propietats
molt properes a les que té una seqüència completament aleatòria i per tant s’anomenarà seqüència
pseudoaleatòria.

Concretament, si una seqüència no és aleatòria, vol dir que a partir d’un cert moment es repeteix.
Aquesta subseqüència que es va repetint és el que s’anomena període. El que és important, doncs,
és que aquesta subseqüència, el període, sigui indistingible d’una seqüència completament aleatòria
d’igual longitud.

Per això aquesta seqüència ha de complir certes propietats que veurem en els propers apartats.

No hem d’oblidar que els criptosistemes de clau compartida basen la seva seguretat en el fet que la
clau utilitzada per xifrar i desxifrar només és coneguda per l’emissor i el receptor. En el xifratge en
flux, si bé la clau no s’utilitza directament per xifrar, cal igualment que no es faci pública ja que
l’algorisme determinista es conegut i per tant es podria obtenir la seqüència xifrant a partir d’ell i la
clau.

Si ens fixem en l’esquema de xifratge en flux de la Figura 3.1 veiem que per tal d’obtenir el text
xifrat que enviem al receptor hem d’anar sumant el text en clar amb la seqüència xifrant que
resulta del generador pseudoaleatori. Això vol dir que la velocitat de transmissió de les dades entre
l’emissor i el receptor ve determinada pel mínim entre la velocitat de generació del missatge, m, i
la velocitat de generació de la seqüència xifrant, s. Així doncs, cal tenir en compte aquest fet quan
estudiem els possibles generadors pseudoaleatoris ja que en funció de la seva implementació (ja
sigui en hardware o en software), obtindrem una velocitat o una altra. Cal que l’algorisme que ens
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generi la seqüència sigui de fàcil implementació, tant des del punt de vista de complexitat com pel
que fa al vessant econòmic.

No oblidem el
món real

Els telèfons mòbils amb tecnologia GSM incorporen un xifrador de flux. Seria impen-
sable que el cost econòmic del xifrador incrementés el preu del telèfon mòbil. Tampoc
no seria admissible que la velocitat de la comunicació es veiés afectada per la velocitat
de l’esmentat xifrador.

3.2.1 Període

Hem vist que per tal d’implementar un criptosistema de xifratge de flux necessitem un algorisme
que ens doni com a sortida la seqüència xifrant. Com ja hem dit anteriorment, el fet que aquest
algorisme sigui determinista fa que la seqüència que en resulta no sigui completament aleatòria i
per tant implica que a partir d’un cert moment es repeteix. Aquesta subseqüència que es va repetint
és el que s’anomena període. Formalment, sigui {si}i≥0 una seqüència periòdica, el període p és
l’enter més petit tal que si+p = si per a tot i≥ 0.

Atès que el període es repeteix, una vegada es coneix ja es pot determinar exactament tota la
seqüència xifrant i per tant el criptosistema es pot trencar. Per això les seqüències que s’utilitzen
per al xifratge en flux cal que tinguin un període molt gran, ja que d’aquesta manera triguen molt a
repetir-se i, per tant, és més difícil predir-ne la sortida.

Període gran El concepte de període gran és relatiu al xifrador i a l’aplicació. Un període de 232 pot
no ser prou llarg per a un xifrador que xifri a 1 Mbyte/seg. ja que a aquesta velocitat el
període es repeteix només cada 8.5 minuts.

3.2.2 Aleatorietat

Com hem comentat, les xifres de flux fan servir generadors pseudoaleatoris.

.

Un generador pseudoaleatori (o PRNG, de l’anglès, Pseudo Random Number
Generator) és un algorisme determinista que genera una seqüència a partir d’una
entrada que anomenem llavor. La seqüència generada per un PRNG intenta
reproduir les propietats que tindria una seqüència generada de manera aleatòria.

Determinisme
en els PRNG

Noteu que els PRNG són algorismes deterministes, és a dir, donat un PRNG i una
llavor, la seqüència generada serà sempre la mateixa.

Els generadors pseudoaleatoris criptogràficament segurs (o CSPRNG, de l’anglès, Crypto-
graphycally Secure Pseudo Random Number Generator) són un tipus especial de PRNG que
generen seqüències no predictibles. En concret, per a que un PRNG sigui considerat un CSPRNG,
cal que les seqüències que genera tinguin dues propietats. A partir de k bits de la seqüència
generada, si+1,si+2, · · · ,si+k:

1. No existeix un algorisme en temps polinomial que pugui predir el següent bit de la seqüència,
si+k+1, amb probabilitat major al 50% i

2. No és computacionalment possible predir el bit anterior de la seqüència, si.
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PRNG i
CSPRNG

Tots els CSPRNG són PRNGs però l’afirmació contrària no és certa, és a dir, un
generador pseudoaleatori no té perquè ser criptogràficament segur.

El concepte de complexitat lineal ens mesura el grau d’impredictibilitat d’una seqüència. En
concret, la complexitat lineal ens diu quina part de la seqüència ens cal conèixer per tal de poder-la
predir tota. Per tal de calcular la complexitat lineal utilitzarem l’algorisme de Massey. La definició
formal de la complexitat lineal va lligada al concepte d’LFSR, que presentarem més envadant.
Així doncs, detallarem la definició formal de complexitat lineal una vegada haguem introduït
l’arquitectura dels LFSR.

Una configuració bastant habitual en criptografia és fer servir CSPRNG amb valors veritablement
aleatoris com a llavors. Aconseguir nombres (veritablement) aleatoris no és una tasca senzilla.
Per tal de generar-los cal disposar d’una font d’aleatorietat natural. Addicionalment, si aquesta
font d’aleatorietat es vol fer servir en criptografia, caldrà assegurar també que un adversari no és
capaç de manipular-la ni observar-la. Existeixen, principalment, dues maneres d’obtenir valors
realment aleatoris: a través de hardware, explotant l’aleatorietat que es produeix en fenòmens físics,
o a través de software, a partir d’observacions afectades pel comportament de l’usuari. Així, per
exemple, es pot fer servir el so capturat per un micròfon, el soroll tèrmic2 d’una resistència o d’un
diode, les turbolències creades per l’aire en segons quins dispositius o el moviment del ratolí.

Tests d’aleatorietat del NIST

El NIST disposa d’un banc de proves estadístiques per avaluar l’aleatorietat de seqüències binàries
generades per PRNG. El banc consta de 15 testos. En aquest apartat, descriurem els testos més
senzills, amb l’objectiu de donar una idea del que es busca en l’avaluació de l’aleatorietat de
seqüències. Per tal de descriure els testos, suposarem que s’avalua la seqüència binària S =
{s1,s2, · · · ,sn} de mida n bits.

El test de freqüència de bits individuals comprova que la proporció d’uns i zeros de la seqüència
proporcionada s’aproxima a la que observaríem en una seqüència veritablement aleatòria, és a dir,
que la proporció d’uns i zeros és similar i s’aproxima, per tant, a 0.5. Per fer-ho, en primer lloc es
transforma la seqüència binària d’entrada a una seqüència de −1 i 1:

X = {xi | xi = 2 · si−1,∀i ∈ [1,n]}
és a dir, els zeros es converteixen en −1 i els uns segueixen representant-se amb 1.

Després, es calcula sobs:

sobs =
| ∑n

i=1 xi |√
n

Si la seqüència és aleatòria sobs tendirà cap a 0, mentre que si hi ha massa zeros o massa uns en la
seqüència, aleshores sobs tendirà a ser major a zero.

Superació dels
testos

A partir del valor sobs, els testos del NIST calculen el nivell de significació observat
per decidir si la seqüència supera o no la comprovació. En concret, es considera que la
seqüència supera la prova si el valor p és major o igual a 0.01. El lector interessat en
els detalls sobre els testos estadístics pot consultar la publicació original del NIST: A.
Rukhin, J. Soto, J. Nechvatal, et al. (2010). A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications.

2S’anomena soroll tèrmic o soroll de Johnson-Nyquist a les fluctuacions elèctriques generades per l’agitació tèrmica
dels electrons.
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Exemple 3.1 Càlcul de la prova de freqüència de bits individuals

Donada la seqüència:
S = {0,1,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,1,1,0,1,0,1,0,1,0,0,0}
amb n = 28, procedim a calcular sobs.

En primer lloc, transformem la seqüència de zeros i uns en una seqüència de −1 i 1:

X = {−1,1,−1,1,−1,−1,−1,−1,−1,−1,−1,1,1,−1,−1,1,1,1,1,−1,1,−1,1,−1,

1,−1,−1,−1}

Seguidament, calculem el valor sobs:

sobs =
| ∑28

i=1 xi |√
28

=
| −6 |√

28
≈ 1.1339

Superació del
test

En aquest cas, el nivell de significació per a sobs = 1.1339 és de 0.256, de manera que
el test es considera superat ja que 0.256≥ 0.01.

El test de freqüència en un bloc comprova que el número de zeros i uns en un bloc de m bits sigui
aproximadament m/2. Per fer-ho, es particiona la seqüència a avaluar en b = ⌊n/m⌋ blocs de m
bits, descartant els bits sobrants.

k=1︷ ︸︸ ︷ k=2︷ ︸︸ ︷ k=b︷ ︸︸ ︷
s1, s2, . . . ,sm sm+1,sm+2, . . . ,sm+m . . . s(b−1)m+1, . . . ,s(b−1)m+m

m bits m bits m bits

Aleshores, per cada bloc k (amb k = 1, · · · ,b), es calcula:

πk =
∑

m
j=1 s(k−1)m+ j

m

és a dir, es calcula la proporció d’uns que hi ha a cada bloc.

Finalment, es calcula:

χ
2
obs = 4m

b

∑
k=1

(πk−1/2)2

Exemple 3.2 Càlcul de la prova de freqüència en un bloc

Donada la mateixa seqüència que en l’exemple anterior:
S = {0,1,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,1,1,0,1,0,1,0,1,0,0,0}
amb n = 28, procedim a calcular πk per a cada bloc amb m = 6.

En primer lloc, dividim la seqüència en b = ⌊n/m⌋= ⌊28/6⌋= 4 blocs de m = 6 bits
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k=1︷ ︸︸ ︷ k=2︷ ︸︸ ︷ k=3︷ ︸︸ ︷ k=4︷ ︸︸ ︷
0,1,0,1,0,0 0,0,0,0,0,1 1,0,0,1,1,1 1,0,1,0,1,0 1,0,0,0

6 bits 6 bits 6 bits 6 bits

Els últims 4 bits de la seqüència es descarten i no s’utilizen en el test.

Aleshores, per cada bloc k (amb k = 1, · · · ,4), calculem πk:

π1 =
∑

m
j=1 s(k−1)m+ j

m
=

∑
6
j=1 s j

6
=

2
6
= 1/3

π2 =
∑

6
j=1 s6+ j

6
= 1/6

π3 =
∑

6
j=1 s2·6+ j

6
=

4
6
= 2/3

π4 =
∑

6
j=1 s3·6+ j

6
=

3
6
= 1/2

I finalment estem en disposició de calcular χ2
obs:

χ
2
obs = 4m

b

∑
k=1

(πk−1/2)2

= 4 ·6
4

∑
k=1

(πk−1/2)2

= 24 ·
(
(1/3−1/2)2 +(1/6−1/2)2 +(2/3−1/2)2 +(1/2−1/2)2)

= 24 · (1/36+1/9+1/36+0) = 4

Superació del
test

En aquest cas, el nivell de significació per a χ2
obs = 4 (tenint en compte que tenim b = 4

blocs) és de 0.4060, fent que el test es consideri superat ja que 0.4060≥ 0.01.

El test de ràfegues comprova si el número de ràfegues tant d’uns com de zeros de la seqüència
s’assembla al que trobaríem en una seqüència aleatòria.

Definirem una ràfega com un conjunt de bits consecutius iguals, és a dir una ràfega de longitud k
consta dels elements st , · · · ,st+k−1, tals que st−1 ̸= st = st+1 = · · ·= st+k−1 ̸= st+k.

Per avaluar la prova de ràfegues, es calcula:

Vn(obs) =

(
n−1

∑
i=1

r(i)

)
+1

on r(i) és la funció:
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r(i) =
{

0, si si = si+1
1, altrament

Oscil·lacions La seqüència 10101010 oscil·la molt ràpidament, ja que cada bit canvia el valor respecte
al bit anterior. En canvi, la seqüència 11111100 oscil·la molt lentament, ja que només
es produeix un canvi de valor en tota la seqüència.

Valors grans de Vobs indiquen que les oscil·lacions de valors en la seqüència avaluada (és a dir, els
canvis de u a zero o de zero a u) succeeixen ràpidament, mentre que valors petits indiquen que les
oscil·lacions són lentes.

El NIST recomana que les seqüències avaluades amb aquest test tinguin com a mínim 100 bits (és
a dir, n≥ 100).

Addicionalment, aquest test té com a prerequisit que la seqüència passi el test de freqüència de
bits individuals que hem descrit anteriorment. És a dir, si una seqüència no supera el test de bits
individuals, aleshores ja no es realitza el test de ràfegues.

Exemple 3.3 Càlcul de la prova de ràfegues

Seguint amb l’avaluació de la mateixa seqüència que en els exemples anteriors:
S = {0,1,0,1,0,0,0,0,0,0,0,1,1,0,0,1,1,1,1,0,1,0,1,0,1,0,0,0}
amb n = 28. Noteu que si seguíssim les recomanacions del NIST, no efectuaríem el test de
ràfegues sobre aquesta seqüència, ja que aquesta no té una longitud mínima de 100 bits. A tall
d’exemple, però, realitzarem els càlculs per a aquesta seqüència.

En primer lloc comprovem que la seqüència superi el test de freqüència de bits individuals.
Com hem vist al primer exemple, la seqüència supera aquest test, així que procedim a calcular
V28(obs).

Vn(obs) =

(
n−1

∑
i=1

r(i)

)
+1

= (1+1+1+1+0+0+0+0+0+0+1+0+1+0+1+0+

+0+0+1+1+1+1+1+1+1+0+0)+1 = 15

Superació del
test

En aquest cas, el nivell de significació per a Vn(obs) = 15 (i tenint en compte que la
seqüència té 28 bits i una proporció de 11/28 d’uns) és de 0.5151, fent que el test es
consideri superat ja que 0.5151≥ 0.01.

Com s’ha comentat, el banc de proves del NIST recull 15 testos diferents. A més dels tres
comentats, els altres testos comproven l’aparició de les ràfegues d’uns més llargues, la repetició de
subseqüències concretes dins la seqüència, la facilitat de comprimir-la, la seva complexitat lineal o
les seves propietats espectrals, entre d’altres.
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3.3 Generadors lineals de seqüència xifrant

En l’apartat anterior, hem estudiat les propietats que han de tenir les seqüències xifrants per tal de
poder-les utilitzar en criptosistemes de xifratge de flux. Tractem ara com han de ser els algorismes
deterministes que generen aquests tipus de seqüències.

Des d’un punt de vista general tenim dos tipus de generadors: els lineals i els no lineals.

Els generadors lineals són aquells que només realitzen operacions lineals sobre els elements
d’entrada per obtenir la seqüència de sortida. Contràriament, els generadors no lineals són els que
realitzen a més a més operacions no lineals, com podrien ser permutacions.

3.3.1 Generadors congruencials

Els generadors congruencials es basen en equacions modulars recurrents del tipus:

xn = (axn−1 +b) mod m

En aquest cas el valor x0 seria la llavor de la seqüència xifrant. Un criptosistema que utilitzi un
generador d’aquest tipus tindrà com a clau secreta els valors {x0,a,b,m}, i per tal que el període
sigui màxim caldrà que compleixi que gcd(a,m) = 1.

Cal dir però, que aquests tipus de generadors pseudoaleatoris no són segurs des d’un punt de vista
criptogràfic ja que s’ha pogut demostrar que amb pocs valors xi coneguts ja es poden esbrinar els
paràmetres secrets {x0,a,b,m}. Fins hi tot, només amb una part dels bits que formen els xi, però
això sí, coneixent els paràmetres {a,b,m}, es pot arribar a determinar el valor de la llavor x0.

Tot i això, aquests tipus de generadors són molt utilitzats en sistemes informàtics per a aplicacions
no criptogràfiques.

Exemple 3.4 La funció rand() del sistema UNIX BSD utilitza el següent generador congruen-
cial afí:

xn = (1103515245xn−1 +12345) mod 231

on la llavor especifica el valor inicial.

3.3.2 Registres de desplaçament realimentats linealment (LFSR)

Un registre de desplaçament realimentat linealment (o LFSR, de l’anglès, Linear Feedback Shift
Register) de longitud n és un dispositiu físic o lògic format per n cel·les de memòria i n portes
lògiques que té una estructura com es mostra a la Figura 3.2.

Inicialment, les cel·les contenen els valors d’entrada, i a cada impuls de rellotge el contingut de
la cel·la si es desplaça a la cel·la si−1 realitzant les operacions associades. D’aquesta manera es
genera un nou element, sn+1 que és determinat per l’expressió:

sn+1 = c1sn + · · ·+ cns1 (3.1)

on els ci ∈ {0,1} corresponen als valors de les portes lògiques de l’esquema. És a dir, els coeficients
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Figura 3.2: Esquema general d’un LFSR

seran 1 si hi ha una connexió i 0 si no n’hi ha. Aquest nou element, sn+1, se situa a la cel·la sn que
ha quedat buida a causa del desplaçament.

El conjunt de valors continguts en cada cel·la en un instant de temps s’anomena estat. L’estat
inicial és l’estat en què es troba l’LFRS en el moment de començar el procés.

Exemple 3.5 Funcionament d’un LFSR

Aquest exemple segueix el funcionament de l’LFSR de 4 cel·les representat en la següent figura:

Com es pot veure, l’estat inicial és 1010, que correspon a l’impuls de rellotge t = 0. La taula
següent mostra l’evolució de l’LFSR en els diferents instants de temps.

Impuls de rellotge (t) s4 s3 s2 s1 Sortida
0 1 0 1 0 0
1 0 1 0 1 1
2 0 0 1 0 0
3 0 0 0 1 1
4 1 0 0 0 0
5 0 1 0 0 0
6 1 0 1 0 0
7 0 1 0 1 1
...

...
...

En t = 0 les cel·les s1 i s3 contenen un 0 i, per tant, el bit s4 serà 0 en el següent impuls de rellotge
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(t = 1). Noteu com la resta de valors es desplacen: a t = 1 la cel·la s1 conté el valor que hi havia
en t = 0 a la cel·la s2, la cel·la s2 conté el valor que hi havia a s3, etc.

En general, per i≥ 1 tenim:

s1(t = i) = s2(t = i−1)

s2(t = i) = s3(t = i−1)

s3(t = i) = s4(t = i−1)

s4(t = i) = s1(t = i−1)⊕ s3(t = i−1)

Si ens fixem, en l’impuls de rellotge t = 6 tornem a tenir l’estat inicial i, per tant, a partir d’aquí
la seqüència es torna a repetir. Aquesta seqüència, doncs, té període 6.

Un cop definit el que és un LFSR podem passar a fer un estudi una mica més exhaustiu per tal
de determinar-ne les seves característiques més importants. L’avantatge principal dels LFSR és
que tenen una formulació matemàtica molt simple, com veurem a continuació i, per tant, es poden
estudiar de manera força clara i completa. A més, com que es defineixen per mitjà de cel·les i
portes lògiques, s’implementen fàcilment en el maquinari, fet que permet obtenir generadors de
gran velocitat.

Primerament cal fer notar que l’estat inicial d’un LFSR no pot ser tot zeros. Si fos així, la seqüència
que produiria seria també tota de zeros, ja que totes les operacions són lineals. Es diu que l’estat
que tan sols té zeros és un estat absorbent. També convé destacar que el període màxim d’un
LFSR és 2n−1. Aquest valor s’obté de considerar tots els estats possibles 2n i eliminar-ne l’estat
absorvent.

Si ens fixem en l’expressió 3.1 ens adonarem que tota la seqüència de sortida d’un LFSR queda
determinada per l’estat inicial {s1, · · · ,sn} i per la relació

sn+k =
n

∑
i=1

cisn+k−i per k ≥ 0 (3.2)

on ci ∈ {0,1} per 1≤ i≤ n.

El polinomi de connexions d’un LFSR de longitud n és el polinomi de grau n

C(x) = 1+ c1x1 + c2x2 + · · ·+ xn

on els ci ∈ {0,1} corresponen als valors de les portes lògiques de la figura de l’esquema general
d’un LFSR.

Exemple 3.6 Polinomi de connexions d’un LFSR

El polinomi de connexions corresponent a l’LFSR de l’exemple 3.5 és:

C(x) = 1+0 · x1 +1 · x2 +0 · x3 +1 · x4 = 1+ x2 + x4

.
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Un LFSR queda determinat pel seu polinomi de connexions. Una seqüència queda
determinada pel polinomi de connexions i pel seu estat inicial.

Definit el polinomi de connexions, ja podem determinar les característiques de l’LFSR d’acord
amb les del seu polinomi de connexions:

1. Polinomi de connexions factoritzable: els LFSR’s que tenen polinomis de connexions
factoritzables generen seqüències que depenen de l’estat inicial. A més, el període de les
esmentades seqüències és sempre més petit que el període màxim que pot tenir un LFSR,
que és 2n−1.

2. Polinomi de connexions irreductible: igual que en el cas anterior, un LFSR amb un polinomi
de connexions irreductible (però que no sigui primitiu) genera seqüències que depenen de
l’estat inicial de l’LFSR i, en aquest cas, el seu període és un divisor de 2n−1.

3. Polinomi de connexions primitiu: un LFSR amb polinomi de connexions primitiu té la
seqüència de sortida de període màxim, 2n−1. Aquesta seqüència de període màxim s’obté
per a qualsevol estat inicial, llevat de l’estat absorbent.

Polinomi
primitiu

Un polinomi primitiu és també irreductible. Per tant, les seqüències generades per
LFSR amb polinomis de connexions primitius no dependran de l’estat inicial.

Considerant les propietats de les seqüències segons els seus polinomis de connexions, veiem que
per a esquemes de xifratge de flux és aconsellable fer servir la que determina el període màxim.

Exemple 3.7 LFSR amb polinomi de connexions primitiu

El polinomi 1+ x3 + x4 (amb coeficients a Z2) és primitiu. Construïm un LFSR amb aquest
polinomi de connexions, i observem la seqüència de sortida de l’LFSR al fer servir els valors
0001 com a estat inicial.

La seqüència generada serà:

L1 = 1000100110101111000 . . .

Efectivament, el període de la seqüència generada és 2n−1 = 24−1 = 15: a partir del bit 16, la
seqüència torna a repetir-se.

Si generem una segona seqüència amb el mateix LFSR però fent servir els valors 1010 com a
estat inicial, la seqüència que s’obté és:

L2 = 0101111000100110101 . . .
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De nou, el període de la seqüència generada és 15.

El polinomi de connexions que hem fet servir és també irreductible. Per tant, les seqüències
generades amb diferents estats inicials són les mateixes, però amb un desplaçament. En efecte,
podem veure com la seqüència L2 és la seqüència L1 desplaçada 9 posicions a l’esquerra:

L1 = 100010011 0101111000100110101
L2 = 0101111000100110101

Per últim, aprofitarem l’exemple per mostrar perquè no podem generar una seqüència de període
superior amb un LFSR de 4 cel·les. La taula següent mostra tots els estats per els quals passa
l’LFSR per generar la seqüència L1:

t Estat Sortida t Estat Sortida
0 0001 1 8 0101 1
1 1000 0 9 1010 0
2 0100 0 10 1101 1
3 0010 0 11 1110 0
4 1001 1 12 1111 1
5 1100 0 13 0111 1
6 0110 0 14 0011 1
7 1011 1 15 0001 1

Fixeu-vos que l’estat a t = 15 correspon a l’estat inicial (t = 0), motiu per el qual la seqüència
comença a repetir-se. Noteu també com l’LFSR passa per 15 estats diferents, que són tots els
possibles estats que es poden generar amb 4 bits, exceptuant l’estat absorvent (0000). El període
és doncs màxim, i no hi ha manera de generar un període superior amb l’estructura d’un LFSR,
ja que no hi ha més estats possibles.

Addicionalment, fixeu-vos que l’estat en t = 9 correspon a l’estat inicial amb el que generem la
seqüència L2.

Exercici 3.1 Calculeu els primers 15 bits de la seqüència de sortida d’un LFSR de 5 cel·les que
té com a polinomi de connexions 1+ x2 + x5 i que s’inicialitza amb l’estat 0,0,0,1,1.

3.3.3 Limitacions dels generadors lineals

Número de
polinomis
primitius

No hem d’oblidar que el nombre de polinomis primitius de grau n ve donat per
l’expressió φ(2n−1)/n on φ és la funció totient d’Euler.

Ja hem posat en relleu que els LFSR es comporten molt bé en termes de facilitat d’anàlisi, d’imple-
mentació i de velocitat. Un dels punts negatius d’aquests generadors és que per tal que el període
2n−1 sigui gran cal que la longitud de l’LFSR, també ho sigui. Això pot representar un problema
ja que el cost de trobar polinomis primitius amb grau gran és força elevat.

Malgrat els avantatges i inconvenients presentats, la raó principal per la qual els LFSR no serveixen
per si sols per a sistemes de xifratge en flux és que són fàcilment predictibles.
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En efecte, suposem que coneixem 2n bits consecutius, sk+1,sk+2, · · · ,sk+2n aleshores podem de-
terminar els coeficients del polinomi de realimentació, ci, i per tant tota la seqüència. Per fer-ho
només cal basar-se en l’expressió 3.2 per plantejar el següent sistema d’equacions:

sk+1 sk+2 · · · sk+n
sk+2 sk+3 · · · sk+n+1

...
... · · ·

...
sk+n sk+n+1 · · · sk+2n−1




cn

cn−1
...

c1

=


sk+n+1
sk+n+2

...
sk+2n


Per tant, tenim un sistema d’n equacions amb n incògnites, ci per 1≤ i≤ n, amb la qual podem
determinar tots els coeficients.3

Així doncs, a l’hora d’utilitzar un generador per a un procés de xifratge en flux, cal fixar-se
també (com ja hem esmentat anteriorment) en la seva predictibilitat, és a dir, el que s’anomena la
complexitat lineal.

Atès que qualsevol seqüència periòdica es pot generar amb un LFSR no singular, J.L. Massey4 va
definir la complexitat lineal d’una seqüència de la següent manera:

.

La complexitat lineal d’una seqüència és el nombre de cel·les de l’LFSR més curt
capaç de generar-la.

Per tant, una seqüència generada per un LFSR de longitud n té òbviament com a molt complexitat
lineal n, molt baixa comparada amb el període, 2n− 1. El mateix Massey va proposar un algo-
risme que, a partir d’una seqüència, determina l’LFSR mínim que la genera amb l’estat inicial
corresponent.

Exercici 3.2 Quin és el període i la complexitat lineal màxima de les seqüències generades per
l’LFSR amb polinomi de connexions 1+ x2 + x5?

Exercici 3.3 Donada la seqüència s = 00010011010111100010 , sintetitzeu l’LFSR que l’ha
generada, sabent que el polinomi de connexions té grau 4.

Per a disminuir la predictibilitat de la seqüència de xifratge cal, doncs, augmentar la complexitat
lineal de la seqüència de xifratge, que convindria que fos de llargada propera a la del període. Una
manera de fer-ho és basant-se en operacions no lineals, tal com veurem més endavant.

3.4 Generadors no lineals

A continuació analitzarem alguns del generadors no lineals destinats a augmentar la complexitat
lineal de les seqüències de flux que es fan servir en l’actualitat. En concret, descriurem l’A5 i el
Trivium.

3Noteu que aquest sistema d’equacions es pot resoldre fàcilment amb qualsevol mètode de resolució de sistemes
d’equacions lineals, per exemple, el mètode de Gauss. Per a una introducció als sistemes d’equacions lineals, podeu
consultar el primer capítol del llibre Elementary linear algebra, d’H. Anton.

4Massey va proposar un algorisme per sintetitzar l’LFSR més curt capaç de generar una seqüència l’any 1969 a
l’article Shift-Register Synthesis and BCH decoding.
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3.4.1 A5

L’A5 és un algorisme de xifrat en flux que s’utilitza per al xifrat de dades en les transmissions de la
xarxa GSM5.

L’A5 disposa de quatre variants, denotades amb els noms A5/0, A5/1, A5/2 i A5/3. L’A5/0 no fa
servir xifrat (retorna el propi text en clar), l’A5/1 correspon a la versió original de l’algorisme que
es fa servir a Europa, l’A5/2 és un algorisme de xifrat més dèbil creada per poder complir amb les
regulacions per exportar criptografia (i feta servir als Estats Units) i l’A5/3 és un algorisme de xi-
fratge totalment diferent (afegida amb posterioritat). En aquest apartat, descriurem el funcionament
de l’algorisme A5/1.

L’A5 va començar a utilitzar-se a la xarxa GSM sense fer pública la seva especificació, seguint el
principi de seguretat per obscuritat (en anglès, security through obscurity). L’ús d’aquest paradigma
està totalment desconsellat pels experts ja que viola el principi de Kerckhoffs.6 Tot i no fer-se
públic oficialment, un primer esborrany de l’algorisme va ser publicat al 1994 i l’especificació
completa va ser finalment obtinguda a través d’un procés d’enginyeria inversa del firmware d’un
telèfon mòbil i donada a conèixer al públic el 1999.

El criptosistema A5/1 és un criptosistema de flux que utilitza una combinació no lineal de la sortida
de tres LFSR. Si pensem que l’A5/1 xifra cadenes de text en clar de 228 bits (el que en el llenguatge
de telefonia mòbil es coneix com trames de 228 bits), podem dividir el funcionament de l’A5/1 en
tres etapes:

1. la inicialització dels LFSR,
2. l’obtenció dels 228 bits de la seqüència de xifrat a partir del moviment dels LFSR,
3. el xifrat del text en clar pròpiament dit, que segueix el procediment habitual dels xifrats de

flux, realitzant una XOR de la seqüència de xifrat amb el text en clar.

Per xifrar 228 bits més caldrà tornar a reinicialitzar els LFSR, obtenir els nous 228 bits de la
seqüència xifrant i fer l’XOR amb els nous bits de text en clar.

La inicialització dels tres LFSR que formen l’A5/1 no es limita a donar-ne els seus valors inicials,
sinó que el contingut inicial de les cel·les dels LFSR es calcula a partir d’unes claus d’entrada i
d’unes transformacions que descriurem més endavant. Com que la inicialització dels LFSR es fa a
partir de propi funcionament del sistema, passem primer a descriure com s’obtenen els bits de la
seqüència de xifrat.

L’A5/1 té una estructura formada per 3 LFSR tal com es mostra en la Figura 3.3.

La Taula 3.1 detalla les longituds de cadascun dels LFSR de l’A5/1 així com els seus polinomis de
connexions.

La no linealitat del sistema ve donada perquè a cada impuls de rellotge no tots els LFSR avancen.
Només ho fan aquells LFSR els bits dels quals són majoria en les cel·les anomenades clocking bit
(en el cas de l’esquema, els clocking bits són les cel·les marcades amb sombrejat, és a dir la cel·la 9
per al primer LFSR i les cel·les 11 per al segon i tercer). Aquest esquema es coneix com a clocking

5GSM són les sigles de Global System for Mobile Communcation, la xarxa que englobava més del 80% de les
connexions mòbils el 2010. L’ús de la xarxa ha anat minvant amb l’aparició de xarxes amb més ample de banda com ara
el 3G o 4G.

6Recordem que el principi de Kerckhoffs postula que un criptosistema ha de ser segur encara que tota la informació
sobre el criptosistema sigui pública, exeptuant la clau que ha de romandre privada. És a dir, la seguretat d’un criptosistema
ha de recaure únicament en el secret de la clau.
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irregular segons la funció majoritària.

Figura 3.3: Esquema de l’A5.

LFSR Longitud Polinomi de connexions Clocking bit
1 19 x19 + x18 + x17 + x14 +1 9
2 22 x22 + x21 +1 11
3 23 x23 + x22 + x21 + x8 +1 11

Taula 3.1: Descripció dels LFSR de l’A5.

Així, per exemple, si en la cel·la 9 del primer LFSR hi ha un 1, i en les cel·les 11 del segon i tercer
LFSR hi ha un 0, només avançaran el segon i el tercer LFSR, que tenen un 0. Si els tres són iguals,
aleshores avancen tots. D’aquesta manera es van obtenint les sortides de cada un dels LFSR que
formen l’XOR que acabarà proporcionant cada bit de la seqüència de xifratge.

Exemple 3.8 Iteració de l’A5

Si en l’instant t tenim els següents estats internsa en els LFSR:
LFSR1: 1011100011 011000010
LFSR2: 1011011011 1101000010 01
LFSR3: 1110111110 0111001000 001

La sortida en aquest mateix instant de temps t serà doncs:
z = 0⊕1⊕1 = 0 i es calcula a partir de la sortida dels tres LFSR (els bits subratllats en els estats
interns).

Per tal de calcular l’estat dels LFSR en el següent instant de temps t +1, observarem el bit de
clocking de cada LFSR (indicat amb negreta). En aquest cas, els bits de clocking són 1, 1 i 0 per
a l’LFSR 1, 2 i 3, respectivament. Per tant, el bit majoritari és 1, i avançaran doncs els LFSR 1 i
2. Així, l’estat intern dels LFSR en t +1 és:
LFSR1: 1101110001 101100001
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LFSR2: 1101101101 1110100001 00
LFSR3: 1110111110 0111001000 001

aL’agrupació de bits de 10 en 10 respon únicament a qüestions estètiques: s’ha triat aquesta representació per tal
que sigui més fàcil de llegir.

Passem ara a descriure el procés d’inicialització de l’A5. La inicialització requereix dos valors, una
clau de sessió de 64 bits i un número de trama de 22 bits, i consta de quatre passos:

1. En primer lloc, s’omplen tots els registres dels tres LFSR amb el valor 0.
2. Seguidament, s’executen 64 impulsos de rellotge dels tres LFSR sense fer servir clocking

irregular. És a dir, a cada impuls de rellotge, els tres LFSR avancen. La particularitat d’aquest
pas és que el bit de retroalimentació de l’LFSR fa una XOR amb un bit de la clau de sessió
abans de ser inserit a la primera cel·la de l’LFSR. Cadascuna de les 64 polsacions fa servir
un dels bits de la clau de sessió diferent, de manera seqüencial.

3. De manera similar al pas anterior, s’executen 22 impulsos de rellotge dels tres LFSR sense
fer servir clocking irregular. Aquest cop, però, el bit de retroalimentació fa una XOR amb els
bits del número de trama abans d’inserir-se de nou a la cel·la corresponent.

4. Finalment, es realitza una fase d’escalfament, on s’executen 100 impulsos de rellotge amb
clocking irregular.

La Figura 3.4 esquematitza el procés utilitzat per a realitzar els passos 2 i 3 de l’algorisme
d’inicialització. Noteu que els passos 2 i 3 poden unir-se també amb un sol pas, on s’executen
64+22 = 86 polsacions de rellotge fent una xor amb cadascun dels bits de la clau de sessió seguida
del número de trama.

Figura 3.4: Esquema dels passos 2 i 3 de la inicialització de l’A5.

És important remarcar que en aquests passos d’inicialització el que interessa és el contingut que
acabaran tenint les cel·les dels LFSR i per tant, els bits de sortida dels LFSR en tots aquests passos
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es descarten. Un cop inicialitzats els LFSR es procedeix a obtenir els 228 bits de la seqüència de
xifratge. Finalment, per tal de xifrar una trama, es farà una xor amb els 228 bits obtinguts de la
sortida de l’A5/1 i els 228 bits que representen el text en clar de la trama.

Per tal de xifrar la següent trama de 228 bits, procedirem a incrementar el comptador de trama
i tornarem a realitzar el procés d’inicialització amb la mateixa clau de sessió i el nou valor de
comptador de trama.

Noteu que la clau de sessió no es canvia per cada nova trama a xifrar, sinó que, en el context
de telefonia mòbil en el que s’utilitza aquest sistema, la clau de sessió s’actualitza quan la xarxa
decideix tornar a autenticar el dispostiu mòbil.

3.4.2 Trivium

El Trivium és un generador pseudoaleatori dissenyat pels criptògrafs Christophe De Cannière i
Bart Preneel que aprofita una implementació hardware molt simple amb una velocitat elevada de
generació de la seqüència, fet que el fa interessant en dispositius amb unes capacitats limitades
de processat, com ara etiquetes RFID. El seu funcionament està descrit en l’estàndard ISO/IEC
29192-3.

El Trivium utilitza una clau de 80 bits i un vector d’inicialització també de 80 bits i permet generar
seqüències de fins a 264 bits.

A diferència de l’A5, el Trivium no es basa en LFSR, però sí que està format per 3 registres de
desplaçament, tot i que la seva realimentació no és lineal. És a dir, les cel·les que contenen els
registres es desplacen a la dreta com en un LFSR però la seva retroalimentació no està definida per
una funció lineal. En la Figura 3.5 podem veure l’esquema del Trivium.

Figura 3.5: Esquema del Trivium.

Com es pot veure, el Trivium està format per tres registres de desplaçament, A, B i C, de 93, 84 i
111 cel·les, respectivament. La retroalimentació de cada registre no és lineal i, a més, la sortida de
cada un dels registres retroalimenta un altre dels registres.
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D’una banda, la sortida del Trivium (z) ve determinada en cada instant per les sortides dels tres
registres (ta, tb, tc):

z = ta + tb + tc

on cada un dels elements són bits i, per tant, la suma es realitza mòdul 2.

Cada una de les sortides t queden determinades per l’estat dels registres de la següent manera:

ta = sa
93 + sa

66

tb = sb
84 + sb

69

tc = sc
111 + sc

66

Per tal de calcular el valor de la cel·la en la retroalimentació, es fan servir les sortides t, de manera
que la sortida del registre a, ta, s’utilitza en el càlcul de la retroalimentació del registre b; la sortida
del registre b, tb, es fa servir en la retroalimentació de c; i finalment la sortida del registre c, tc, es
fa servir en la retroalimentació del registre a. En concret, la retroalimentació de cada registre ve
donada per les expressions:

sa
new = tc +(sc

109 · sc
110)+ sa

69

sb
new = ta +(sa

91 · sa
92)+ sb

78

sc
new = tb +(sb

82 · sb
83)+ sc

87

on, de nou, tots els operands són bits i tant la suma com el producte7 d’aquesta expressió es realitzen
mòdul 2.

La taula següent resumeix les accions que realitza cada posició específica de cada un dels registres:

Feedback bit Feedforward bit AND inputs
A 69 66 91,92
B 78 69 82,83
C 87 66 109,110

Taula 3.2: Taula 3.2. Posicions destacades dels registres del Trivium.

Exemple 3.9 Iteració del Trivium

Si en l’instant t tenim els següents estats internsa en els registres:
A: 0111111100 1101111010 1111100101 1101010001 0111100010 0110110001

1100110111 1111100110 0101011100 011
B: 0100001010 1111011011 0110101000 1100010001 1111011000 1011110001

1101110100 0111100001 1011
C: 1111110100 0111011101 0101111100 1010111100 0100011100 0001111011

1000011010 0111000011 1101010011 0101001000 0100000011 0

7De forma equivalent, també podem pensar el producte mòdul 2 com un AND.

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


80 Capítol 3. Les xifres de flux

Les sortides dels registres t corresponen als valors:

ta = sa
93 + sa

66 = 1+1 = 0

tb = sb
84 + sb

69 = 1+0 = 1

tc = sc
111 + sc

66 = 0+1 = 1

Noteu que els bits involucrats en els càlculs dels valors t es troben subratllats en l’estat dels
registres per facilitar la lectura.

Així, la sortida del Trivium en l’instant t correspon a:

z = ta + tb + tc = 0+1+1 = 0

Podem calcular també els bits que es faran servir en la retroalimentació dels registres, per tal
d’actualitzar-ne el seu estat:

sa
new = tc +(sc

109 · sc
110)+ sa

69 = 1+(1 ·1)+1 = 1+1+1 = 1

sb
new = ta +(sa

91 · sa
92)+ sb

78 = 0+(0 ·1)+0 = 0+0+0 = 0

sc
new = tb +(sb

82 · sb
83)+ sc

87 = 1+(0 ·1)+0 = 1+0+0 = 1

Noteu que els bits involucrats en els càlculs dels valors snews es troben indicats en negreta en
l’estat dels registres per facilitar la lectura.

Els bits snew serviran per actualitzar l’estat intern de cadascun dels registres. A tall d’exemple,
veiem quin seria l’estat del registre A en l’instant t +1:
A: 1011111110 0110111101 0111110010 1110101000 1011110001 0011011000

1110011011 1111110011 0010101110 001

aDe nou, l’agrupació de bits de 10 en 10 respon únicament a qüestions estètiques: s’ha triat aquesta representació
per tal que sigui més fàcil de llegir. Noteu, però, que els 80 bits corresponen a l’estat del registre, sense cap mena de
separació entre ells.

Inicialització

A l’hora de xifrar un missatge, en primer lloc caldrà realitzar la fase d’inicialització del Trivium.
Aquesta fase fa servir el vector inicial, V I, i la clau, k, ambdós valors de 80 bits. Aleshores, es
prenen els 80 bits del vector inicial i es posen en les cel·les de més a l’esquerra del registre B.
Seguidament, es prenen els 80 bits de la clau i es posen en les cel·les de més a l’esquerra del registre
A. La resta de cel·les, de qualsevol dels tres registres, que no han quedat plenes s’omplen amb
zeros, llevat de les 3 cel·les de més a la dreta del registre C, en les que s’hi inclou un 1 en cada un
d’elles. La Figura 3.6 mostra gràficament la inicialització del Trivium.

Una vegada s’han situat aquests valors en els estats dels 3 registres, s’executen 1152 cicles de
rellotge descartant els bits de sortida d’aquestes 1152 iteracions.
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Figura 3.6: Fase d’inicialització del Trivium.

Finalment, una vegada s’ha inicialitzat el generador ja es pot utilitzar la seqüència de sortida per
xifrar el missatge en clar. Així, cada bit de sortida del generador a partir de la iteració 1153 (un cop
s’ha inicialitzat el generador) es combinarà amb una XOR amb el bit de text en clar a xifrar.

Per desxifrar un missatge utilitzant el Trivium, caldrà realitzar exactament el mateix procés aquesta
vegada sobre el missatge xifrat, procés que es pot dur a terme perquè emissor i receptor comparteixen
tant el vector inicial com la clau, ja que estem davant d’un criptosistema de clau simètrica.
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3.5 Resum

En aquest capítol hem descrit el funcionament i les característiques principals dels esquemes de
xifratge de flux. Hem estudiat les propietats que ha de tenir una seqüència aleatòria perquè es pugui
utilitzar com a seqüència de xifratge. Hem presentat igualment diferents tipus de generadors per a
obtenir seqüències pseudoaleatòries. Hem assenyalat que els registres de desplaçament realimentats
linealment (LFSR) eren els més interessants perquè són fàcils d’estudiar, tot i que, com ja hem
apuntat, no n’aconsellem l’aplicació en criptografia perquè la seva criptoanàlisi és força senzilla.
Finalment, hem estudiat dos generadors que es fan servir avui en dia en productes habituals, l’A5 i
el Trivium.
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3.6 Solucions dels exercicis

Exercici 3.1:

Tenint en compte el polinomi de connexions de l’LFSR, el nou bit es calcula fent una XOR entre
els bits de les cel·les s4 i s1 (que es troben subratllats a la taula) en l’instant de temps anterior:

Impuls de rellotge (t) Estat Sortida
0 0 0 0 1 1 1
1 1 0 0 0 1 1
2 1 1 0 0 0 0
3 1 1 1 0 0 0
4 1 1 1 1 0 0
5 1 1 1 1 1 1
6 0 1 1 1 1 1
7 0 0 1 1 1 1
8 1 0 0 1 1 1
9 1 1 0 0 1 1

10 0 1 1 0 0 0
11 1 0 1 1 0 0
12 0 1 0 1 1 1
13 0 0 1 0 1 1
14 1 0 0 1 0 0

Així doncs, els 15 primers bits de la seqüència de sortida són: 110001111100110

Exercici 3.2:

El polinomi 1+ x2 + x5 té grau n = 5 i és un polinomi primitiu. Per tant, la complexitat lineal
màxima de les seqüències que genera és n = 5 i el període serà 2n−1 = 25−1 = 31.:

Exercici 3.3:

Per trobar el polinomi de connexions necessitem únicament 2n = 8 bits consecutius de la seqüèn-
cia de sortida. Si agafem, per exemple, els 8 primers bits, podem plantejar el següent sistema
d’equacions:


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 1




c4
c3
c2
c1

=


0
0
1
1


La solució del sistema és c4 = 1,c3 = 1,c2 = 0,c1 = 0 i, per tant, el polinomi de connexions és
x4 + x3 +1.
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4. Les xifres de bloc

Una alternativa a les xifres de flux són les xifres de bloc. Aquestes xifres s’inclouen també dins dels
criptosistemes de clau compartida ja que la clau que s’utilitza per a xifrar i desxifrar és la mateixa i la
comparteixen emissor i receptor. La diferència bàsica entre el xifratge en flux i el xifratge en bloc és la
utilització de la memòria en els algorismes de xifratge.

Ja hem vist en el capítol anterior que el xifrat de flux utilitza una clau diferent per cada bit d’informació.
Aquesta clau depèn de l’estat inicial del generador, però també de l’estat del generador en el moment de
xifrar un bit concret. Per tant, dos bits iguals es poden xifrar de maneres diferents depenent de l’estat en què
es trobi el generador. En el xifratge en bloc això no passa ja que les xifres en bloc actuen sense memòria, i
per tant el text xifrat només depèn del text en clar i de la clau. D’aquesta manera, dos blocs de text en clar
iguals es xifren sempre de la mateixa manera quan s’utilitza la mateixa clau. Caldrà estudiar aquest fet en
detall ja que si no es corregeix, els sistemes de xifrat que en resulten són força vulnerables, ja que es poden
inserir o esborrar blocs de text xifrat sense que es pugui detectar. A més, el fet que dos blocs de text en clar
quedin xifrats d’una mateixa manera, pot donar pistes per a una possible criptoanàlisi de tipus estadístic.

Pel que fa a la seva utilització, les xifres de bloc són força utilitzades ja que aconsegueixen una velocitat
acceptable de xifratge. En concret, el xifrador en bloc més utilitzat és l’AES (Advanced Encryption Standard)
ja que està establert com a estàndard per el NIST des de l’any 2002.

4.1 Definició de les xifres de bloc

Les xifres de bloc són un dels elements més importants en criptografia i es fan servir en diferents contextos.
D’una banda, es poden fer servir directament en esquemes de xifrat per tal de proporcionar confidencialitat.
D’altra banda però, també es fan servir com a primitives bàsiques en altres esquemes criptogràfics, com ara
els generadors pseudoaleatoris, les funcions hash o els codis d’autenticació de missatges (coneguts per les
seves sigles en anglès, MAC de Message Authentication Codes).

Una xifra de bloc és una funció que rep un bloc b d’n bits de text en clar i retorna un text xifrat c també d’n
bits:

c = Ek(b)

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


86 Capítol 4. Les xifres de bloc

Diem que n és, aleshores, la mida de bloc del criptosistema.

Noteu que la funció rep com a paràmetre el valor k, que representa la clau. La mida de la clau és la longitud
en bits de k.

Per tal d’assegurar que al desxifrar un text xifrat amb E (amb una mateixa clau k) obtenim el text original, la
funció E ha de ser invertible. Així doncs, les xifres de bloc diposen també d’una funció de desxifrat, que
realitza el procés invers de la de xifrat:

b = Dk(c)

La majoria de vegades que fem servir un criptosistema de bloc voldrem xifrar contingut que supera la mida
del bloc del criptosistema utilitzat. En aquests casos, el que es fa és partir el text que cal xifrar, m, en diversos
blocs, m1,m2, . . . , cada un dels quals té la llargada corresponent al bloc per a xifrar (n bits), i xifrar cadascun
dels fragments. El procediment a seguir per xifrar cadascun dels fragments queda determinat per el mode
d’operació.

4.1.1 Modes d’operació

El mode d’operació més senzill és coneix com a ECB (de l’anglès, Electronic Code Book) i consisteix a
xifrar cada un dels blocs del missatge en clar, mi, de manera individual, fent servir la mateixa clau. Així,
s’obtenen els blocs xifrats ci, que es concatenen per formar el text xifrat c. La Figura 4.1 esquematitza el
procés de xifrat en mode ECB.

Figura 4.1: Esquema de xifrat amb el mode ECB.

Les propietats principals que ens ofereix el mode ECB són:

1. Els blocs de text en clar idèntics resulten en blocks xifrats també idèntics (si es fa servir la mateixa
clau).

2. Cada bloc es xifra de manera independent als altres blocs.
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3. Permet accés aleatori al contingut, és a dir, és possible desxifrar un bloc i sense haver de desxifrar els
anteriors.

4. Els errors no es propaguen: un error en un bloc afecta només a aquell bloc.

Com a conseqüència immediata d’aquestes propietats, el mode ECB és vulnerable a certs atacs. D’una banda,
per la propietat 1) un atacant que observi el text xifrat pot aprendre directament si el text original conté
blocs iguals. A més, aquesta propietat també pot facilitar els atacs de tipus estadístic per a obtenir la clau k.
Així mateix, el mode ECB no és capaç d’amagar els patrons en les dades. D’altra banda, per la propietat
2), un atacant pot reordenar el text xifrat, fent que al desxifrar-se s’obtingui el text en clar reordenat, sense
que el receptor pugui detectar el canvi. Addicionalment, un atacant també pot inserir blocs de text xifrat o
eliminar-ne, sense que el desxifrat posterior falli.

Per tal d’exemplificar les conseqüències de fer servir el mode ECB per a xifrar dades de mida superior al
bloc, procedim a xifrar una imatge amb aquest mode, i a visualitzar el text xifrat resultant també en forma
d’imatge (veure Figura 4.2.

Figura 4.2: Exemple de xifrat d’una imatge amb ECB.

La imatge de l’esquerra correspon a la imatge en clar i la de la dreta és el resultat de xifrar la primera imatge
fent servir el mode d’operació ECB. Com es pot apreciar, tot i que detalls concrets de la imatge original no es
revel·len en la versió xifrada (per exemple, el color), la silueta de la imatge queda perfectement reconeixible.

Exercici 4.1 Suposem un esquema de xifrat de bloc amb mida de bloc de 2 bits i mida de clau també
de 2 bits que implementa la següent funció de xifrat E:

Entrada k Sortida Entrada k Sortida
00 00 11 00 01 00
01 00 10 01 01 01
10 00 01 10 01 10
11 00 00 11 01 11
00 10 01 00 11 10
01 10 11 01 11 00
10 10 00 10 11 11
11 10 10 11 11 01

Xifreu el missatge m = 1001100100110000 amb k = 10 fent servir la funció de xifrat E i el mode
d’operació ECB.

El mode CBC (de l’anglès, Cipher Block Chaining) consisteix en l’encadenament dels blocs per al xifratge,
de manera que es crea una dependència del xifratge de cada bloc amb l’immediatament anterior. De nou,
cada bloc es xifra amb la mateixa clau k, però el text que es xifra no és directament el bloc en clar, sinó el
resultat d’una XOR entre el bloc en clar i el bloc xifrat anterior. La Figura 4.3 esquematitza el funcionament
del mode CBC.
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Figura 4.3: Esquema de xifrat amb el mode CBC.

Suposem un xifratge de bloc amb una clau k, una funció de xifratge E i una de desxifratge D. Si m1, . . . ,mm
són els blocs de text en clar que cal xifrar, mitjançant el sistema CBC el xifratge del bloc mi es porta a terme
de la manera següent:

ci = Ek(mi⊕ ci−1).

Per a fer-ne el desxifratge també ens cal partir del text xifrat anterior, i aleshores hem d’executar l’operació
següent:

Dk(ci)⊕ ci−1 = Dk(Ek(mi⊕ ci−1))⊕ ci−1) = (mi⊕ ci−1)⊕ ci−1)mi.

Per a xifrar el primer bloc necessitarem un bloc inicial aleatori, c0, que no cal que sigui secret. Aleshores,
incloent aquest nou vector inicial en el xifratge podrem obtenir dos textos en clar iguals però xifrats de
manera diferent; així, encara que emprem la mateixa clau, k, només ens caldrà canviar el vector inicial, c0,
que, a més, pot incorporar una marca temporal.

En contraposició amb el mode ECB, si un atacant canvia l’ordre dels blocs xifrats amb CBC, aleshores el
procés de desxifrat no es realitza correctament. Addicionalment, un error en un bloc xifrat afecta el desxifrat
d’aquell bloc, però també del següent. Noteu que els blocs successius es desxifren ja correctament.

Amb aquesta estructura, el mode CBC aconsegueix ocultar els patrons del text en clar molt millor que el
mode ECB. Si repetim el procediment de xifrar la imatge del cadenat fent servir ara el mode CBC, podem
observar com ara en la Figura 4.4 no podem intuir el perfil de la imatge a partir de la imatge xifrada.

Exercici 4.2 Xifreu el mateix missatge m amb la funció E definida en l’exercici 4.1 i la clau k = 10,
fent servir ara el mode d’operació CBC amb el vector inicial 10.

El mode de xifratge CFB (de l’anglès, Cipher Feedback) utilitza indirectament el xifrador de bloc, com
veurem a continuació. Per això, la llargada dels blocs que s’han de xifrar no cal que sigui la mateixa que la
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Figura 4.4: Exemple de xifrat d’una imatge amb CBC.

dels blocs del criptosistema amb què actua, sinó que pot ser més petita. L’esquema general de funcionament
d’aquest mètode es mostra a la Figura 4.5.

Figura 4.5: Esquema de xifrat amb el mode CFB.

Donat m = m1m2 . . . , en què m és el missatge de text en clar, i m1,m2, . . . representen els blocs de longitud n
que formen el missatge, si considerem el vector inicial V I com una concatenació d’l blocs de longitud n,
és a dir, V I =V I1V I2 . . .V Il , on V Ii i té n bits de llargada, podrem calcular el xifratge del vector V I, E(V I),
mitjançant el criptosistema de bloc.

El resultat tindrà la mateixa llargada que V I i, per tant, el podrem descompondre de la mateixa manera que
aquell:

E(V I) = E(V I)1E(V I)2 . . .E(V I)l

Finalment, ja podrem xifrar el primer bloc de text en clar, m1, fent la suma bit a bit amb el darrer bloc,
E(V I)l :

c1 = m1⊕E(V I)l ;
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obtenim així el primer bloc xifrat de longitud n, c1.

Per a xifrar el segon bloc, m2 , tornarem a fer el mateix procés, però aquesta vegada prendrem com a vector
inicial el vector format pels fragments següents:

V I =V I2V I3 . . .V Ilc1,

és a dir, hem desplaçat els blocs d’n bits cap a l’esquerra per afegir-hi el bloc c1 i descartar-ne el V I1.
D’aquesta manera, el segon bloc de text xifrat l’obtenim fent l’operació següent:

c2 = E(V Ib)l⊕m2.

El procés es repeteix al llarg dels blocs de text que es vol xifrar: per al bloc següent es desplacen els blocs del
vector inicial anterior, V Ib, . . . a l’esquerra per afegir-hi el darrer bloc de text xifrat obtingut i anar aplicant el
que ja hem descrit anteriorment.

Exercici 4.3 Xifreu el mateix missatge m amb la funció E definida en l’exercici 4.1 i la clau k = 10,
fent servir ara el mode d’operació CFB amb el vector inicial 10.

El mode de xifratge OFB (de l’anglès, Output Feedback) utilitza el criptosistema de bloc com a generador
pseudoaleatori. És un sistema molt semblant a l’anterior; l’única diferència que presenta és que el vector
inicial es realimenta directament amb el resultat del xifratge de bloc abans de fer la suma bit a bit amb el
bloc de text en clar, com es pot veure a la Figura 4.6.

Figura 4.6: Esquema de xifrat amb el mode OFB.

Com que el xifrador de bloc actua com un generador pseudoaleatori, cal que els criptosistemes de bloc que
emprem amb el mode OFB compleixin les característiques requerides per als generadors pseudoaleatoris,
tant pel que fa a la impredictibilitat de la seqüència resultant com a la complexitat lineal.
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Exercici 4.4 Xifreu el mateix missatge m amb la funció E definida en l’exercici 4.1 i la clau k = 10,
fent servir ara el mode d’operació OFB amb el vector inicial 10.

El mode CTR (de l’anglès, counter) és similar a l’OFB, convertint també el criptosistema de bloc amb un
xifrador de flux. La seqüència de xifrat es genera xifrant succesius valors d’un comptador (d’aquí en sorgeix
el seu nom), que pot ser qualsevol funció que tingui un període gran (veure Figura 4.7).

Figura 4.7: Esquema de xifrat amb el mode CTR.

Un ús habitual és fer servir un valor de nonce aleatori concatenat amb un comptador que s’incrementi d’un
en un. Així, per exemple, si la mida de bloc del xifrador a utilitzar és de 128 bits, se selecciona una nonce
de 64 bits i un comptador de 64 bits. Per a xifrar el primer bloc, es concatena la nonce amb el comptador
inicialitzat a 0. Per a cada nou bloc, el comptador s’incrementa en 1. D’aquesta manera, es poden xifrar 264

blocs amb la mateixa nonce.

El principal avantatge d’aquest mode d’operació és que permet paral·lelitzar tant el procés de xifrat com
el de desxifrat, el que el fa addient per funcionar en dispositius amb més d’un processador. A més, permet
accés aleatori (com el mode ECB).

Exercici 4.5 Xifreu el mateix missatge m amb la funció E definida en l’exercici 4.1 i la clau k = 10,
fent servir ara el mode d’operació CTR amb el vector inicial 10.

4.2 El criptosistema AES

L’any 1998, els criptògrafs belgues Vincent Rijmen i Joan Daemen van desenvolupar l’algorisme anomenat
(en reconeixement dels autors) criptosistema de Rijndael. Aquest criptosistema va ser triat pel NIST com a
AES (de l’anglès, Advanced Encryption Standard) l’any 2000, reemplaçant el DES.

De fet, el Rijndael és una família d’algorismes de xifrat amb diferents mides de clau i de bloc. En concret, el
Rijndael defineix blocs i claus de mida mínima 128 i màxima de 256, acceptant múltiples de 32 bits. L’AES
n’és només un subconjunt, amb mida de bloc fixada a 128 bits.
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.

El criptosistema AES xifra blocs de text en clar de 128 bits de longitud. La longitud de
les claus de xifratge que aquest criptosistema empra pot variar entre 128, 192 o 256 bits.
Les operacions criptogràfiques es basen en un grup finit d’ordre 28.

4.2.1 Descripció del funcionament

El funcionament de l’AES es mostra en la Figura 4.8. Es basa en una transformació inicial seguida d’un
nombre d’iteracions que varien entre 10 i 14, segons la longitud de la clau.

El nombre
d’iteracions

El nombre d’iteracions que es mostren en el gràfic és n−1 perquè la iteració final, tot i
que es considera iteració, no conté la funció mixColumn.

cleartext

Initial transformation

AddRoundKey

Standard Iteration

ByteSub
ShifRow

MixColumn
AddRoundKey

Final transformation

ByteSub
ShifRow

AddRoundKey

ciphertext

n - 1 
iterations

Figura 4.8: Estructura de l’AES.

La taula següent mostra el nombre exacte d’iteracions Nr en funció del nombre de paraules de 32 bits que té
la clau que s’utilitza per xifrar (Nk):

Nk = 4 Nk = 6 Nk = 8
10 12 14

La unitat bàsica d’informació amb què treballa l’AES és el byte. Totes les cadenes de bits (textos en clar i
claus) es representen amb matrius de bytes. Per exemple, una cadena de 128 bits de text en clar:
m = m1m2 · · ·m127m128

es representarà amb 16 bytes de la següent manera:
a0,0 = m1m2m3m4m5m6m7m8
a1,0 = m9m10m11m12m13m14m15m16
· · ·
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a3,3 = m121m122m123m124m125m126m127m128

i aquests bytes es poden expressar de forma matricial:

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

Les diferents funcions que executa l’AES (per exemple, AddRoundKey, ByteSub, etc.) tenen com a entrada i
com a sortida una matriu de bytes com l’anterior.

.

Les matrius intermèdies amb què treballa el criptosistema AES s’anomenen matrius
d’estat. Les matrius d’estat són matrius 4×4 i cada element de la matriu és un byte. Els
elements de cada estat es denoten per si j, on i determina la fila i j la columna.

Les operacions “suma” i “producte” de bytes que executa l’AES no són les operacions convencionals que
coneixem. En concret, l’AES considera els bytes en una representació de polinomi. Cada byte b es pot
representar amb 8 bits:

b = [b7,b6,b5,b4,b3,b2,b1,b0],on bi ∈ {0,1}

Aquest conjunt de bits es pot expressar com els coeficients d’un polinomi de grau 7:

b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x+ b0 = ∑
7
i=0 bixi. Per exemple, el byte 01100011 té com a

representació el polinomi x6 + x5 + x+1

Per tal de simplificar la notació, representarem els bytes en notació hexadecimal. Així, l’element 01100011
en base binària es representarà per un 63 en base hexadecimal, ja que 01100011(2 = 99(10 = 63(16.

Donades aquestes representacions, considerem que la “suma” i el “producte” es defineixen de la manera
següent.

Siguin les representacions binàries dels bytes x = (x7,x6,x5,x4,x3,x2,x1,x0) i y = (y7,y6,y5,y4,y3,y2,y1,y0).

Definim l’operació suma:
x⊕ y = (x7⊕ y7,x6⊕ y6,x5⊕ y5,x4⊕ y4,x3⊕ y3,x2⊕ y2,x1⊕ y1,x0⊕ y0)
on ⊕ denota l’operació XOR bit a bit.1

D’altra banda, definim l’operació producte:
x⊗y = (x7x7 +x6x6 +x5x5 +x4x4 +x3x3 +x2x2 +x1x+x0)(y7x7 +y6x6 +y5x5 +y4x4 +y3x3 +y2x2 +y1x+
b0) (mod x8 + x4 + x3 + x+1).

Exemple 4.1 Càlcul de “suma” i “producte”:

Donats els bytes x i y:

x = 57(16 = 01010111(2 = x6 + x4 + x2 + x+1

y = 83(16 = 10000011(2 = x7 + x+1,

calculem la suma i el producte de bytes:

1Recordeu que l’operació XOR queda definida per: 1⊕0 = 0⊕1 = 1,1⊕1 = 0⊕0 = 0.
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x⊕ y = 57(16⊕83(16 = D4(16,

ja que: 01010111(2⊕10000011(2 = 11010100(2 = D4(16.

D’altra banda, pel “producte” tenim:
x⊗ y = 57(16⊗83(16 =C1(16,

ja que:

(x6 + x4 + x2 + x+1) · (x7 + x+1) (mod x8 + x4 + x3 + x+1) =

= (x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 +1) (mod x8 + x4 + x3 + x+1) =

= x7 + x6 +1 = 11000001(2 =C1(16.

Un cop vistes aquestes representacions, ja podem passar a veure el funcionament de l’algorisme.

4.2.2 Detall d’una iteració

En el gràfic del funcionament general de l’algorisme es mostra com l’AES realitza, primer, una transformació
inicial del text d’entrada, aplicant la funció AddRoundKey. Després, s’executen n−1 iteracions, cadascuna
de les quals aplica les funcions ByteSub, ShiftRow, MixColumn i AddRoundKey. Finalment, es realitza una
transformació final que executa tres de les quatre funcions anteriors, deixant d’aplicar la funció MixColumn.

A més d’aquestes operacions, en la transformació inicial el text en clar s’ha de convertir en una matriu
d’estat, que serà utilitzada per la funció AddRoundKey. De manera similar, la transformació final transforma
la sortida de la funció AddRoundKey (que és una matriu d’estat) en el text xifrat final.

Passem a descriure cada una de les funcions que s’executen en cada iteració.

4.2.3 Funció AddRoundKey

La funció AddRoundKey s’utilitza tant en les transformacions inicial i final com en les iteracions estàndard.

.

La funció AddRoundKey fa una suma XOR de la matriu d’estat amb cada byte de la
subclau K(i) corresponent. En el cas de la transformació inicial tenim, i = 0; per tant,
utilitzem la primera subclau K(0).

Les subclaus L’índex i denota la subclau de 128 bits que es fa servir en la i-èsima iteració tenint en
compte que K(0) serà la subclau que es farà servir per a la transformació inicial. Podeu
trobar la descripció de com s’obtenen les subclaus a partir de la clau inicial de xifratge
en el subapartat 4.2.7 d’aquest capítol.

Exemple 4.2 Càlcul de la funció AddRoundKey

Considerem la subclau: K(0) = b692c f 0b643dbd f 1be9bc5006830b3 f e

i la matriu d’estat S =


9d 28 91 00
f 7 7 f 78 a6
39 c1 6c c6
3c aa 25 a5


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El resultat d’aplicar la funció AddRoundKey serà:

AddRoundKey(S,K(0)) =


9d 28 91 00
f 7 7 f 78 a6
39 c1 6c c6
3c aa 25 a5

⊕


b6 64 be 68
92 3d 9b 30
c f bd c5 b3
0b f 1 00 f e

=


2b 4c 2 f 68
65 42 e3 96
f 6 7c a9 75
37 5b 25 5b


Fixeu-vos que la suma XOR de les matrius correspon a la suma XOR de cada una de les seves entrades. Ai-
xí, per exemple, la primera posició de la transformació val 2B, ja que 9D⊕B6 = 10011101⊕10110110 =
2B.

4.2.4 Funció ByteSub

.

La funció ByteSub aplica una substitució no lineal dels bytes de la matriu d’estat.

La funció ByteSub2 rep com a entrada una matriu d’estat A, hi aplica una transformació S i obté una altra
matriu d’estat B, de manera que bi j = S(ai j). La transformació de cada byte de la matriu es realitza de
manera independent.

Les caixes S de l’AES

Les caixes S de l’AES són una matriu de 256 elements que s’utilitza com una taula de consulta. Normalment
es representa com una matriu de 16 files i 16 columnes. Si representem cada byte a processar amb dos
caracters hexadecimals xy, aleshores el valor x indica la fila i el valor y la columna de la posició on es troba
el byte resultant.

Taula de
consulta

Una taula de consulta (en anglès, lookup table) és una estructura de dades que substi-
tueix una execució algorísmica per una operació d’indexació. Normalment l’objectiu
d’utilitzar taules de consulta és reduir el temps d’obtenció del resultat esperat.

2La funció ByteSub apareix amb aquesta denominació a la proposta inicial del criptosistema de Rijndael. A la
publicació de l’AES en l’estàndard FIP-197, la funció s’anomena SubBytes. Sigui quin sigui el nom que se li doni, en
els dos casos és la mateixa funció.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe x f
0y 63 7c 77 7b f 2 6b 6 f c5 30 1 67 2b f e d7 ab 76
1y ca 82 c9 7d f a 59 47 f 0 ad d4 a2 a f 9c a4 72 c0
2y b7 f d 93 26 36 3 f f 7 cc 34 a5 e5 f 1 71 d8 31 15
3y 4 c7 23 c3 18 96 5 9a 7 12 80 e2 eb 27 b2 75
4y 9 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2 f 84
5y 53 d1 0 ed 20 f c b1 5b 6a cb be 39 4a 4c 58 c f
6y d0 e f aa f b 43 4d 33 85 45 f 9 2 7 f 50 3c 9 f a8
7y 51 a3 40 8 f 92 9d 38 f 5 bc b6 da 21 10 f f f 3 d2
8y cd 0c 13 ec 5 f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9y 60 81 4 f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
ay e0 32 3a 0a 49 6 24 5c c2 d3 ac 62 91 95 e4 79
by e7 c8 37 6d 8d d5 4e a9 6c 56 f 4 ea 65 7a ae 8
cy ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1 f 4b bd 8b 8a
dy 70 3e b5 66 48 3 f 6 0e 61 35 57 b9 86 c1 1d 9e
ey e1 f 8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 d f
f y 8c a1 89 0d b f e6 42 68 41 99 2d 0 f b0 54 bb 16

Exemple 4.3 Càlcul de la funció ByteSub

S =


b5 b1 b9 b5
c9 cc c5 c8
17 11 1b 15
9e 99 92 9d


Calculem la transformació de la primera entrada de la matriu, S00 = b5. Busquem el valor de primera
component, b a les files de la taula de les caixes S, i el valor de la segona component 5 a les columnes.
Això ens indica que el valor que hi ha a la intersecció serà el valor resultant, en aquest cas el d5. Si fem el
mateix procés amb tots els elements de la matriu tenim com a resultat:

ByteSub(S) =


d5 c8 56 d5
dd 4b a6 e8
f 0 82 a f 59
0b ee 4 f 5e



4.2.5 Funció ShiftRow

.

La funció ShiftRow desplaça les files de la matriu d’estat de manera que la fila zero
es deixa igual, la fila 1 es desplaça una posició a l’esquerra, la fila 2 es desplaça dues
posicions a l’esquerra i la fila 3, tres posicions a l’esquerra.

Exemple 4.4 Càlcul de la funció ShiftRow

Si suposem la matriu d’estat:

S =


d5 c8 56 d5
dd 4b a6 e8
f 0 82 a f 59
0b ee 4 f 5e


Podem realitzar el càlcul de la funció ShiftRow tal com es mostra a la figura següent, deixant la fila zero
de la matriu sense modificar i desplaçant les files 1, 2 i 3, una, dues i tres posicions, respectivament:
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La matriu d’estat resultant de la transformació serà doncs:

Shi f tRow(S) =


d5 c8 56 d5
4b a6 e8 dd
a f 59 f 0 82
5e 0b ee 4 f



4.2.6 Funció MixColumns

.

La funció MixColumns barreja les columnes de la matriu d’estat a partir d’operacions
polinomials.

Concretament, aquesta funció considera les columnes de la matriu d’estat com polinomis de grau 3. Cada
columna es multiplica pel polinomi c(x) = “03”x3 + “01”x2 + “01”x+ “02” i el resultat es redueix mòdul
x4 +1. Aquest producte dels polinomis es pot escriure com un producte de matrius:

s′0 j
s′1 j
s′2 j
s′3 j

=


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




s0 j
s1 j
s2 j
s3 j


Tingueu en compte que les operacions “suma” i “producte” entre els elements de la matriu i els del vector
columna són les operacions ⊕ i ⊗ definides en el subapartat anterior.

El polinomi c(x) és coprimer amb x4 +1 i, per tant, invertible. D’aquesta manera, l’operació MixColumns
es pot desfer multiplicant cada columna per el polinomi d(x) tal que:

c(x)⊗d(x) = “01′′

El polinomi d(x) és doncs “0B”x3 + “0D”x2 + “09”x+ “0E”.

Exemple 4.5 Càlcul de la funció MixColumns

Suposem una matriu d’estat: S =


d5 c8 56 d5
4b a6 e8 dd
a f 59 f 0 82
5e 0b ee 4 f


Per a obtenir la transformació de la primera columna calcularem:

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


98 Capítol 4. Les xifres de bloc
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·


d5
4b
a f
5e


Això ens donarà un vector columna de quatre bytes determinats pels valors següents:
(02⊗d5)⊕ (03⊗4b)⊕ (01⊗a f )⊕ (01⊗5e)
(01⊗d5)⊕ (02⊗4b)⊕ (03⊗a f )⊕ (01⊗5e)
(01⊗d5)⊕ (01⊗4b)⊕ (02⊗a f )⊕ (03⊗5e)
(03⊗d5)⊕ (01⊗4b)⊕ (01⊗a f )⊕ (02⊗5e)


Per exemple, vegem quant val la segona posició del vector columna:

(01⊗d5)⊕ (02⊗4b)⊕ (03⊗a f )⊕ (01⊗5e)

Si passem els valors hexadecimals a representació polinòmica (passant per la seva representació binària)
tenim:

Hexadecimal Binari Polinomi
01 00000001 1
d5 11010101 x7 + x6 + x4 + x2 +1
02 00000010 x
4b 01001011 x6 + x3 + x+1
03 00000011 x+1
af 10101111 x7 + x5 + x3 + x2 + x+1
5e 01011110 x6 + x4 + x3 + x2 + x

Si ara fem els càlculs, resulta:

(“01”⊗“D5”)= (1)(x7+x6+x4+x2+1) (mod x8+x4+x3+x+1)= x7+x6+x4+x2+1→ 11010101

(“02”⊗ “4B”) = (x)(x6 + x3 + x+1) (mod x8 + x4 + x3 + x+1) = x7 + x4 + x2 + x→ 10010110

(“03”⊗“AF”) = (x+1)(x7 +x5 +x3 +x2 +x+1) (mod x8 +x4 +x3 +x+1) = x7 +x6 +x5 +x3 +x→
11101010

(“01”⊗“5E”) = (1)(x6+x4+x3+x2+x) (mod x8+x4+x3+x+1) = x6+x4+x3+x2+x→ 01011110

Finalment, fem la XOR:

11010101⊕10010110⊕11101010⊕01011110⊕11110111→ f 7

Concretament, el resultat de tots els elements de la primera columna és:
(02⊗d5)⊕ (03⊗4b)⊕ (01⊗a f )⊕ (01⊗5e)
(01⊗d5)⊕ (02⊗4b)⊕ (03⊗a f )⊕ (01⊗5e)
(01⊗d5)⊕ (01⊗4b)⊕ (02⊗a f )⊕ (03⊗5e)
(03⊗d5)⊕ (01⊗4b)⊕ (01⊗a f )⊕ (02⊗5e)

=


9d
f 7
39
3c


I el resultat de la funció MixColumns sobre tota la matriu d’estat és:

MixColumns(S) =


9d 28 91 00
f 7 7 f 78 a6
39 c1 6c c6
3c aa 25 a5


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4.2.7 Generació de subclaus

A l’igual que la majoria de criptosistemes en bloc, l’algorisme de Rijndael treballa amb diferents subclaus en
cada iteració. Aquestes subclaus s’obtenen per l’aplicació d’una funció d’ampliació a la clau de xifratge
inicial.

La funció d’expansió genera, a partir de les Nk paraules de 32 bits de clau de xifratge, K =(K0,K1, . . . ,KNk−1),
una clau estesa W = (W0,W1, . . . ,W4(Nr+1)−1) que conté 4(Nr+ 1) paraules de 32 bits. Cada iteració de
l’algorisme de xifrat farà servir 4 paraules de 32 bits i caldran 4 paraules addicionals per a la inicialització.
Si denotem per K(i) cada una de les subcadenes de W de 4 paraules de 32 bits tindrem que K(i) és la subclau
que s’utilitza en la i-èssima iteració. Gràficament les subclaus de cada iteració en relació amb la clau estesa
es poden expressar com:

W = ( W0,W1,W2,W3, W4,W5,W6,W7, . . . W4Nr, . . . ,W4(Nr+1)−1 )︸ ︷︷ ︸
K(0)

︸ ︷︷ ︸
K(1)

︸ ︷︷ ︸
K(Nr)

Els paràmetres
Nk i Nr

Recordem que els paràmetres (Nk,Nr), que representen respectivament la mida de la
clau en paraules de 32 bits i el número d’iteracions, poden prendre els valors (4,10),
(6,12) i (8,14).

Així, la transformació inicial utilitza la subclau K(0) formada per les primeres 4 paraules de W i en cada
una de les Nr iteracions s’utilitzen 4 paraules. D’aquesta manera, per valors d’Nk de 4, 6 i 8 es generaran,
respectivament, claus exteses W de 44, 52 i 60 paraules de 32 bits (que corresponen a 1408, 1664 i 1920
bits).

L’algorisme d’expansió de clau consta de dues fases:

• Fase d’inicialització, on la clau de xifratge és copia integrament a les primeres posicions de la clau
extesa. És a dir:

Wi = Ki,∀i = 0, . . . ,Nk−1

• Fase d’expansió, on s’agafa l’última paraula calculada i s’extén. L’algorisme que implementa aquesta
fase queda descrit pel següent pseudocodi:

f o r ( i = Nk ; i < 4 ( Nr + 1 ) ; i ++)
temp =Wi−1
i f i = 0 mod Nk t h e n

temp = SubWord(RotWord(temp))⊕Rcon[i/Nk]
e l s e i f ( ( Nk > 6 ) and ( i mod Nk = 4 ) ) t h e n

temp = SubWord(temp)
e n d i f
Wi =Wi−Nk⊕ temp

La fase d’expansió fa servir dues funcions: SubWord i RotWord. La funció SubWord és la mateixa funció
que ByteSub (definida anteriorment). La funció RotWord simplement fa una permutació cíclica a la paraula
de 4 bytes, és a dir, si tenim [a0,a1,a2,a3] com a entrada, la sortida serà [a1,a2,a3,a0]. D’altra banda també
es fa servir la constant Rcon[i] que val Rcon[i] = [xi−1,“00”,“00”,“00”]. Recordeu que x en hexadecimal
val “02” ja que correspon a la representació en binari de 00000010.

L’esquema següent resumeix el procés d’expansió de claus per al cas Nk = 4, és a dir, per a claus de 128
bits. En aquest cas, si considerem la clau K = (K0K1K2K3), aleshores els valors W0 . . .W3 contindrien la clau
inicial K, i la resta de valors (fins a W43) es calcularien en funció d’aquestes quatre paraules inicials.

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


100 Capítol 4. Les xifres de bloc

Figura 4.9: Esquema d’expansió de claus de l’AES per a Nk = 4

Noteu que l’esquema inclou la funció f , que correspon a aplicar SubWord(RotWord(temp))⊕Rcon[i/Nk]
sobre el valor que es rep a l’entrada.

Exemple 4.6 Càlcul de l’expansió de claus

Suposem que la longitud de la clau és de 128 bits, és a dir, Nk = 4 paraules de 32 bits i que la clau de
xifrat (representada en hexadecimala) correspon a:

K = 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F︸ ︷︷ ︸
K0

︸ ︷︷ ︸
K1

︸ ︷︷ ︸
K2

︸ ︷︷ ︸
K3

Amb aquests paràmetres tenim que el nombre d’iteracions és Nr = 10. Això vol dir que la clau extesa W
tindrà 4 · (10+1) = 44 paraules de 32 bits.

Denotant per K(i) la clau que es fa servir a l’i-èssima iteració. Els primers bytes de la clau extesa són els
mateixos que els de la clau de xifratge:
W0 = 00 01 02 03
W1 = 04 05 06 07
W2 = 08 09 0A 0B
W3 = 0C 0D 0E 0F
Per tant:
K(0) =W0W1W2W3 = 00010203 04050607 08090A0B 0C0D0E0F = K Aquestes quatre paraules són
les que es fan servir en la transformació inicial de l’algorisme.

La segona subclau serà:
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W4 =W0⊕SubWord(RotWord(W3))⊕Rcon[1]
SubWord(RotWord(W3)) = RotWord(0C 0D 0E 0F) = 0D 0E 0F 0C

SubWord(0D 0E 0F 0C) = (D7 AB 76 FE)

W4 = 00 01 02 03⊕D7 AB 76 FE⊕01 00 00 00= D6 AA 74 FD

W5 =W1⊕W4 = 04 05 06 07⊕D6 AA 74 FD= D2 AF 72 FA

W6 =W2⊕W5 = 08 09 0A 0B⊕D2 AF 72 FA= DA A6 78 F1

W7 =W3⊕W6 = 0C 0D 0E 0F⊕DA A6 78 F1= D6 AB 76 FE

Per tant, la subclau K(1) = D6 AA 74 FD D2 AF 72 FA DA A6 78 F1 D6 AB 76 FE.
La resta de la clau ampliada es calcula de la mateixa manera.

aRecordeu que cada caràcter hexadecimal permet representar 4 bits (és a dir, valors des de 0 fins a 15).

Exercici 4.6 Suposem que la clau de xifratge de 192 bits d’un xifrador AES expressada en hexadecimal
és la següent:
8E 73 B0 F7 DA 0E 64 52 C8 10 F3 2B 80 90 79 E5 62 F8 EA D2 52 2C 6B 7B. Doneu-
ne les dues primeres subclaus, és a dir, K(0) i K(1).

Exercici 4.7 Donat un xifrador Rijndael amb clau de xifratge K i un bloc de text per xifrar B:

K = 2B 7E 15 16 28 AE D2 A6 AB F7 15 88 09 CF 4F 3C
B = 32 43 F6 A8 88 5A 30 8D 31 31 98 A2 E0 37 07 34
Quantes iteracions cal fer per xifrar aquest bloc de text en clar amb aquesta clau? Quina és la matriu
d’estat a l’inici de la segona iteració?

4.2.8 Desxifrat

En el subapartats anteriors hem definit amb tot detall les operacions de xifratge de l’AES. Totes les funcions
que s’utilitzen en el procés de xifratge (ByteSub, ShiftRow, MixColumn i AddRoundKey) són invertibles i,
per tant, se’n pot definir la corresponent funció inversa.

Si les funcions definides en el xifratge s’apliquen en l’ordre oposat al que s’executen en el procés de xifratge,
obtenim el procés de desxifratge del criptosistema.

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


102 Capítol 4. Les xifres de bloc

4.3 Resum

En aquest capítol hem descrit el funcionament i les característiques principals dels esquemes de xifratge de
bloc. En primer lloc n’hem descrit la seva estructura general. Després, hem passat a detallar com es poden
fer servir les xifres de bloc per a xifrar textos de mida superior al bloc, descrivint diferents modes d’operació:
ECB, CBC, CFB, OFC i CTR. Finalment, hem presentat el criptosistema de bloc més utilitzat avui en dia,
l’AES, tot detallant-ne tant l’arquitectura com les funcions internes que fa servir.
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4.4 Solucions dels exercicis

Exercici 4.1:

En primer lloc, procedim a separar el missatge en blocs de 2 bits, la mida de bloc de la funció de xifrat:

m = 10 01 10 01 00 11 00 00

Després procedim a aplicar la funció de xifrat a cada bloc individual, i concatenem els resultats:

c = 00 11 00 11 01 10 01 01

Exercici 4.2:

En primer lloc, procedim a separar el missatge en blocs de 2 bits. Després, per cada bloc, realitzem una xor
amb el bloc xifrat anterior (fent servir el vector inicial com a bloc xifrat anterior per al primer bloc, M1).
Finalment, apliquem el xifrador de bloc sobre la sortida de la xor. El procés a seguir és doncs:

Bloc Mi⊕Ci−1 Ci = E(Mi⊕Ci−1)
M1 = 10 M1⊕C0 = 10⊕10 = 00 E(00) = 01
M2 = 01 M2⊕C1 = 01⊕01 = 00 E(00) = 01
M3 = 10 M3⊕C2 = 10⊕01 = 11 E(11) = 10
M4 = 01 M4⊕C3 = 01⊕10 = 11 E(11) = 10
M5 = 00 M5⊕C4 = 00⊕10 = 10 E(10) = 00
M6 = 11 M6⊕C5 = 11⊕00 = 11 E(11) = 10
M7 = 00 M7⊕C6 = 00⊕10 = 10 E(10) = 00
M8 = 00 M8⊕C7 = 00⊕00 = 00 E(00) = 01

El text xifrat correspon a la concatenació dels blocs xifrats: 0101101000100001.

Exercici 4.3:

En aquest cas, la mida de bloc del criptosistema és de 2 bits, pel que els blocs de text a xifrar poden ser
com a molt de 2 bits. Agafem doncs blocs de text a xifrar de 2 bits i procedim a realitzar el procés de xifrat.
Particionem el missatge M en blocs de 2 bits, i fem una xor de cada bloc amb el resultat de xifrar el bloc
anterior, utilitzant el vector inicial com a bloc anterior per a la primera iteració:

Bloc E(Ci−1) Ci = E(Ci−1)⊕Mi
M1 = 10 E(C0) = E(10) = 00 M1⊕E(C0) = 10⊕00 = 10
M2 = 01 E(C1) = E(10) = 00 M2⊕E(C1) = 01⊕00 = 01
M3 = 10 E(C2) = E(01) = 11 M3⊕E(C2) = 10⊕11 = 01
M4 = 01 E(C3) = E(01) = 11 M4⊕E(C3) = 01⊕11 = 10
M5 = 00 E(C4) = E(10) = 00 M5⊕E(C4) = 00⊕00 = 00
M6 = 11 E(C5) = E(00) = 01 M6⊕E(C5) = 11⊕01 = 10
M7 = 00 E(C6) = E(10) = 00 M7⊕E(C6) = 00⊕00 = 00
M8 = 00 E(C7) = E(00) = 01 M8⊕E(C7) = 00⊕01 = 01

El text xifrat correspon a la concatenació dels blocs xifrats: 1001011000100001.

Exercici 4.4:

En aquest cas, la mida de bloc del criptosistema és de 2 bits, pel que els blocs de text a xifrar poden ser
com a molt de 2 bits. Agafem doncs blocs de text a xifrar de 2 bits i procedim a realitzar el procés de xifrat.
Particionem el missatge M en blocs de 2 bits, i fem una xor de cada bloc Mi amb el resultat de xifrar vi, on
vi = E(vi−1), amb v0 =V I:
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Bloc vi = E(vi−1) Ci = vi⊕Mi
M1 = 10 v1 = E(v0) = E(10) = 00 v1⊕M1 = 00⊕10 = 10
M2 = 01 v2 = E(v1) = E(00) = 01 v2⊕M2 = 01⊕01 = 00
M3 = 10 v3 = E(v2) = E(01) = 11 v3⊕M3 = 11⊕10 = 01
M4 = 01 v4 = E(v3) = E(11) = 10 v4⊕M4 = 10⊕01 = 11
M5 = 00 v5 = E(v4) = E(10) = 00 v5⊕M5 = 00⊕00 = 00
M6 = 11 v6 = E(v5) = E(00) = 01 v6⊕M6 = 01⊕11 = 10
M7 = 00 v7 = E(v6) = E(01) = 11 v7⊕M7 = 11⊕00 = 11
M8 = 00 v8 = E(v7) = E(11) = 10 v8⊕M8 = 10⊕00 = 10

El text xifrat correspon a la concatenació dels blocs xifrats: 1000011100101110.

Exercici 4.5:

En aquest cas, com que la mida de bloc és molt petita, farem servir directament un comptador que s’in-
crementa d’un en un, sense incorporar cap nonce. Noteu que el comptador només té 4 valors, pel que la
seqüència és repeteix. En una situació real, cal evitar aquest fet ja que compromet la seguretat del sistema.

Procedim doncs a particionar el missatge M en blocs de 2 bits, i fem una xor de cada bloc Mi amb el resultat
de xifrar vi, on vi és un comptador cíclic que s’inicia amb el valor 00 i s’incrementa per cada nou bloc a
xifrar:

Bloc vi = E(i−1 mod 4) Ci = vi⊕Mi
M1 = 10 v1 = E(00) = 01 v1⊕M1 = 01⊕10 = 11
M2 = 01 v2 = E(01) = 11 v2⊕M2 = 11⊕01 = 10
M3 = 10 v3 = E(10) = 00 v3⊕M3 = 00⊕10 = 10
M4 = 01 v4 = E(11) = 10 v4⊕M4 = 10⊕01 = 11
M5 = 00 v5 = E(00) = 01 v5⊕M5 = 01⊕00 = 01
M6 = 11 v6 = E(01) = 11 v6⊕M6 = 11⊕11 = 00
M7 = 00 v7 = E(10) = 00 v7⊕M7 = 00⊕00 = 00
M8 = 00 v8 = E(11) = 10 v8⊕M8 = 10⊕00 = 10

El text xifrat correspon a la concatenació dels blocs xifrats: 1110101101000010.

Exercici 4.6:

Atès que la clau de xifratge és de 192 bits, el nombre de paraules de 32 bits de la clau val Nk = 6; per tant,
haurem d’aplicar l’algorisme per al cas Nk ≤ 6.

Els primers bits de la clau estesa són exactament els mateixos bits de la clau de xifratge:

W0 = 8E 73 B0 F7

W1 = DA 0E 64 52

W2 = C8 10 F3 2B

W3 = 80 90 79 E5

W4 = 62 F8 EA D2

W5 = 52 2C 6B 7B

Per tant:

K(0) =W0W1W2W3W4W5 =

= 8E73B0F7 DA 0E 64 52 C810F32B 809079E5 62F8EAD2 522C6B7B=

= K
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Si apliquem l’algorisme per al cas Nk ≤ 6 amb els valors Wi anteriors obtenim:

W6 =W0⊕SubWord(RotWord(W5))⊕Rcon[1]
RotWord(W5) = RotWord(52 2C 6B 7B) = 2C 6B 7B 52

SubWord(2C 6B 7B 52) = (71 7F 21 00)

W6 = 8E 73 B0 F7⊕71 7F 21 00⊕01 00 00 00=

= 8E 73 B0 F7⊕70 7F 21 00= FE 0C 91 F7

W7 =W1⊕W6 = DA 0E 64 52⊕FE 0C 91 F7= 24 02 F5 A5

W8 =W2⊕W7 = C8 10 F3 2B⊕24 02 F5 A5= EC 12 06 8E

W9 =W3⊕W8 = 80 90 79 E5⊕EC 12 06 8E= 6C 82 7F 6B

W10 =W4⊕W9 = 62 F8 EA D2⊕6C 82 7F 6B= 0E 7A 95 B9

W11 =W5⊕W10 = 52 2C 6B 7B⊕0E 7A 95 B9= 5C 56 FE C2

Per tant, la subclau:
K(1) = FE 0C 91 F7 24 02 F5 A5 EC 12 06 8E 6C 82 7F 6B 0E 7A 95 B9 5C 56 FE C2.

Exercici 4.7:

Caldrà fer deu iteracions per a xifrar aquest bloc de text en clar, ja que tant la longitud de la clau és de 16
bytes; per tant, Nk = 4.

En la transformació inicial s’aplica la transformació addRoundKey. En el nostre cas:

AddRoundKey(S,K(0)) =


32 88 31 e0
43 5a 31 37
f 6 30 98 07
a8 8d a2 34

⊕


2b 28 ab 09
7e ae f 7 c f
15 d2 15 4 f
16 a6 88 3c

=


19 a0 9a e9
3d f 4 c6 f 8
e3 e2 8d 48
be 2b 2a 08

= S1

El resultat de la primera iteració correspondrà a executar les funcions ByteSub, ShiftRow, MixColumns i
AddRoundKey. El resultat de la funció ByteSub sobre la matriu d’estat S1 és:

ByteSub




19 a0 9a e9
3d f 4 c6 f 8
e3 e2 8d 48
b3 2b 2a 08


=


d4 e0 b8 1e
27 b f b4 41
11 98 5d 52
ae f 1 e5 30

= S2

El resultat de la funció ShiftRow sobre la matriu d’estat S2 és:

Shi f tRow




d4 e0 b8 1e
27 b f b4 41
11 98 5d 52
ae f 1 e5 30


=


d4 e0 b8 1e
b f b4 41 27
5d 52 11 98
30 ae f 1 e5

= S3

El resultat de la funció MixColumns sobre la matriu d’estat S3 és:

MixColumns




d4 e0 b8 1e
b f b4 41 27
5d 52 11 98
30 ae f 1 e5


=


04 e0 48 28
66 cb f 8 06
81 19 d3 26
e5 9a 7a 4c

= S4

Ara ens cal calcular el valor de la clau de la segona iteració, és a dir, el valor K(1). Per fer-ho, aplicarem
l’algorisme d’expansió de claus descrit en l’apartat 4.2.7, que ens permetrà obtenir la matriu:
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
a0 88 23 2a
f a 54 a3 6c
f e 2c 39 76
17 b1 39 05


Una descripció gràfica per a la generació d’aquesta subclau la podeu trobar en aquest enllaç.

Finalment, el resultat de la funció AddRoundKey sobre la matriu d’estat S4 resulta:


04 e0 48 28
66 cb f 8 06
81 19 d3 26
e5 9a 7a 4c

⊕


a0 88 23 2a
f a 54 a3 6c
f e 2c 39 76
17 b1 39 05

=


a4 68 6b 02
9c 9 f 5b 6a
7 f 35 ea 50
f 2 2b 43 49


Així, el valor de la matriu d’estat a l’inici de la segona iteració valdrà:

S =


a4 68 6b 02
9c 9 f 5b 6a
7 f 35 ea 50
f 2 2b 43 49


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5. Funcions hash

Les funcions hash són una primitiva criptogràfica cada vegada més important en diferents protocols i
aplicacions criptogràfiques. Com veurem, una funció hash és una funció que permet obtenir un valor fixat
de mida reduïda a partir d’una entrada arbitràriament gran. Gràcies a les propietats que ofereixen a aquest
valor de sortida, els usos de les funcions hash són múltiples, des de la seva utilització per a l’autentificació
d’informació sense l’ús de signatures digitals (fent servir criptografia simètrica) fins a la verificació de proves
de treball en criptomonedes, passant per la generació de contrasenyes o la reducció de la complexitat de
càlcul en un procés de signatura digital.

L’ús de les funcions hash cada vegada en més contextos implica que la seva importància també hagi anat
augmentant. Com és sabut, la seguretat que ofereix un sistema criptogràfic és equivalent a la seguretat que
ofereix el seu component més feble o insegur. Per tant, a mida que les funcions hash han anat incloent-se en
nous sistemes, la robustesa de les funcions hash afecta de ple en la seguretat d’aquests sistemes. Aquest
punt és molt rellevant perquè una vulnerabilitat en una funció hash implicaria una vulnerabilitat en tots els
sistemes criptogràfics que l’utilitzen. Per exemple, si un atacant pogués predir la sortida d’una funció hash
donada una entrada fixada, podria arribar a trencar la seguretat d’algunes criptomonedes.

En aquest capítol definirem què són les funcions hash i quines propietats presenten. Posteriorment, veurem
com es poden construir utilitzant com a base un criptosistema de bloc. Repassarem també quines són les
funcions hash més utilitzades, funcions hash construïdes específicament per a aquest propòsit i que no es
basen en cap criptosistema de bloc. En concret, veurem en detall el funcionament de la funció hash SHA256.
Finalment, enumerarem algunes de les múltiples aplicacions que tenen les funcions hash i també algunes
propietats addicionals que es poden demanar a les funcions hash que són útils en algunes de les aplicacions
esmentades.

5.1 Les funcions hash

Com ja hem avançat, les funcions hash s’utilitzen en múltiples aplicacions i la raó d’aquest fet recau en les
seves propietats. En aquest apartat definirem acuradament què són les funcions hash i quina diferència hi ha
entre una funció hash i una funció hash criptogràfica.

També descriurem el concepte d’atac a una funció hash i explicarem com n’indiquem el nivell de seguretat.
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5.1.1 Definicions

.

Una funció hash de mida n és una funció que pren com a entrada un missatge (o cadena)
d’una mida arbitràriament gran i en retorna una cadena de mida fixa n. A més, una funció
hash és eficientment calculable i determinista, és a dir, donades dues entrades iguals
sempre ens proporcionarà la mateixa sortida.

Mida d’una
funció hash

La mida de les funcions hash es determina en bits.

L’eficiència de les funcions hash és un element molt important ja que el seu ús està especialment indicat per
a reduir missatges de mida molt gran. Per aquest motiu, la facilitat per tractar aquest tipus de missatges tan
grans ha d’estar garantida per tal que la seva utilització no faci augmentar la complexitat del sistema que les
utilitza. D’altra banda, malgrat sembli innecessari indicar el caràcter determinista de les funcions hash, és
important ressaltar-lo perquè, com veurem més endavant, les funcions hash s’utilitzen de forma similar a un
oracle aleatori i això pot induir a pensar que el seu funcionament no és determinista.

Exemple 5.1 Exemple de funció hash

Un exemple de funció hash de mida 3 dígits decimals seria la següent: h(x) = x (mod 1000)

Aquesta funció hash retorna sempre, per a qualsevol mida de l’entrada, un valor fixat de 3 dígits, con-
siderant que representem el nombre amb tres dígits incloent els zeros que calgui davant. Per exemple,
h(8472937003) = 8472937003 (mod 1000) = 003.

De la mateixa manera, la funció h(x) = x (mod 2256) també seria una funció hash, en aquest cas de mida
256 bits.

Si bé les funcions hash tal com les acabem de definir tenen algunes aplicacions, la seva potència s’incrementa
quan se li afegeixen un seguit de propietats que conformen el que es coneix com a funció hash criptogràfica.

.

Una funció hash criptogràfica és una funció hash, h(x), amb les següents propietats:
1. Resistent a preimatge (o unidireccional): donat un valor y no és possible calcular

una x tal que h(x) = y.
2. Resistent a segones preimatges (o resistent a col·lisions febles): donat un valor x tal

que y = h(x), no és possible trobar un valor x′ tal que x′ ̸= x i que a més y = h(x′).
3. Resistent a col·lisions (o resistent a col·lisions fortes): no és possible trobar dos

valors x1 i x2 diferents (x1 ̸= x2) tals que h(x1) = h(x2).

Un punt important a destacar sobre les funcions hash criptogràfiques és que, tal i com hem vist en la seva
definició, no incorporen cap tipus de clau ni d’informació secreta. Donada una entrada, si coneixem de quina
funció hash es tracta, en podrem calcular la sortida sense cap problema. És important destacar aquest fet
perquè es pot pensar que, tractant-se d’una funció criptogràfica, cal que involucri una clau i en el cas de les
funcions hash no és així.

Funcions hash
i claus

Tot i que les funcions hash, per definició, no utilitzen cap clau, es poden utilitzar en
esquemes en les que se’ls associï una clau, tal i com veurem en l’apartat d’aplicacions
d’aquest mateix capítol.
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Exemple 5.2 Contraexemple de funció hash criptogràfica

Si ens fixem en les funcions hash que hem definit en l’exemple anterior, veurem que tot i ser funcions
hash, no són funcions hash criptogràfiques.

Si analitzem la funció h(x) = x (mod 1000) veiem que no compleix cap de les tres propietats que hem
enumerat. Per exemple, si prenem y = 345, és molt simple trobar una imatge x que retorni aquest valor
hash, en concret, qualsevol cadena que acabi en 345, com per exemple x = 642345. Per tant, la primera
propietat ja no es compleix. De fet, és trivial observar que la segona i la tercera tampoc es compleixen,
simplement per la simplicitat amb la que s’ha definit la funció. Per exemple, donat x = 3456 sabem que
y = h(3456) = 456 i és trivial trobar un valor x′ ̸= x tal que h(x′) = h(x), per exemple, x′ = 958456 (o
qualsevol cadena acabada en aquests tres nombres).

De fet, malgrat que definir les propietats d’una funció hash criptogràfica és força simple, no és gens fàcil
construir una funció que les complexi, com veurem més endavant quan analitzem com es construeixen les
funcions hash que s’utilitzen en l’actualitat.

De cara a simplificar tant la redacció com la lectura de la resta del capítol, abusarem del llenguatge i
assumirem que totes les funcions hash a les que fem referència a partir d’aquest punt són funcions hash
criptogràfiques, excepte quan diguem explícitament el contrari.

5.1.2 Propietats

És important aturar-se a mirar amb deteniment les tres propietats de les funcions hash criptogràfiques ja que
l’anàlisi del seu detall permet veure que són més diferents del que aparenten.

En primer lloc, és important remarcar que una funció hash no pot ser una funció bijectiva sinó que únicament
és una funció exhaustiva. És a dir, tot element té una imatge però no és cert que donada una imatge només hi
hagi una sola antiimatge. Aquest fet és obvi si pensem que el conjunt de sortida pot ser de mida arbitrària (és
a dir, tan gran com es vulgui) i el d’arribada té mida fixada n, més petita que la del conjunt de sortida. Per
tant, si hem de poder calcular el hash de qualsevol dels elements de sortida, donat que hi ha menys elements
al conjunt d’arribada, forçosament se’n repetiran, tal i com es mostra en la Figura 5.1:

Conjunt de sortida Conjunt d'arribada

Funció hash

Figura 5.1: L’exhaustivitat de les funcions hash

Un altre punt a analitzar és la diferència entre la segona i la tercera propietat de les funcions hash criptogràfi-
ques, és a dir, la diferència entre col·lisions febles i fortes. Aparentment, les dues propietats poden semblar la
mateixa però una anàlisi més acurada ens mostra que ni de bon tros són iguals. La diferència entre aquestes
dues propietats s’explica amb el que es coneix com la paradoxa de l’aniversari.

La paradoxa de l’aniversari ens diu que si volem que, amb probabilitat del 50%, almenys dues persones
d’un grup tinguin l’aniversari el mateix dia, només cal que el grup tingui 23 persones (suposant uniforme la
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distribució dels naixements al llarg dels dies de l’any). Aquests valors contradiuen la nostra intuïció que
semblaria que el nombre de persones hagués de ser molt més gran, per exemple, proper o més gran a 183 que
és la meitat de dies que té l’any. De fet, la contradicció ve de pensar que aquest problema pot ser equivalent a
trobar dues persones que tinguin l’aniversari en un dia concret de l’any. Si fem l’analogia amb les propietats
de les funcions hash criptogràfiques, el primer cas correspondria a la tercera propietat (colisions fortes) i el
segon cas a la segona (col·lisions febles). Ara bé, si calculem detingudament les dues probabilitats veurem
que no s’assemblen gens.

Exemple 5.3 Càlcul de les probabilitats en la paradoxa de l’aniversari.

Donat un grup de n = 23 persones, si triem una d’elles a l’atzar, quina és la probabilitat que una de les
altres persones del grup tingui l’aniversari el mateix dia (fixeu-vos que això és el cas de les col·lisions
febles).

La probabilitat que una persona tingui l’aniversari aquell dia fixat és fàcil de calcular, ja que és 1
365 si

suposem naixements uniformes i anys de no traspàs. Per tant, la probabilitat que l’aniversari d’aquesta
persona no sigui el dia triat serà el complementari, és a dir, 1− 1

365 . Si ara mirem per a una altra
persona del grup, com que el naixement de les dues és independent, veiem que les probabilitats valen
el mateix i, per tant, la probabilitat que l’aniversari de dues persones sigui diferent del dia fixat serà
(1− 1

365 )
2. Si repetim l’argument, les 22 persones restants tindran l’aniversari en un dia diferent al fixat

amb probabilitat (1− 1
365 )

22 = 0,94. Així doncs, alguna persona tindrà l’aniversari al dia fixat amb
probabilitat (1−0,94) = 0,06, és a dir, hi ha un 6% de probabilitat que un d’ells tingui l’aniversari en el
mateix dia d’un dels altres membres del grup, un cop el membre ja s’ha fixat prèviament.

Ara bé, quina és la probabilitat que donat un grup de n = 23 persones, com a mínim dues d’elles tinguin
l’aniversari el mateix dia. Aquest seria el cas de les col·lisions fortes.

Si prenem dues persones, la probabilitat que tinguin l’aniversari en el mateix dia és 1
365 i per tant, la

probabilitat que el tinguin en un dia diferent és 1− 1
365 . Ara bé, si afegim una tercera persona, la

probabilitat que aquesta nova tingui l’aniversari en un dia diferent de les dues serà de 2
365 , però com que

les dues primeres també han de tenir l’aniversari en un dia diferent, ens queda que per a que les tres
persones tinguin l’aniversari en un dia diferent la probabilitat és

(
1− 1

365

)
·
(
1− 2

365

)
. Si ho generalitzem

a les 23 persones, ens queda que la probabilitat que totes tinguin l’aniversari en un dia diferent és de(
1− 1

365

)
· ... ·

(
1− 23−1

365

)
= 0,493. Per tant, la probabilitat que almenys dues tinguin l’aniversari en el

mateix dia és de (1−0,493) = 0,507.

Així, en aquest cas, amb 23 persones hi ha un 50% de probabilitat que dos d’elles tinguin l’aniversari el
mateix dia. Fixeu-vos que això és molt més del que teníem en el primer cas.

Exercici 5.1 Calculeu la probabilitat que en un grup de 50 persones triades a l’atzar, dues d’elles tinguin
l’aniversari el mateix dia. Quina és la probabilitat que almenys una d’elles hagi nascut el dia 1 de gener?

5.1.3 Seguretat de les funcions hash

Per parlar de seguretat d’una funció hash ens cal primer definir què s’entén per atac a una funció hash.

.

Un atac a una funció hash criptogràfica és aquell que intenta trencar alguna de les seves
propietats: unidireccionalitat o no-existència de colisions (febles o fortes).

Com ja hem comentat en l’apartat anterior, és molt més probable trobar dos elements diferents que proporci-
onin la mateixa imatge que no pas fixar-ne un i trobar un altre element que retorni la mateixa imatge que
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l’element fixat. Per tant, la manera més fàcil d’atacar un funció hash (des del punt de vista probabilístic) és
per mitjà de la cerca de col·lisions fortes. Per tant, com a conseqüència de la paradoxa de l’aniversari, podem
obtenir la següent fórmula:

t ≈ 2
n+1

2

√
ln
(

1
1−λ

)

que ens proporciona el nombre de missatges t als quals hem de calcular-los el hash per trobar una col·lisió
amb una probabilitat λ , on n és la mida en bits de la funció hash.

En la Taula 5.1 veiem les dades per a diferents mides de funció hash.

Taula 5.1: Nombre de missatges per aconseguir col·lisions.
Mida de la funció hash (n)

λ 128 bits 160 bit 256 bits 384 bits 512 bits

0,5 265 281 2129 2193 2257

0,9 267 282 2130 2194 2258

Així, per exemple, si tenim una funció hash de mida 160 bits, ens caldrà calcular 281 missatges per trobar
una col·lisió amb una probabilitat de 0,5. Però només 282 perquè la probabilitat de trobar-la sigui de 0,9. Per
tant, com a conclusió, veiem que per a que una funció hash tingui un nivell de seguretat d’x bits necessitarem
que la seva mida sigui, com a mínim, de 2x.

Finalment, és important indicar que malgrat que trobar una única col·lisió en una funció hash és un fet que en
posa en entredit la seva seguretat, al tractar-se d’un fet probabilístic, cal analitzar com s’ha trobat la col·lisió
ja que una funció hash es considera trencada només quan es pot reduir la complexitat de l’atac a valors més
petits dels que determina la Taula 5.1.

5.2 Construcció de funcions hash

Les propietats que es demanen a una funció hash criptogràfica, en particular les propietats que fan referència
a col·lisions, ja donen una idea de la complexitat que poden arribar a tenir aquestes funcions. Cal recordar
que una funció hash no incorpora cap clau de manera que qualsevol usuari coneix el funcionament exacte i
complert de la funció (no hi ha cap paràmetre desconegut) i per tant un atacant pot estudiar la construcció i
funcionament per atacar-la. És per aquest motiu, que la complexitat en la definició d’aquest tipus de funcions
és molt elevada, com podrem veure al llarg d’aquest capítol.

Tot i la seva complexitat, les funcions hash tenen una estructura general estàndard que s’esquematitza en la
Figura 5.2.
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Figura 5.2: Estructura general d’una funció hash
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Com es pot veure en la figura, les funcions hash processen els missatges partint-los en blocs (de forma
similar a com fan els criptosistemes de bloc), tractant cada bloc de forma específica i combinant les sortides
que proporciona la funció per cada bloc amb la resta de sortides dels altres blocs (també de forma semblant
als modes de xifrat de bloc).

La base de les funcions hash és una funció interna que s’identifica com a funció de compressió. Aquesta
funció processa cada bloc del missatge a tractar proporcionant-ne una sortida de mida igual o més petita
que el propi bloc, d’aquí la seva denominació de compressió. La mida de la sortida d’aquesta funció de
compressió serà la mida de la pròpia funció hash.

Depenent de com es dissenyi aquesta funció de compressió, les funcions hash es poden dividir en dos grups:
funcions hash basades en criptosistemes de bloc i funcions hash de disseny específic.

5.2.1 Funcions hash basades en criptosistemes de bloc

Una manera de construir una funció hash és partint d’un criptosistema de bloc. Per a fer-ho, trobem diferents
tècniques que poden combinar de diferent manera les sortides del criptosistema i el mateix bloc que s’està
tractant.

b bits
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H1

Funció 
xifrat 

en bloc

valor hash final

missatge

H2

Funció 
xifrat 

en bloc

b bits

H3

Funció 
xifrat 

en bloc

b bits

Hn

Funció 
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en bloc

b bits…….

…….

…….

g

g
g g

bloc

clau clau clau clau

bloc bloc bloc

Figura 5.3: Funció hash a partir de criptosistema de bloc

En la Figura 5.3 es pot veure l’esquema d’una funció hash a partir d’un criptosistema de bloc. En la figura,
el valor b indica la mida dels blocs amb el que es partirà el missatge a tractar. Per tant, com que cada bloc
serà l’entrada del criptosistema de bloc, el criptosistema de bloc ha de poder treballar amb blocs de mida b.
D’altra banda, el criptosistema de bloc també treballarà amb una clau. Aquesta clau té una mida l que pot
coincidir, o no, amb la mida b del bloc. En el cas que les dues mides no coincideixin, com que s’utilitza
la sortida d’un bloc com a clau del següent bloc ens caldrà una funció g que converteixi cadenes de b-bits
a cadenes d’l-bits. En el cas que la mida del bloc sigui igual a la mida de la clau, podem prescindir de la
funció g, simplement suposant que és la funció identitat. Finalment, el signe ⊕ del gràfic representa una
operació XOR, fet que no representa un problema perquè la mida dels dos blocs que arriben a cada XOR
sempre és la mateixa. Per últim, el gràfic també mostra que la mida de la funció hash és justament b, que és
la mida del valor final de la sortida de l’esquema i que també coincideix amb la mida del criptosistema de
bloc que estem fent servir.

Padding En el cas que la mida del missatge no sigui múltiple del bloc, caldrà fer el padding del
missatge per forçar-ho.

De forma més analítica, podem expressar l’esquema de la Figura 5.3 de la següent manera. Partint d’un
missatge d’entrada m, el dividim en blocs de b bits obtenint m1,m2, · · · ,mn i per a cada bloc mi, per a
i = 1, · · · ,n, apliquem la següent funció definida de forma recursiva com:

hi = Eg(hi−1)(mi)⊕hi−1
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on Ek(·) és la funció de xifrat en bloc amb la clau k i h0 = V I, on V I és un vector inicial públicament
especificat per a la funció hash en qüestió.

Exemple 5.4 Exemple de funció hash basada en un criptosistema de bloc

Definició del criptosistema de bloc:
Definim un criptosistema en bloc que treballa sobre blocs de 4 bits i denotem per m0m1m2m3 un bloc de
text en clar. La mida de la clau d’aquest criptosistema serà de 2 bits, que denotarem per k = k0k1. La
nostra funció de xifrat serà una XOR del text en clar i la clau de la següent manera:

c = Ek(m) = c0c1c2c3 = (m0m1m2m3)⊕ k0k1k1k0

D’aquesta manera, per exemple, si tenim m = 0111 i k = 01 el valor xifrat correspondrà a c = Ek(m) =
0111⊕0110 = 0001.

Definició de la funció hash:
Definirem la nostra funció hash, h(·) de mida n = 4 bits, utilitzant el criptosistema de bloc definit
anteriorment i el vector inicial V I = 0111. La funció g(·) rebrà 4 bits d’entrada i en retornarà 2 de la
següent manera g(x0x1x2x3) = (x0⊕ x1)(x2⊕ x3).

En base a aquests paràmetres, veiem com es calcularia el valor hash del missatge m = 11001110, és a dir
h(11001110).

En primer lloc, partirem el missatge en blocs de 4 bits. En aquest cas tenim dos blocs m1 = 1100 i
m2 = 1110.

Apliquem la funció de xifrat sobre m1 amb la clau g(V I). En aquest cas, g(V I) = g(0111) = (0⊕1)(1⊕
1) = 10 per tant la clau que utilitzarem per al primer bloc serà k = 10 i el resultat del xifrat del primer bloc
serà c = Ek(m1) = E10(1100) = (1⊕1)(1⊕0)(0⊕0)(0⊕1) = 0101. Si ara fem la XOR amb h0 tenim
h1 = 0101⊕0111 = 0010.

Un cop processat el primer bloc podem processar el següent utilitzant, en aquest cas, l’expressió
Eg(h1)(m2)⊕h1 = Eg(0010)(1110)⊕0010 = E01(1110)⊕0010 = 1000⊕0010 = 1010.

Com que ja hem processat tots els blocs, ja hem obtingut el resultat final: h(11001110) = 1010.

En el gràfic de la figura següent es pot veure la versió gràfica dels càlculs:
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0010
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xor 
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missatge
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1110 
xor 

0110

1110

g

g

10 01

0101

1100 1110

0111

0010

0010
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Amb aquests tipus de construccions i utilitzant un criptosistema en bloc prou robust, podem crear funcions
hash. Per exemple, utilitzant un AES amb una mida de block de 256 bits podem obtenir una funció hash
amb una seguretat de 128 bits. De tota manera, a la pràctica i de forma general, s’utilitzen funcions hash de
disseny específic. com les que passem a descriure en el següent apartat.
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Exercici 5.2 Tenim un criptosistema de bloc que actua sobre blocs de 4 bits de longitud amb una mida
de clau, k, de 3 bits, és a dir k = k1k2k3 on ki ∈ {0,1}. La funció de xifrat queda definida per la següent
expressió:

Ek(m) = m⊕ kext

on kext s’obté a partir de la clau k amb la següent expressió:

kext = k1k2k3(k1⊕ k3)

Construïu una funció hash amb aquest criptosistema de bloc utilitzant la construcció de la Figura 5.3
prenent com a IV = 1111 i com a funció g(x1x2x3x4) = x2x3(x1⊕ x4).

Dibuixeu-ne l’esquema i calculeu el resultat h(01010101).

5.2.2 Funcions hash de disseny específic

Més enllà de poder construir una funció hash a partir d’un criptosistema de bloc, hi ha moltes funcions hash
que s’han definit específicament per a aquest propòsit. A continuació, llistem les més rellevants, donant una
breu informació sobre cada una d’elles.

Les funcions MD4 i MD5 (acrònim de Message Digest) són funcions criptogràfiques creades per Ronald
Rivest els anys 1990 i 1992, respectivament. Ambdues tenen una mida de 128 bits i processen blocs de dades
de 512 bits. Les primeres vulnerabilitats de l’MD4, definida en l’RFC 1320, van ser provades ja el 1991 i en
el 1995 ja es podien realitzar atacs de col·lisions en pocs segons fet que posteriorment va propiciar la retirada
de la funció, explicitada en l’RFC 6150. La funció MD5, definida en l’RFC 1321, va ser desenvolupada per
pal·liar les vulnerabilitats de l’MD4. De tota manera, en l’actualitat, l’MD5 es considera també insegura i el
seu ús està totalment desaconsellat ja que és fàcil trobar-ne col·lisions i, fins hi tot, generar certificats digitals
amb claus públiques diferents que tinguin el mateix valor hash MD5.

Certificats
digitals.

La descripció i ús dels certificats digitals s’inclou en el capítol: “Infraestructures de
clau pública”.

RIPEMD, acrònim de RACE Integrity Primitives Evaluation Message Digest, és una família de funcions
hash creades pels criptògrafs belgues Hans Dobbertin, Antoon Bosselaers i Bart Preneel l’any 1996 basades
en la funció MD4, incorporant un seguit de millores en base a les anàlisis de seguretat i atacs realitzats sobre
l’MD4. De les funcions de la família, la més coneguda i utilitzada és la RIPEMD-160, una funció hash de
mida 160 bits, tot i que el conjunt de la família inclou funcions de mida 128, 256 i 320 bits. Totes elles
processen el missatge amb blocs de 512 bits. L’ús d’aquesta funció, malgrat no conèixer-se’n cap atac, està
poc estès ja que té una mida igual que altres funcions estandarditzades, com ara el SHA-1.

WHIRLPOOL és una altra funció hash criptogràfica creada pels criptògrafs Vincent Rijmen i Paulo S. L. M.
Barreto l’any 2000. La mida d’aquesta funció és de 512 bits, la mateixa mida dels blocs que processa i la
seva estructura està basada en un criptosistema semblant a l’AES. Aquesta funció ha estat estandarditzada
per la International Organization for Standardization (ISO) i la International Electrotechnical Commission
(IEC) sota l’estàndard ISO/IEC 10118-3.

La família de funcions SHA

Els Secure Hash Algorithms són un conjunt de funcions hash que estan estandarditzades pel National Institute
of Standards and Technology (NIST) dels Estats Units. Aquestes funcions s’agrupen bàsicament en tres
grans grups: SHA-1, SHA-2 i SHA-3.

En el grup SHA-1 s’hi inclou una única funció hash de mida 160 bits. Aquesta funció va ser dissenyada per
la National Security Agency (NSA) per a la seva utilització en signatures digitals amb l’estàndard DSA. Des
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del 2010, però, a causa de les seves debilitats, no se’n recomana el seu ús.

El grup SHA-2, també dissenyat per la NSA, el formen essencialment dues funcions: la SHA-256 i la SHA-
512. A partir de la definició d’aquestes dues funcions, que tenen una mida de 256 i 512 bits respectivament,
l’estàndard de NIST també defineix un seguit de variants de diferents mides (SHA-224, SHA-384, SHA-
512/224, SHA-512/256) que s’aconsegueixen truncant els resultats del SHA-256 o del SHA-512 a més
d’utilitzar uns vectors inicials diferents.

Aquests dos primers grups, SHA-1 i SHA-2, estan detalladament descrits en l’estàndard FIPS 180-4: Secure
Hash Standard publicat pel NIST al març del 2012.

L’últim grup de funcions hash, el SHA-3, és el més nou i és un conjunt de funcions hash definides en
l’estàndard FIPS 202, publicat a l’agost del 2015. Està format per quatre funcions hash, SHA3-224, SHA3-
256, SHA3-384 i SHA3-512, on la numeració indica la mida en bits de cada funció. A diferència de les
funcions dels dos grups anteriors, la tria del SHA-3 es va realitzar a través d’una selecció pública i oberta en
la que van participar investigadors de tot el món, de forma semblant a la que es va realitzar per a la tria de
l’AES. En aquest cas, l’algorisme seleccionat va ser el KECCAK, proposat per Guido Bertoni, Joan Daemen,
Michaël Peeters, i Gilles Van Assche que és el que s’ha estandarditzat sota les sigles SHA-3.

5.3 L’estàndard SHA-256

En aquest apartat estudiarem en detall una de les funcions hash més utilitzades en l’actualitat: el SHA-256.
Veurem quines són les seves característiques i descriurem amb detall tot el seu funcionament.

Com ja hem comentat, el SHA-256 és una de les funcions hash definides en l’estàndard FIPS-180-4 publicat
pel NIST i que va ser desenvolupat al 2001 per la NSA. Com a característiques generals, el SHA-256 és
una funció hash de mida 256 bits que processa els missatges d’entrada en blocs de 512 bits. Pot processar
missatges de fins a 264 bits i utilitza un sistema de càlcul iteratiu amb un total de 64 iteracions.

L’estructura del SHA-256 segueix l’esquema mostrat en la Figura 5.2 amb una funció de compressió que
s’executa sobre cada bloc del missatge d’entrada, el resultat de la qual es combina amb el resultat de la
mateixa funció del bloc anterior.

Prèviament al processat de cada un dels blocs del missatge, el SHA-256 processa el missatge a tractar per tal
d’assegurar-se que la mida del missatge coincideix amb un nombre enter de blocs. Aquest procés és coneix
com a padding i es descriu en el següent apartat.

5.3.1 Padding del missatge

Quan s’utilitzen funcions que processen els missatges en blocs, pot succeir que la mida del missatge a tractar
no sigui un múltiple de la mida del bloc, és a dir, que quan dividim el missatge en blocs ens quedi un últim
bloc més petit que la mida del bloc amb el que treballa la funció. En aquests casos el que es fa és un procés
de farcit (en anglès padding). L’estàndard SHA-256 defineix, de la següent manera, com s’ha de realitzar
aquest procés.

Padding Tingueu en compte que tot i que el padding és una tècnica molt utilitzada per a funcions
que tracten els missatges en blocs, la manera com es fa aquest padding pot diferir en
cada cas. Per exemple, el padding que utilitza el SHA-256 és diferent del que utilitza
el SHA-512 i també diferent del que utilitza el criptosistema de bloc AES.

Suposem un missatge M de mida l bits, on l ̸= 0 mod 512. En aquest cas procedirem a:

1. afegir el bit 1 al final del missatge,
2. seguit per k bits a zero, on k = 448− (l +1) mod 512, prenent la solució més petita i no negativa,
3. afegir un bloc de 64 bits que sigui igual al nombre l expressat en binari.
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Exemple 5.5 Exemple de càlcul de padding en el SHA-256

Suposem qeu volem processar el missatge abc amb la funció hash SHA-256.

Prenem el missatge abc, que expressat en codi ASCII de 8 bits és:

01100001︸ ︷︷ ︸
a

01100010︸ ︷︷ ︸
b

01100011︸ ︷︷ ︸
c

Per tant, tenim que la mida del missatge l val l = 3 ·8 = 24 i com que no és 512 ens cal fer padding.

En primer lloc afegim el bit 1:

01100001︸ ︷︷ ︸
a

01100010︸ ︷︷ ︸
b

01100011︸ ︷︷ ︸
c

1

Ara, calculem el valor k com k = 448− (24+ 1) mod 512 = 423. És a dir, caldrà afegir 423 zeros al
missatge:

01100001︸ ︷︷ ︸
a

01100010︸ ︷︷ ︸
b

01100011︸ ︷︷ ︸
c

1 00 · · ·0︸ ︷︷ ︸
423 zeros

i finalment, caldrà afegir els 64 bits que falten fins a completar els 512 que necessitem. Aquests 64 bits
seran el valor de l en binari, és a dir l = 24(10 = 00 · · ·011000(2, de manera que el missatge final amb el
padding serà:

01100001︸ ︷︷ ︸
a

01100010︸ ︷︷ ︸
b

01100011︸ ︷︷ ︸
c

1 00 · · ·0︸ ︷︷ ︸
423 zeros

00 · · ·011000︸ ︷︷ ︸
64 bits

Mida màxima
dels missatges

Fixeu-vos que aquest mecanisme de padding implica que la mida màxima dels mis-
satges que pot tractar el SHA-256 és de 264 bits, ja que és el màxim valor que es pot
representar en la última part de la cadena de padding.

Exercici 5.3 Calculeu la cadena de bits que processarà la funció SHA256 una vegada s’ha realitzat el
padding al missatge d’entrada m = SALA, on els caràcters s’han codificat en ASCII amb 8 bits.

5.3.2 Funció de compressió del SHA-256

Tal com ja hem comentat, el SHA-256 treballa amb blocs de 512 bits els quals processa a través de la funció
de compressió. En aquesta funció de compressió podem identificar tres fases:

1. Expansió del bloc (block schedule).
2. Inicialització del buffer.
3. Procés de compressió.

En l’expansió del bloc és processen els 512 bits del bloc per tal d’obtenir-ne una cadena molt més llarga
de 2048 bits (64 paraules de 32 bits). En la inicialització del buffer es carreguen en memòria els valors
d’inicialització de la funció recurrent, valors definits en l’estàndard. Posteriorment, s’aplica el procés de
compressió a la cadena de 2048 bits.

Prèviament a detallar cada un d’aquests passos, definirem algunes funcions internes que s’utilitzen en cada
un dels processos que acabem d’enumerar.
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Definició de les funcions internes del SHA-256

En aquest apartat definirem un seguit de funcions que s’utilitzaran tant en la part d’expansió del bloc com en
el procés de compressió del SHA-256.

.

La funció ROT Rn(x) efectua una rotació circular a la dreta d’n bits.
La funció SHRn(x) és un operador lògic de desplaçament a la dreta: SHRn(x) = x ≫ n,
és a dir, mou n bits a la dreta omplint els nous bits amb zeros.

Evidentment, ambdues funcions treballen a nivell de bit.

Exemple 5.6 Exemple de càlcul de la funció ROT Rn(x)

Sigui x = abcde f gh una cadena de 8 bits i n = 3, aleshores
ROT R3(abcde f gh) = f ghabcde

Exemple de càlcul de la funció SHRn(x)

Sigui x = abcde f gh una cadena de 8 bits i n = 3, aleshores
SHR3(abcde f gh) = 000abcde

Expansió del bloc

Per a processar un bloc de 512 bits, en primer lloc, la funció SHA-256 l’expandeix a un total de 2048
bits. Per fer-ho, parteix el bloc de 512 bits en 16 paraules de 32 bits. Sigui M el bloc de dades de 512
bits, el podem expressar com M = M0||M1|| · · · ||M15 on cada Mi té una mida de 32 bits. A partir d’aquests
blocs, generarem 64 blocs de 32 bits, denotats per W0,W1, · · · ,W63 que formaran el total de 2048 bits que
necessitarem. Per fer-ho utilitzarem la següent expressió:

Wt =

{
Mt 0≤ t ≤ 15
σ1(Wt−2)⊞Wt−7 ⊞σ0(Wt−15)⊞Wt−16 16≤ t ≤ 63

on les funcions σ0 i σ1 estan definides de la següent manera:

• σ0(x) = ROT R7(x)⊕ROT R18(x)⊕SHR3(x)
• σ1(x) = ROT R17(x)⊕ROT R19(x)⊕SHR10(x)

i l’operació ⊞ és una suma mòdul 232.

Exemple 5.7 Exemple d’expansió d’un bloc

Suposem que volem fer l’expansió del bloc que hem obtingut en l’exemple del padding del missatge abc
expressant en codi ASCII de 8 bits. Hem vist que el bloc de 512 bits, expressat en hexadecimal amb
paraules de 32 bits és:

M = M0||M1|| · · · ||M15 = 0x61626380 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000018

Els primers 16 valors W0, · · · ,W15 de la cadena expandida seran aquests mateixos valors del bloc, és a dir:
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W =W0||W1|| · · · ||W15 = 0x61626380 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000018

Passem ara a calcular la següent paraula de 32 bit, W16.

W16 = σ1(W14)⊞W9 ⊞σ0(W1)⊞W0 =

= σ1(0x00000000)⊞0x00000000⊞σ0(0x00000000)⊞0x61626380 =

= (ROT R17(0x00000000)⊕ROT R19(0x00000000)⊕SHR10(0x00000000))⊞
⊞0x00000000⊞

⊞ (ROT R7(0x00000000)⊕ROT R18(0x00000000)⊕SHR3(0x00000000))⊞
⊞0x61626380 =

= 0x00000000⊞0x00000000⊞0x00000000⊞0x61626380 =

= 0x61626380

Per tant, W16 = 0x61626380.

De la mateixa manera podem calcular el següent element W17:

W17 = σ1(W15)⊞W10 ⊞σ0(W2)⊞W1 =

= σ1(0x00000018)⊞0x00000000⊞σ0(0x00000000)⊞0x00000000 =

= (ROT R17(0x00000018)⊕ROT R19(0x00000018)⊕SHR10(0x00000018))⊞
⊞0x00000000⊞

⊞ (ROT R7(0x00000000)⊕ROT R18(0x00000000)⊕SHR3(0x00000000))⊞
⊞0x00000000 =

= 0x000 f 0000⊞0x00000000⊞0x00000000⊞0x00000000 =

= 0x000 f 0000

Així, W17 = 0x000 f 0000.

De la mateixa manera es calculen la resta de paraules fins a completar els 2048 bits.

Inicialització del buffer

Tal com veurem en el següent apartat, el procés de compressió és un procés recursiu. Per aquest motiu, ens
caldrà definir uns valors als quals s’inicialitzaran les variables de la funció hash. Aquests valors, que es
detallen a continuació, estan definits en el propi estàndard:

H(0)
0 = 0x6a09e667

H(0)
1 = 0xbb67ae85

H(0)
2 = 0x3c6ef372

H(0)
3 = 0xa54ff53a

H(0)
4 = 0x510e527f

H(0)
5 = 0x9b05688c
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H(0)
6 = 0x1f83d9ab

H(0)
7 = 0x5be0cd19

A més d’aquests valors d’inicialització, l’estàndard també defineix 64 constants que s’utilitzen en cada una
de les iteracions de la funció de compressió. Aquests constants són les següents:

K = [ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ]

Funció de compressió

La funció de compressió és l’encarregada de prendre la cadena estesa de 64 paraules de 32 bits (és a dir,
2048 bits) i reduir-la a una cadena de 256 bits, que és justament la mida de la funció hash. Aquesta funció de
compressió és un procés iteratiu en el qual s’executen 64 rondes. En la Figura 5.4 es pot veure el diagrama
de la funció de compressió del SHA-256 aplicada a un únic bloc.
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Figura 5.4: Esquema de compressió d’un bloc de la funció SHA-256

En l’esquema de la Figura 5.4 es pot veure com en cada una de les 64 iteracions es fa servir tant una de les
paraules de 32 bits, Wi, com una de les constants ki del vector K, també de 32 bits, definides en l’estàndard.
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També veiem que els valors del bloc a comprimir es combinen amb els valors inicials del hash, definits també
en l’estàndard com H(0). El gràfic també mostra com aquestes combinacions estan formades per quatre
funcions, Ch, Maj, ∑0 i ∑1, que es descriuen a continuació:

• Ch(e, f ,g) = (e∧ f )⊕ (¬e∧g)
• Maj(a,b,c) = (a∧b)⊕ (a∧ c)⊕ (b∧ c)
• ∑0(a) = ROT R2(a)⊕ROT R13(a)⊕ROT R22(a)
• ∑1(e) = ROT R6(e)⊕ROT R11(e)⊕ROT R25(e)

Noteu que les funcions Ch(e, f ,g) i Maj(a,b,c) malgrat la complicació de la seva formulació tenen una
interpretació força simple. La funció Ch(e, f ,g) és una funció de tria (Ch- choose). Si el bit del valor e és
un 1, la sortida de la funció és el bit del valor f i si el bit del valor e és un 0, la sortida és el bit del valor g.
La funció Maj(a,b,c) és una funció de majoria. El bit de sortida de la funció és el bit que, en cada posició,
apareix més vegades quan comparem les tres cadenes a,b i c.

Recordeu Una XOR es pot pensar com una suma mòdul 2 (component a compoment) 000101⊕
000111 = 000010 i un AND com un producte mòdul 2 (component a compoment)
000101∧000111 = 000101. Recordeu també l’operant de negació ¬0100 = 1011. A
més, en la nostra notació, l’operació ⊞ és una suma mòdul 232.

La funció Ch actua sobre tres paraules de 32 bits amb operacions lògiques bàsiques.

Exemple 5.8 Exemple de càlcul de la funció Ch.

Càlcul de la funció Ch(e, f ,g) per als valors:
e = 0x510e527 f , f = 0x9b05688c,g = 0x1 f 83d9ab.

e 01010001000011100101001001111111
f 10011011000001010110100010001100
e∧ f 00010001000001000100000000001100

¬e 10101110111100011010110110000000
g 00011111100000111101100110101011
¬e∧g 00001110100000011000100110000000

e∧ f 00010001000001000100000000001100
¬e∧g 00001110100000011000100110000000
(e∧ f )⊕ (¬e∧g) 00011111100001011100100110001100

Per tant, el resultat en hexadecimal serà Ch(e, f ,g) = 0x1 f 85c98c

La funció Maj també actua sobre 3 paraules de 32 bits i, al igual que la funció Ch, també opera utilitzant
operacions lògiques bàsiques.

Exemple 5.9 Exemple de càlcul de la funció Maj.

Càlcul de la funció Maj(a,b,c) per als valors:
a = 0x6a09e667,b = 0xbb67ae85,c = 0x3c6e f 372.

a 01101010000010011110011001100111
b 10111011011001111010111010000101
a∧b 00101010000000011010011000000101
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a 01101010000010011110011001100111
c 00111100011011101111001101110010
a∧ c 00101000000010001110001001100010

b 10111011011001111010111010000101
c 00111100011011101111001101110010
b∧ c 00111000011001101010001000000000

a∧b 00101010000000011010011000000101
a∧ c 00101000000010001110001001100010
b∧ c 00111000011001101010001000000000
(a∧b)⊕ (a∧ c)⊕ (b∧ c) 00111010011011111110011001100111

Per tant, el resultat en hexadecimal serà Maj(a,b,c) = 0x3a6 f e667

La funció ∑0 actua únicament sobre una sola paraula de 32 bits generant tres paraules a partir de diferents
rotacions dels seus bits i realitzant una XOR d’aquestes tres paraules.

Exemple 5.10 Exemple de càlcul de la funció ∑0.

Càlcul de la funció ∑0(a) per al valor: a = 0x6a09e667

a 01101010000010011110011001100111
ROT R2(a) 11011010100000100111100110011001

a 01101010000010011110011001100111
ROT R13(a) 00110011001110110101000001001111

a 01101010000010011110011001100111
ROT R22(a) 00100111100110011001110110101000

ROT R2(a) 11011010100000100111100110011001
ROT R13(a) 00110011001110110101000001001111
ROT R22(a) 00100111100110011001110110101000
ROT R2(a)⊕ROT R13(a)⊕ROT R22(a) 11001110001000001011010001111110

Per tant, el resultat en hexadecimal serà ∑0(a) = 0xce20b47e.

La funció ∑1 és molt similar a la funció ∑0 i únicament es diferencia en el número de bits que es roten per
derivar les tres paraules.

Exemple 5.11 Exemple de càlcul de la funció ∑1.

Càlcul de la funció ∑1(e) per al valor: e = 0x510e527 f

e 01010001000011100101001001111111
ROT R6(e) 11111101010001000011100101001001

e 01010001000011100101001001111111
ROT R11(e) 01001111111010100010000111001010
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e 01010001000011100101001001111111
ROT R25(e) 10000111001010010011111110101000

ROT R6(e) 11111101010001000011100101001001
ROT R11(e) 01001111111010100010000111001010
ROT R25(e) 10000111001010010011111110101000
ROT R6(e)⊕ROT R11(e)⊕ROT R25(e) 00110101100001110010011100101011

Per tant, el resultat en hexadecimal serà ∑1(e) = 0x3587272b

Exercici 5.4 Realitzeu els següents càlculs de les funcions internes del SHA256 tenint en compte els
valors de les cadenes:
m1 = 00000000000000001111111111111111
m2 = 11110000000000001111111111110000
m3 = 11111111000000001111111100000000

1. Calculeu el resultat de la funció ROT R7(m1).
2. Calculeu el resultat de la funció SHR10(m1).
3. Calculeu el resultat de la funció σ0(m1).
4. Calculeu el resultat de la funció σ1(m1).
5. Calculeu el resultat de la funció ∑0(m1).
6. Calculeu el resultat de la funció ∑1(m1).
7. Calculeu el resultat de la funció Ch(m1,m2,m3).
8. Calculeu el resultat de la funció Maj(m1,m2,m3).

5.3.3 SHA-256 sobre múltiples blocs

En els apartat anteriors hem proporcionat el detall de la funció SHA-256 quan aquesta s’aplica a un únic bloc
de dades de 512 bits, que és la mida del bloc amb el que treballa la funció. Ara bé, si el missatge del qual
volem calcular el hash conté més d’un bloc, aleshores cal aplicar la funció de compressió de forma recursiva
sobre cada bloc, encadenant la sortida de cada bloc amb l’entrada del següent. En la Figura 5.5 es pot veure
l’esquema complert per al càlcul d’un hash sobre un missatge amb tres blocs, és a dir un missatge de 1536
bits de longitud.

Com es pot apreciar en la figura, per a cada bloc es realitza l’expansió per obtenir la cadena W de 2048 bits.
Les paraules de 32 bits que formen aquesta cadena són utilitzades en cada una de les 64 iteracions de la
funció de compressió juntament amb els valors constants K definits en l’estàndard. Fixeu-vos que en cada
bloc s’utilitzen els corresponents valors Wi obtinguts del propi bloc però en canvi, els valors Ki utilitzats en
el processat de cada bloc són sempre els mateixos. Per últim, cal notar que el resultat del hash de cada bloc
s’utilitza com a valor inicial per al càlcul del hash del següent bloc.

5.4 Aplicacions de les funcions hash

Un cop estudiades les característiques i propietats de les funcions hash i després de veure com es poden
construir passem al darrer punt d’aquest capítol en el que veurem les múltiples aplicacions on s’utilitzen les
funcions hash.
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Figura 5.5: SHA-256 mostrant el processat de 3 blocs.

5.4.1 Codis d’autenticació de missatges

.

Un codi d’autentificació de missatge, en anglès Message Authentication Code (MAC), és
una cadena curta d’informació relacionada amb el propi missatge a través d’una clau de
manera que permet la seva autenticació.

Altres denomi-
nacions

Els message authentication codes també s’acostumen a conèixer com a cryptographic
checksums o keyed hash functions.

Donat que els codis d’autentificació permeten autentificar missatges, comparteixen algunes propietats amb
les signatures digitals com ara la pròpia autentificació així com la integritat del missatge. Tot i això, els
codis d’autenticació no ofereixen la propietat de no repudi, propietat que sí que ofereixen les signatures
digitals. Ara bé, els codis d’autenticació són molt més ràpids i eficients de calcular i és per aquest motiu que
s’utilitzen en entorns on la propietat de no repudi no és essencial.

Signatures
digitals

La definició i funcionament de les signatures digitals la trobareu en el capítol “Cripto-
grafia de clau pública”.

Com veurem a continuació, els MAC es poden implementar de forma molt simple utilitzant conjuntament
funcions hash i una clau. Aquest tipus de funcions MAC s’acostumen a denominar HMAC, justament per la
utilització de la funció hash. Aquesta idea d’utilitzar una clau pot semblar contradictòria amb el que hem
comentat anteriorment, indicant que les funcions hash no incorporen cap clau ni cap element secret. La
manera, però, com s’utilitza la clau és simplement per variar d’alguna manera la forma del missatge que es
vol autenticar. Per exemple, donada una funció hash h(·) podem derivar-ne dos MACs de la següent manera:
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HMAC1k(m) = h(k ∥ m)

HMAC2k(m) = h(m ∥ k)

on el símbol ∥ representa la concatenació de cadenes. La primera expressió es coneix com a secret prefix
HMAC i la segona com a secret suffix HMAC.

Exemple 5.12 Exemple de càlcul d’un HMAC

Veiem un exemple de com utilitzar la funció hash definida en l’Exemple 5.4 per a calcular un secret prefix
HMAC.

El missatge sobre el que calcularem l’HMAC serà el següent m = 11101010 i utilitzarem la clau k = 1100.

Per tant,

HMACk(m) = h(k ∥ m) = HMAC1100(11101010) = h(1100 ∥ 11101010) = h(110011101010)

En aquest cas tenim tres blocs: m1 = 1100, m2 = 1110 i m3 = 1010. Si ens hi fixem, els dos primers
blocs són els mateixos que els de l’exemple de la funció hash, per tant tenim que h2 = 1010. Per tant, el
valor final de sortida de la funció dels tres blocs serà h = h3 = Eg(h2)(m3)⊕ h2 = E11(1010)⊕ 1010 =
0101⊕1010 = 1111

Per tant, HMACk(m) = HMAC1100(11101010) = 1111.

Des del punt de vista pràctic, la manera com els MAC s’utilitzen per autentificar missatges es troba
esquematitzat en la Figura 5.6.

Emissor Receptor

missatge

MAC

missatge MAC

Funció 

MAC

missatge MAC

missatge

Funció 

MAC

MAC

Clau

K

=?

Figura 5.6: Utilització d’un HMAC per autentificar missatges.

Com es pot veure en la figura, emissor i receptor comparteixen una clau secreta. Cada vegada que l’emissor
vol enviar un missatge al receptor, en calcula el seu valor HMAC utilitzant la clau secreta que comparteix
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amb el receptor i annexa al missatge el valor resultant. Quan el receptor rep el missatge pot utilitzar la clau i
la funció hash establerta per tornar a calcular-ne el valor HMAC i comprovar que efectivament coincideix.
Fixeu-vos que un atacant que canviï el missatge que emissor i receptor s’intercanvien, ha de canviar també el
valor HMAC del missatge ja que si no ho fa, la comprovació del receptor no serà correcta. Ara bé, l’atacant
no coneix el valor de la clau que intercanvien i per tant no pot calcular el valor correcte de l’HMAC per al
missatge modificat.

Autenticació
vs confidenci-
alitat

Fixeu-vos que els codis HMAC s’utilitzen per assegurar-se que ningú no pot canviar el
missatge sense que el receptor se n’adoni. Ara bé, donat que no xifrem el missatge, la
comunicació no oferirà confidencialitat i un atacant pot conèixer-ne el contingut.

Exercici 5.5 Els usuaris A i B s’intercanvien missatges. Com que A i B ja comparteixen una clau
simètrica, han decidit que calcularan un HMAC dels missatges per assegurar-ne la seva integritat, és a
dir, per assegurar-se que ningú que intercepti la informació pugui modificar-la. Calculant un HMAC del
missatge a partir de la clau simètrica que comparteixen volen evitar que si algú modifica el missatge no
pugui modificar l’HMAC de forma correcta, ja que l’atacant desconeix la clau. Fan servir una funció
HMAC basada en la funció hash h(·) definida en l’Exemple 5.4, concretament utilitzant la clau k com
un secret prefix, és a dir HMACk(m) = h(k ∥ m). D’aquesta manera, A envia el missatge m = 0111 a B
seguit de l’HMACk = 0111, on k és la clau simètrica que fan servir i només ells dos coneixen.

Malauradament, no saben que la tècnica del secret prefix no és segura i nosaltres, com a atacants, podem
afegir la cadena que vulguem al missatge original i calcular l’HMAC sense conèixer k. Podríeu calcular
l’HMAC corresponent al missatge m′ = 01111111?

5.4.2 Resum de missatges

Una altra de les aplicacions en les que s’utilitzen les funcions hash és per obtenir una representació compacta
d’un missatge més gran. Gràcies a que el valor hash d’un missatge pot permetre identificar-lo de forma
pràcticament unívoca, aquest resum es pot utilitzar en diferents contexts. Per exemple, quan es volen
emmagatzemar fitxers molt grans, sovint en format multimèdia, en una base de dades, s’acostuma a guardar-
ne només el seu valor hash en la pròpia base de dades i una localització externa. D’aquesta manera, es pot
referenciar el contingut i fer-ne cerques fins hi tot partint del propi contingut, també utilitzant-ne el valor
hash, per tal d’obtenir-ne informació associada.

Tenir un resum d’un missatge també és molt rellevant quan les operacions que s’han de realitzar sobre el
missatge són molt costoses i ens és suficient realitzar-les sobre un resum. Aquest és el cas de les signatures
digitals. Tal com veurem més endavant, les signatures digitals són computacionalment poc eficients i per
aquest motiu, en comptes de realitzar-les sobre el missatge sencer s’apliquen sobre un resum d’aquest. La
mida reduïda i fixa que s’obté amb una funció hash permet augmentar molt l’eficiència de les signatures
digitals.

5.4.3 Emmagatzematge de contrasenyes

Una altra de les aplicacions de les funcions hash és la seva utilització en l’emmagatzematge d’algunes dades
sensibles, com ara les contrasenyes d’accés a un sistema informàtic. La protecció de les contrasenyes és
altament necessària per assegurar que cap usuari maliciós se’n pugui apoderar i pugui accedir al sistema
suplantant altres usuaris. Per aquest motiu les contrasenyes mai es guarden en clar.

L’emmagatzematge de les contrasenyes serveix per poder-les comparar amb les que els usuaris introdueixen
en el procés d’autenticació. Si la contrasenya proporcionada per l’usuari coincideix amb la que el sistema em-
magatzema, l’autenticació es considera vàlida. Ara bé, com ja hem dit, les contrasenyes no s’emmagatzemen
en clar en el sistema sinó que s’emmagatzema la imatge de la contrasenya per una funció hash.
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Contrasenyes
no-xifrades

Tot i que col·loquialment sovint es parla que les contrasenyes en els sistemes es guarden
xifrades, aquesta denominació no és correcta ja que una informació xifrada s’ha de
poder desxifrar i la imatge d’una funció hash no permet “desxifrar-ne” el seu valor,
perquè voldria dir invertir la funció hash, cosa que no és possible.

Usuari Servidor

El servidor calcula el hash de la      
contrasenya, h(P) i emmagatzema 
el parell (U, h(P)). 

3.

L'usuari genera el seu nom d'usuari, 
U, i la seva contrasenya, P.

1.

L'usuari envia U i P al servidor.2.

Procés de registre:

El servidor cerca l'usuari U en el 
fitxer de contrasenyes.

2.

Calcula h(P) i comprova que és 
igual a l'emmagatzemat en el fitxer 
de contrasenyes. 

3.

L'usuari envia el seu nom d'usuari, 
U, i la seva contrasenya, P.

1.

Procés d'autenticació:

Figura 5.7: Esquema d’autenticació amb contrasenya

El procés d’autenticació amb contrasenyes guardades com a imatge d’una funció hash es mostra en la
Figura 5.7. Quan un usuari vol accedir al sistema, proporciona el seu usuari i la seva contrasenya. El sistema,
a partir de la contrasenya que li ha fet arribar l’usuari, en calcula el seu hash i el compara amb el valor que té
emmagatzemat. En el cas que els dos valors coincideixin, l’usuari queda autenticat correctament.

Recuperació
de
contrasenya

En un sistema d’accés amb contrasenya ben implementat, ni tan sols l’administrador
del sistema us pot dir la vostra contrasenya en cas que l’hàgiu oblidat, perquè ell no la
coneix i només en té la imatge per una funció hash. Per aquest motiu, quan oblidem la
contrasenya el sistema ens demana que en generem una de nova.

En realitat, el sistema descrit anteriorment és una simplificació del sistema que realment es fa servir per
emmagatzemar contrasenyes, ja que les contrasenyes emmagatzemades únicament amb el seu hash permeten
atacs eficients com ara el següent. Suposem un sistema que té les contrasenyes emmagatzemades utilitzant el
hash SHA256 de la contrasenya. En aquest cas, el fitxer de contrasenyes tindrà un seguit de valors de 256
bits cada un d’ells vinculat a un usuari. En el cas que un atacant pogués aconseguir aquest fitxer, podria
realitzar el següent atac: Prenent un diccionari de contrasenyes habituals, pot anar calculant el valor SHA256
d’aquestes contrasenyes i anar-lo comparant amb cada un dels valors del fitxer. Fixeu-vos que només que
algun dels usuaris del sistema tingui una de les contrasenyes del diccionari, a l’atacant només li caldrà
calcular un sol hash i comparar-lo amb cada un dels valors del fitxer fins a trobar el correcte. A més, en el
cas que diferents sistemes utilitzessin la mateixa funció hash, l’atacant també podria tenir un diccionari dels
hashos en comptes del diccionari de les contrasenyes.
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Per evitar aquests tipus d’atacs, abans de calcular el hash de la contrasenya per a emmagatzemar-la, el
que es fa és afegir a la contrasenya un valor fixat, que s’anomena salt, i que és diferent per cada usuari,
de manera que encara que dos usuaris tinguin la mateixa contrasenya el hash que s’emmagatzemi sigui
diferent. Evidentment, aquest valor també s’haurà d’afegir en el procés d’autenticació quan s’està validant la
correcció de la contrasenya proporcionada per l’usuari. Fixeu-vos que un atacant que s’enfronta a un fitxer
de contrasenyes amb salt, tot i conèixer el salt de cada usuari, ha de calcular el hash de cada un dels valors
del diccionari de contrasenyes per cada un dels usuaris del sistema al que està atacant.

Rainbow
tables

Les rainbow tables són unes taules construïdes per optimitzar la informació que
s’emmagatzema i la que calcula un atacant que fa un atac sobre un fitxer de contrasenyes
a les quals no se’ls ha afegit un salt. Tot i això, les rainbow tables no són útils amb
contrasenyes desades amb salt.

Les salts acostumen a emmagatzemar-se juntament amb el hash de la contrasenya, ja que la seva funció no
és pas impedir el càlcul del hash sinó evitar que l’atacant pugui reaprofitar càlculs. Quan es vol afegir un
nivell més de protecció, es poden fer servir salts secretes (també conegudes com a pepper) que es desen en
un altre dispositiu, diferent del que emmagatzema les contrasenyes. Així, un atacant que només té accés al
fitxer de contrasenyes no pot fer l’atac, ja que no coneix les salts que s’han fet servir per a calcular cadascun
dels hashos.

5.4.4 Derivació de claus

En criptografia és habitual l’ús de claus criptogràfiques en diferents contextos, com per exemple per a xifrar
informació. Ara bé, la capacitat de les persones per a generar i recordar cadenes de zeros i uns és més aviat
limitada, sobretot si aquestes cadenes són molt llargues, com podria ser una simple clau de l’AES de 128
bits. Per aconseguir que les persones puguin generar i recordar claus de forma simple, es fan servir les
contrasenyes de sempre, que els usuaris estan acostumats a utilitzar, combinades amb funcions hash. Així,
donada una contrasenya se li aplica una funció hash per derivar-ne una clau. Si sempre s’utilitza la mateixa
funció hash, donat que aquesta és determinista, per a la mateixa contrasenya d’entrada generarà la mateixa
clau. Aquesta idea simple presenta algunes debilitats de seguretat i per aquest motiu s’han dissenyat funcions
específiques de derivació de claus que, això sí, es basen en una funció hash.

La funció PBKDF2

.

La funció Password-Based Key Derivation Function (PBKDF2) és una funció definida
en l’RFC2898 que proporciona un mecanisme segur per obtenir una clau a partir d’una
contrasenya.

Aquesta funció és una funció força utilitzada en diferents aplicacions, com ara per a les claus dels accessos
a les xarxes WIFI (amb els protocols WPA i WPA2), en el xifrat amb AES en el WinZip i en múltiples
aplicacions de programari que permeten xifrar el disc dur de l’ordinador.

La funció PBKDF2 rep com a entrada cinc paràmetres i retorna la clau que n’ha derivat. En la següent
expressió s’inclouen els paràmetres que requereix la funció:

K = PBKDF2(PRF, Contrasenya, Salt, c, dkLen)

D’aquests paràmetres, el més evident és la contrasenya (codificada en UTF-8), que serà el valor que l’usuari
proporcionarà per tal d’obtenir-ne la clau. La resta de valors són interns de cada implementació i estaran
fixats per tal que cada contrasenya només pugui derivar una única clau. El valor PRF indica una funció
pseudoaleatòria que utilitza dos paràmetres, una clau i un valor. Aquesta funció proporcionarà una sortida
de mida hLen. Si ens hi fixem, aquesta definició de funció coincideix amb el d’una funció HMAC com la
que hem definit en l’Apartat 5.4.1 i és en aquest punt on les funcions hash queden lligades a la funció de
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derivació de claus. D’altra banda, el valor Salt és una seqüència de bits utilitzada per afegir aleatorietat
al procés, com s’acostuma a fer amb els valors de salt en altres processos de seguretat. El valor c és un
valor que determina el nombre d’iteracions que realitzarà la funció de derivació abans de proporcionar la
clau. Com més gran sigui aquest valor més robusta serà la clau generada però també més trigarà la funció a
calcular-la. Es recomana que aquest valor sigui, com a mínim, 1000. Finalment, el valor dkLen és la mida
de la clau K que es vol generar.

Una vegada definits cada un dels paràmetres que utilitza la funció de generació de claus, passem a detallar-ne
el seu funcionament. La següent expressió proporciona el sistema per a calcular la clau utilitzant la funció
PBKDF2:

K = T1 ∥ T2 ∥ · · · ∥ T⌈dkLen/hLen⌉

on el símbol ∥ indica la concatenació i els valors Ti es descriuen a continuació.

Cada valor Ti el definim com Ti = F(Contrasenya, Salt, c, i) on la funció F queda explicitada en la
següent expressió:

F(Password, Salt, c,i) = U1⊕U2⊕·· ·⊕Uc

on els valors Ui són els següents:
U1 = PRF(Contrasenya, Salt ∥ INT_32_BE(i))
U2 = PRF(Contrasenya, U1)
...
Uc = PRF(Contrasenya, Uc−1)

on INT_32_BE(i) és l’índex i codificat com un enter de 32 bits en notació big-endian.

Com hem comentat anteriorment, el valor c és el que determina el nombre d’iteracions que es realitzaran.
Fixeu-vos a més, que es pot donar el cas en que el valor dkLen/hLen no sigui un enter, i per tant la part
entera superior de la divisió, és a dir ⌈dkLen/hLen⌉, proporcionarà un nombre total de bits de la clau
superior al que s’havia indicat en el valor dkLen. En aquest cas, la última paraula de la clau, T⌈dkLen/hLen⌉
es truncarà per la dreta per tal que la clau tingui exactament dkLen bits.

5.4.5 Pseudonimització de dades

Actualment les dades tenen un paper clau en molts dels sectors de la societat. L’ús de dades massives ha
permès progressar en àmbits tant diversos com la medicina, les telecomunicacions o les finances, però l’ús
indiscriminat de dades personals comporta problemes de privadesa que cal adreçar.

Les funcions hash s’utilitzen sovint per a pseudonimitzar identificadors en conjunts de dades, tot i que, com
veurem a continuació, aquesta no sempre és una bona alternativa.

Informalment, la pseudonimització permet dissassociar la identitat d’un subjecte de les dades d’aquest.
Normalment aquest procés es duu a terme substituint un o diversos identificadors per un pseudònim, per
exemple, una cadena generada pseudoaleatòriament. Així, les dades queden associades a aquest pseudònim,
i desvinculades de la identitat del seu propietari.

Una primera aproximació a la pseudonimització amb funcions hash consistirà a substituir els identificadors
d’un conjunt de dades pel resultat d’avaluar una funció hash sobre aquests.

Exemple 5.13 Exemple de pseudonimització trivial amb funcions hash Suposem que disposem
d’un conjunt de dades amb notes d’estudiants que conté els atributs DNI (sense lletra) i nota de l’estudiant
en una assignatura.

La pseudonimització trivial d’aquest conjunt de dades substituiria el DNI dels estudiants pel resultat
d’aplicar una funció hash al DNI. A priori, això desvincularia la identitat de l’estudiant de la seva nota.

A continuació veurem dos dels problemes d’aquesta tècnica. D’una banda, un atacant que coneix el
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DNI d’un estudiant de l’assignatura, podria reidentificar el registre i aconseguir saber la nota d’aquest
estudiant. Per fer-ho, simplement hauria de calcular el hash del DNI, i consultar la nota al conjunt de
dades pseudonimitzat. D’altra banda, si l’atacant no coneix el DNI de cap estudiant, podria llançar un atac
de força bruta per trobar els DNIs dels estudiants, aprofitant el fet que els DNIs tenen un format concret
per a reduir l’espai de cerca. Els DNIs estan formats per 8 dígits, de manera que caldria calcular 108

hashos per a comprovar tots els DNIs possibles. Si assumim que l’atacant pot calcular un 106 hashos per
segon (cosa que es podria fer amb qualsevol ordinador sense hardware especialitzat), l’atac tardaria menys
de dos segons.

Dues alternatives més robustes per a pseudonimitzar identificadors consisteixen en l’ús de MACs (Message
Authentication Code) o la incorporació de salts secretes. En ambdues alternatives, a cada identificador li
corresponen diversos pseudònims, depenent de la clau o la salt utilitzada. La clau o la salt secreta es mantenen
separats de les dades, de manera que un atacant que només diposa de les dades no pot reidentificar-ne els
registres reproduint el procés que s’ha dut a terme per calcular els pseudònims.

Exemple 5.14 Exemple de pseudonimització amb salt secreta o pepper

Suposem que disposem del mateix conjunt de dades que a l’exemple anterior, i que s’aplica un procés
de pseudonimització substituint el DNI pel hash d’una salt secreta (generada pseudoaleatòriament)
concatenada al DNI.

La Figura següent mostra un exemple del procediment, fent servir SHA-256 com a funció hash. Les dades
originals són dividides en dos conjunts de dades diferents, que seran desades separadament. D’una banda,
es desarà la salt de cada registre, que s’haurà generat pseudoaleatòriament (Taula 1.3). D’altra banda, es
desaran les notes, associades al pseudònim, que s’haurà calculat com el SHA-256 de la concatenació de la
salt i el DNI.

0x340fff

0x1648da

0x40e616

0x9d480f

Aquesta tècnica permet adreçar les limitacions de la tècnica trivial. Ara, si un atacant accedeix al conjunt
de dades pseudonimitzades, i coneix un dels DNIs dels estudiants de l’assignatura, no podrà reidentificar
el registre que correspon a aquest estudiant, ja que no podrà recrear el hash. Anàlogament, un atacant
tampoc podrà calcular els pseudònims de tots els DNIs existents, encara que sàpiga que aquests estan
formats per 8 dígits.

Ara bé, cal anar molt en compte a l’aplicar aquest tipus de tècniques per pseudonimitzar dades. De fet, en
podríem fer una assignatura sencera només explicant com fer-ho! Per exemple, suposem que el conjunt de
dades conté les notes de diverses activitats:
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Pseudoidentificador Act. 1 Act. 2 Act. 3
0x340fff... 5 6 4
0x1648da... 10 9 7
0x40e616... 7 7 3
0x9d480f... 2 5 3

i que l’atacant sap quin estudiant és l’únic que ha aprovat la tercera activitat de l’assignatura (per exemple,
pot ser que sigui l’únic que va sortir content de classe després de saber-se les notes d’aquesta activitat).
En aquest cas, l’atacant serà capaç de reindentificar el registre de l’estudiant, i obtenir així informació
addicional sobre aquest (en particular, les notes exactes de totes les activitats).

5.4.6 Generació de cadenes de bits pseudoaleatòries

La criptografia requereix sovint de l’ús de cadenes de bits generades aleatòriament, per exemple, en la
generació de claus, de vectors d’inicialització o de valors per a reptes en protocols interactius. Per tal de
generar cadenes de bits aleatòries, es disposa principalment de dues estratègies: o bé es fa servir una font
d’aleatorietat a partir d’algun procés físic que no sigui predictible, o bé es calculen els bits de manera
determinista amb un algorisme a partir d’una llavor. Les tècniques que fan servir aquesta segona estratègia
s’engloben sota el nom de generadors de nombres pseudoaleatoris o PRNG (per les seves inicials en anglès,
PseudoRandom Number Generator) i, de les cadenes de bits que generen, en direm que són pseudoaleatòries.

Els PRNG són algorismes deterministes que produeixen una seqüència de bits a partir d’una llavor, que s’ha
d’obtenir d’una font aleatòria. Quan la llavor és secreta, els bits que genera un PRNG no són predictibles.

Es poden construir PRNG a partir de funcions hash. Així, per exemple, el NIST defineix un PRNG basat
en funcions hash anomenat Hash_DRBG (DRBG són les inicials de Deterministic Random Bit Generator,
un altre terme per referir-se als PRNG). L’algorisme Hash_DRBG emmagatzema un estat format per una
variable i una constant (V i C, respectivament) i un comptador. Inicialment, V i C es deriven de la llavor
aleatòria. Després, el valor de la variable V es fa servir per derivar els bits pseudoaleatoris, i s’actualitza el
valor d’aquesta variable (en aquesta actualització es fa servir la constant C). Cada vegada que es generen
nous bits, s’incrementa el comptador de l’estat intern. Quan aquest comptador arriba a un llindar preestablert,
cal tornar a introduir aleatorietat a l’algorisme per tal de seguir generant bits pseudoaleatoris, procés que es
coneix com a ressembrat (de l’anglès, reseeding).

5.4.7 Compromís de bit

Hi ha situacions quotidianes en les que estem acostumats a fer servir alguns mecanismes molt simples que
funcionen sense cap dificultat d’execució. Un d’aquests casos és el de ’tirar una moneda a l’aire’ per, per
exemple, decidir quin dels dos jugadors d’una partida d’escacs tindrà les fitxes blanques. Ara bé, quan les
dues parts que duen a terme aquest petit protocol no es troben físicament al mateix lloc, la simplicitat de tirar
una moneda a l’aire no ens serveix en el cas que hi hagi certa desconfiança entre els dos participants.

Si analitzem el procés de tirar una moneda a l’aire veiem que, normalment, un dels dos usuaris tria cara o
creu i l’altre, una vegada s’ha decidit qui guanyarà segons el revers de la moneda, tira la moneda a l’aire. En
aquest simple esquema, l’usuari que tria cara o creu ho fa de forma pública, de manera que després (quan cau
la moneda) no pot dir que ha triat una altra cosa. I l’usuari que tira la moneda no pot fer trampa (assumint
que la moneda no està trucada!) perquè tira la moneda davant de l’altre usuari i els dos veuen el resultat que
en surt, de manera que qui tira la moneda no pot canviar-ne el resultat.

Per emular aquest protocol de forma remota (o digital) es fa servir un esquema de compromís de bit.

.
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Un esquema de compromís de bit (en anglès, bit commitment) és una tècnica per la qual
un usuari A es compromet, davant d’un usuari B, a un valor m per mitjà d’un valor C(m),
que serà el compromís. Aquest compromís ha de tenir les següents propietats:

1. Donat el compromís C(m), B no pot obtenir informació del valor compromès m.
2. A ha de poder obrir el compromís C(m) mostrant el valor compromès m.
3. A no pot obrir el compromís C(m) mostrant un valor diferent al valor m compromès

inicialment.

Amb un esquema de compromís de bit com el que acabem de descriure, el protocol de tirar una moneda a
l’aire es pot definir amb els següents passos.

1. L’usuari A tria cara o creu i codifica la seva tria en el missatge m. Posteriorment, calcula el compromís
d’m, C(m), i l’envia a B.

2. B genera aleatòriament un bit, on 1 correspondrà al valor cara i 0 correspondrà a creu. B enviarà a A
el valor aleatori generat.

3. A obrirà el compromís C(m) mostrant a B quin valor (cara o creu) havia triat, de manera que es veurà
qui ha guanyat en el protocol de tirar una moneda a l’aire.

Fixeu-vos que en el pas 2 del protocol, l’usuari A ja ha triat cara o creu però l’usuari B, tot i tenir el compromís
C(m), no pot saber quin valor ha triat (gràcies a la primera propietat de l’esquema de compromís de bit). En
el pas 2, tot i que l’usuari B no generés el bit de forma aleatòria (per intentar alterar el protocol) el fet que no
coneix si A ha triat cara o creu fa que la tria d’aquest valor aleatori sigui intrascendent. D’altra banda, en el
pas 3, A ja sap quin valor ha obtingut B i per tant B no pot desdir-se’n. A més, A obre el seu compromís i, tot
i conèixer el valor obtingut per B, no pot obrir-lo mostrant un altre valor diferent al que s’ha compromès,
gràcies a la tercera propietat de l’esquema de compromís de bit.

Els protocols de compromís de bit es descriuen per mitjà de dues fases: fase de generació del compromís i
fase d’obertura del compromís i en els següents apartats veurem dues tècniques diferents que implementen
un esquema de compromís de bit.

Compromís de bit utilitzant funcions hash

Una de les tècniques més utilitzades per implementar un esquema de compromís de bit és mitjançant una
funció hash.

Sigui m el missatge al qual l’usuari es vol comprometre, en la fase de generació del compromís l’usuari A
selecciona un valor aleatori r i calcula C(m) = h(r ∥ m) on h és una funció hash criptogràfica.

En la fase d’obertura del compromís C(m), l’usuari A revela els valors r i m. A partir d’aquests valors,
l’usuari B pot calcular h(r ∥m) i comprovar que efectivament coincideix amb el valor C(m) al qual A s’havia
compromès.

Comprovem que aquest esquema compleix amb les tres propietats d’un esquema de compromís de bit.

1. B no pot obtenir el valor compromès m a partir el compromís C(m) ja que h(·) és una funció hash
criptogràfica i per tant no es pot invertir. Fixeu-vos que el valor aleatori r s’utilitza en cas que el
missatge m se seleccioni d’un conjunt petit de missatges, per tal d’evitar que B pugui calcular totes
les imatges de la funció hash per a tots els possibles valors diferents d’m i descobrir-ne el valor
compromès.

2. A pot obrir el compromís C(m) fent públics els valors r i m.
3. A no pot obrir el compromís, C(m), obtenint un valor m′ ̸= m perquè això voldria dir que A pot trobar

(r ∥ m) ̸= (r′ ∥ m′) tal que h(r ∥ m) = h(r′ ∥ m′) i això no és possible per les propietats que hem
enumerat de la funció hash criptogràfica que s’utilitza.
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5.4.8 Prova de treball

En l’execució d’alguns protocols criptogràfics, en ocasions, és necessari assegurar que un participant realitza
un cert esforç de càlcul abans de poder realitzar una operació per tal que l’operació en qüestió no sigui fàcil
de realitzar de forma automàtica i repetitiva. Aquests tipus de mecanismes s’anomenen prova de treball.

.

Una prova de treball (en anglès proof-of-work), és un mecanisme que permet a l’usuari
d’un sistema demostrar a la resta d’usuaris de forma fidedigna que ha realitzat una certa
quantitat de feina, normalment, una certa quantitat de càlculs.

El concepte de prova de treball el van proposar Cyntia Dwrok i Moni Naor en un article publicat al congrés
Crypto l’any 1992 però no va ser fins més tard, l’any 1999, que M. Jakobsson i A. Juels van formalitza-lo i
van proposar-ne el terme proof-of-work.

Les aplicacions de les proves de treball són variades i van des de la prevenció de correu brossa fins al
manteniment d’integritat en els sistemes de criptomonedes.

La propietat més important d’una prova de treball és la seva asimetria, en el sentit que el cost de realització
de la prova de treball s’ha de poder prefixar de forma arbitrària, però la verificació de la prova de treball,
independentment de la dificultat fixada en el cost, ha de ser extremadament eficient i, per tant, no ha de
requerir tornar a realitzar els càlculs que s’han de realitzar per produir-la. És per aquest motiu que les
funcions unidireccionals utilitzades en criptografia, com ara les funcions hash, són una bona base per a la
creació de proves de treball.

Una de les proves de treball més utilitzades en l’actualitat, ja que moltes de les criptomonedes existents
la fan servir, és el Hashcash, una prova de treball proposada per A. Back l’any 1997 per tal de limitar el
correu brossa i, en general, altres atacs de denegació de servei. Aquesta prova de treball consisteix a calcular
el valor hash d’una certa informació i aconseguir que la imatge resultant sigui un valor inferior a un cert
llindar. Per a fer-ho, cal habilitar un camp aleatori en la informació en qüestió per tal de poder-lo variar per
obtenir-ne diferent valors hash.

Per exemple, una simplificació del sistema anti-correu brossa basat en aquesta prova de treball seria el
següent. Quan l’usuari A vol enviar un correu a l’usuari B, un cop generat tot el missatge, inclosa l’adreça del
destinatari, l’usuari A afegeix a la capçalera un nou camp, que podrà contenir qualsevol valor aleatori. Amb
tota aquesta informació, A en calcularà la imatge per una funció hash determinada, que haurà consensuat
amb B. Prèviament, A i B hauran també fixat quin és l’esforç (en la prova de treball) que A ha de fer per
enviar-li un correu a B. Aquest esforç s’explicitarà triant un valor objectiu concret d’entre totes les imatges
possibles de la funció hash. Abans de processar el correu, l’usuari B comprovarà si el hash del missatge que
ha rebut d’A és inferior al valor objectiu. En cas afirmatiu, processarà el correu, en cas negatiu el descartarà.
Fixeu-vos que una vegada A ha redactat el correu, si al realitzar el càlcul del hash n’obté un valor superior al
valor objectiu, no pot enviar el missatge (ja que B el descartaria). Abans de fer-ho ha de modificar el nou
camp que ha afegit a la capçalera amb un valor aleatori i tornar a calcular-ne el hash. Si és menor al valor
objectiu, ja podrà enviar-lo, però si no ho és haurà de tornar a modificar el valor del camp, tornar a calcular
el hash i anar repetint aquesta operació fins que el hash del correu sigui més petit que el valor objectiu.
Fixeu-vos que la mida del valor objectiu fixarà la dificultat de la prova de treball, com més petit sigui el valor
objectiu, més feina haurà de fer A per enviar el missatge a B.

Fixeu-vos que la necessitat que té l’emissor del missatge per enviar-lo fa que si aquest emissor és un
generador de correu brossa, per enviar cada correu brossa li sigui necessari realitzar un cert volum de càlcul
per a cada correu (ja que el destinatari del correu forma part de la informació que s’inclou en el hash i per
tant no pot reaprofitar els càlculs d’un altre correu) i per tant es desincentiva aquest pràctica.
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Exemple 5.15 La dificultat de la prova de treball i les probabilitats

Les propietats estadístiques de les funcions hash criptogràfiques fan que la seva sortida es pugui considerar
un generador pseudoaleatori en el sentit que donada una entrada no se’n pot predir la sortida i una mínima
modificació de l’entrada provoca una modificació significativa del valor de la sortida. Amb aquesta
premissa, suposem una funció hash de mida 3 dígits, és a dir, el resultat d’aplicar aquesta funció hash
a un missatge ens pot donar un valor entre el 0 i el 999, és a dir 1000 valors. Així, la probabilitat que
donada una entrada m el seu valor hash siguin un nombre menor que 1000 serà 1, ja que qualsevol sortida
ens donarà un d’aquests valors. Ara bé, si fixem el valor objectiu de la nostra prova de treball en 500,
la probabilitat que l’entrada d’aquesta funció sigui menor que 500 és de 1

2 . I si el valor objectiu és 100,
la probabilitat és de 1

10 . En aquest últim cas, fixeu-vos que un emissor del sistema Hashcash que vulgui
enviar un correu, haurà de regenerar el valor aleatori i recalcular el hash 10 vegades, en mitjana, fins a
obtenir una sortida inferior al valor objectiu i per tant un correu que sigui acceptat pel receptor. Per tant,
com més petit és el valor objectiu, més dura és la prova de treball.

Aquest mateix mecanisme de prova de treball es fa servir en moltes criptomonedes, com ara el Bitcoin, per
assegurar que un usuari no pot gastar de nou uns diners que ja havia gastat prèviament.

Exercici 5.6 Tenim un sistema que utilitza una prova de treball a través d’una funció hash. Aquesta
funció hash té una mida de 64 bits i la potència de càlcul de la xarxa que l’utilitza està fixada en 100.000
hashos per segon. Fixeu un valor objectiu de la funció hash per tal que, amb la potència de càlcul que
s’indica, es trobi una imatge del hash menor que valor objectiu, en mitjana, cada 10 minuts.

5.4.9 Taules hash

Les funcions hash també s’utilitzen molt sovint com a primitives en la creació d’estructures de dades.
Aquestes aplicacions es fan servir a vegades en el context de la seguretat de la informació, però també
trascendeixen a altres contextos de les ciències de la computació. A continuació presentarem tres estructures
de dades basades en funcions hash: les taules hash, els arbres de Merkle, i els filtres de Bloom.

Les taules hash són una estructura de dades utilitzada per a implementar diccionaris (també coneguts com a
arrays associatius), és a dir, estructures que emmagatzemen parells no ordenats de clau-valor, on les claus
són úniques. Les taules hash permeten inserir, buscar i eliminar elements de manera eficient.

.

Una taula hash és una estructura de dades que implementa un diccionari o array associatiu.

Exemple 5.16 Exemple de diccionari o array associatiu

Els diccionaris són estructures que es fan servir sovint en programació. A continuació es llisten un parell
d’exemples de dades que es poden desar en un diccionari:

• Un diccionari pot utilitzar-se per a desar el hash de la contrasenya d’un conjunt d’usuaris d’un
sistema. Les claus del diccionari contindran els identificadors dels usuaris (de manera que no hi ha
claus repetides) i el valor associat a cada clau serà el hash de la seva contrasenya.

• Un diccionari pot emmagatzemar els prefixos telefònics de cada província. Les claus del diccionari
contindran el nom de la província (que és únic) i el valor associat a cada clau serà el prefix telefònic
d’aquella província.

Les taules hash fan servir una funció hash per calcular l’índex d’un element a partir de la seva clau. Aquest
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índex indica a on està desat l’element.

Així, els procesos d’afegir, eliminar o buscar un element a la taula hash consten d’una primera fase comuna,
que consisteix en calcular l’índex de l’element. La segona fase és específica per a cada procés i consisteix a
fer l’acció especificada, és a dir, escriure un nou element a la taula, eliminar-ne un d’existent, o bé comprovar
si un element hi és.

Exemple 5.17 Exemple de taula hash

Seguint amb l’exemple de les contrasenyes, suposem que disposem del següent diccionari:

{
"morpheus": 0x4c9a82ce72ca2519f38d0af0abbb4cecb9fceca9,
"neo": 0x356a192b7913b04c54574d18c28d46e6395428ab,
"trinity": 0x7110eda4d09e062aa5e4a390b0a572ac0d2c0220

}

i que el volem implementar amb una taula hash que fa servir com a índex els 4 primers bits del SHA-256
de la clau de cada element. Procedim a calcular l’índex de cada element:

SHA256(morpheus) = 0xc1a1e4aa ...

i(morpheus) = SHA256(morpheus)0..3 = 0xc= 12

SHA256(neo) = 73ef176d ...

i(neo) = SHA256(neo)0..3 = 0x7= 7

SHA256(trinity) = 0x934a11e6 ...

i(trinity) = SHA256(trinity)0..3 = 0x9= 9

on l’expressió Xi.. j denota els bits des de la posició i a la posició j del valor X .

Aleshores, la taula hash quedaria de la manera següent:

0x4c9a82ce72ca2519f38d0af0abbb4cecb9fceca9

0x356a192b7913b04c54574d18c28d46e6395428ab

0x7110eda4d09e062aa5e4a390b0a572ac0d2c0220

morpheus

neo

trinity
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La versió de la taula hash que acabem d’explicar té però un problema evident: no és capaç de gestionar les
col·lisions d’índexs. És a dir, si dos elements tenen el mateix índex, no es podran emmagatzemar tots dos,
ja que en cada posició només s’hi desa un element. Això és un problema important, que es pot adreçar de
diverses maneres.

Una alternativa per a adreçar les col·lisions en taules hash és l’ús de llistes enllaçades. Així, cada posició de la
taula hash apunta al primer element d’una llista enllaçada, que contindrà tots els elements que comparteixin
el mateix índex. En aquesta variant, els processos de cerca, inserció i eliminació fan ús, per tant, de dues
estructures de dades. D’una banda, calculen l’índex de l’element a la taula hash i, d’altra banda, operen
sobre la llista enllaçada per tal de cercar, inserir o eliminar elements.

Exemple 5.18 Exemple de taula hash amb llista enllaçada

Suposem que fem servir una taula hash amb llista enllaçada per emmagatzemar els mateixos elements que
a l’exemple anterior, més la contrasenya d’un usuari nou, en cypher.

En primer lloc, calculem l’índex del nou element:

SHA256(cypher) = 0xc9d22bd2 ...

i(cypher) = SHA256(cypher)0..3 = 0xc= 12

Per tant, la taula hash quedaria ara:

morpheus

neo

trinity

cypher

0x4c9a82ce72ca2519f38d0af0abbb4cecb9fceca9morpheus

0x356a192b7913b04c54574d18c28d46e6395428abneo

0x7110eda4d09e062aa5e4a390b0a572ac0d2c0220trinity

cypher 0x78988010b890ce6f4d2136481f392787ec6d6106

Fixeu-vos que ara hem de desar tant la clau com el valor de cada element, ja que hem de poder distingir
les contrasenyes de diferents usuaris que comparteixen índexs.

Triar la funció hash adequada per a implementar una taula hash és una tasca complicada i, alhora, crítica. Cal
tenir en compte tant la distribució de valors com el rendiment de l’estructura de dades. Sovint es fan servir
funcions hash no criptogràfiques per a implementar taules hash, ja que la seva avaluació és molt més ràpida.
Així, la funció hash a utilitzar dependrà dels requeriments de l’escenari en què es desplegui la taula hash.
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5.4.10 Arbres de Merkle

Els arbres de Merkle van ser proposats l’any 1979 per Ralph Merkle, de qui en deuen el nom, i permeten
desar un resum d’un conjunt de dades, de tal manera que es pugui demostrar que una dada pertany a aquest
conjunt eficientment.

.

Una arbre de Merkle és un arbre en el qual cada fulla conté el hash d’un bloc de dades, i
els nodes interns contenen el hash de la concatenació dels valors dels seus fills.

Habitualment, els arbres de Merkle són binaris, és a dir, cada node intern té com a molt dos fills.

Blocs de

dades

Hash

1

Hash 1-0
+

Hash 1-1
hash(                  )

Hash

0

Hash 0-0
+

Hash 0-1
hash(                  )

Hash 0
+

Hash 1
hash(                  )

Top Hash

Hash

0-0

hash(L1)

Hash

0-1

hash(L2)

Hash

1-0

hash(L3)

Hash

1-1

hash(L4)

L1 L2 L3 L4

Fulles

Nodes 

interns

Figura 5.8: Exemple d’un arbre de Merkle. Il·lustració original de David Göthberg, sota llicència
CC0. 1.0.

Exemple 5.19 Exemple d’arbre de Merkle

La Figura 5.8 mostra un arbre de Merkle per a quatre blocs de dades (L1, · · · ,L4).

L’arbre té quatre fulles (els nodes 0-0, 0-1, 1-0 i 1-1), que contenen el hash de cadascun dels blocs de
dades, és a dir, h00 = H(L1), h01 = H(L2), h10 = H(L3) i h11 = H(L4).

El segon nivell de l’arbre té dos nodes: el node 0 conté el hash de la concatenació dels nodes 0-0 i 0-1
(h0 = H(h00||h01)) i el node 1 conté el hash de la contatenació dels nodes 1-0 i 1-1 (h1 = H(h10||h11)).

El primer nivell conté l’arrel de l’arbre, un únic node que desa el hash de la concatenació dels nodes 0 i 1
(hr = H(h0||h1)).
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Exercici 5.7 Calculeu el hash de l’arrel de l’arbre de Merkle per al següent conjunt de blocs de dades
fent servir SHA-256 com a funció hash.

L1 = GREAT PYRAMID OF GIZA

L2 = COLOSSUS OF RHODES

L3 = HANGING GARDENS OF BABYLON

L4 = LIGHTHOUSE OF ALEXANDRIA

L5 = MAUSOLEUM AT HALICARNASSUS

L6 = STATUE OF ZEUS AT OLYMPIA

L7 = TEMPLE OF ARTEMIS AT EPHESUS

L8 = MILFORD SOUND

Els arbres de Merkle són utilitzats per realitzar proves de pertinença a un conjunt de manera eficient.
Suposem que tenim un conjunt d’n blocs de dades, L = {L1, . . . ,Ln}, i que volem generar-ne un resum, de
manera que posteriorment puguem demostrar que els elements Li (amb i = 1, . . . ,n) pertanyen al conjunt
L eficientment. En primer lloc, calcularíem el resum hr, que correspondria al hash de l’arrel de l’arbre
de Merkle amb els blocs de dades d’L a les fulles. Aquest resum hr seria l’únic valor que caldria que el
verificador desés per tal de poder comprovar, posteriorment, que qualsevol dels blocs Li pertany a L . Per tal
de demostrar que un bloc Li pertany al conjunt L , el provador genera una prova Π que conté el bloc Li i els
hashos de tots els nodes germans que hi ha en el camí des del node Li a l’arrel de l’arbre hr. El verificador
pot comprovar que la prova és correcta calculant el hash del bloc Li i reconstruint l’arbre de Merkle amb els
hashos dels germans proporcionats a la prova. Si l’arrel de l’arbre de Merkle calculat és igual a l’arrel hr que
havia emmagatzemat, la prova és correcta, i el verificador queda convençut que Li ∈L .

Exemple 5.20 Exemple de prova de pertinença amb arbre de Merkle

Seguint amb l’exemple de la figura 5.8, suposem que hr és el valor del hash de l’arrel de l’arbre, i que
volem crear una prova de pertinença per al bloc L3. La prova de pertinença per a L3 seria Π = (L3,h11,h0).

Per tal de verificar la prova de pertinença, el verificador procediria a calcular:

h10 = H(L3)

h1 = H(h10||h11)

hr′ = H(h0||h1)

Si hr′ = hr, aleshores la prova de pertinença seria satisfactòria. En cas contrari, es rebutjaria la prova.

Un detall a notar és que per tal de verificar la prova de pertinença, el verificador ha de saber en quin ordre
concatenar els hashos a cada nivell. Aquesta informació es pot incloure a la prova de pertinença, afegint
un únic bit per a cada element que indiqui si és el fill dret o l’esquerra, o bé indicant explícitament la
posició del node dins de l’abre.

Exercici 5.8 Genereu una prova de pertinença del bloc de dades MILFORD SOUND per a l’arbre de
Merkle de l’Exercici 5.7. Valideu la prova generada.

D’una banda, la prova de pertinença que acabem de descriure és eficient i concisa. Independentment del
número de blocs de dades n i de la seva mida, el resum hr a guardar per tal de poder verificar les proves de
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pertinença és petit, i té una mida constant (que correspondrà a la mida de sortida de la funció hash que es faci
servir). Addicionalment, la prova de pertinença conté únicament log2 n elements de mida constant (la mida
de sortida del hash), més el bloc de dades a verificar. Finalment, el còmput a realitzar per fer la verificació és
també de log2 n+1 hashos (el hash del bloc de dades i un hash per cada element de la prova).

D’altra banda, si la funció hash que es fa servir en la construcció de l’arbre de Merkle és una funció hash
criptogràfica, aleshores un atacant no podrà construir una prova de pertinença falsa, és a dir, no podrà
convèncer al verificador que un bloc L j /∈L sí que pertany a L . Fixeu-vos que, per a crear una prova de
pertinença falsa, l’atacant hauria de ser capaç de crear un nou bloc L j /∈L que tingués el mateix hash que
algun dels blocs Li ∈L , és a dir, trobar un L j /∈L tal que H(L j) = H(Li) per a algun i ∈ 1, . . . ,n. Això no
és possible ja que una funció hash criptogràfica és resistent a segones preimatges. Una altra estratègia que
podria seguir l’atacant és modificar els valors dels hashos germans que conformen la prova de pertinença, per
tal d’intentar que el hash de l’arrel de l’arbre de Merkle calculat coincideixi amb l’emmagatzemat, hr. De
nou, això no és possible si la funció hash és criptogràfica, ja que suposaria crear segones preimatges (amb
restriccions addicionals sobre el seu contingut).

Les proves de pertinença en arbres de Merkle que hem presentat permeten a un provador demostrar a un
verificador que un determinat bloc de dades pertany a un conjunt. Ara bé, tal com les hem presentat, aquestes
proves no serveixen per a demostrar el contrari, és a dir, que un bloc de dades no pertany al conjunt. Fixeu-vos
que si la prova de pertinença falla, el verificador no pot assegurar que el bloc no es troba present (el bloc pot
ser-hi però en una altra posició, o bé els hashos germans presentats poden ser erronis). Una petita variant
dels arbres de Merkle permet provar que un element no està en un conjunt.

.

Una arbre de Merkle ordenat és un arbre de Merkle en el qual els blocs de dades de les
fulles es troben ordenats, de manera que L1 < L2 < · · ·< Ln.

Els arbres de Merkle ordenats es poden fer servir per a fer proves de no pertinença. Com en el cas de les
proves de pertinença, calcularem el hash de l’arrel de l’arbre, hr, que serà l’únic valor que el verificador
haurà de desar per poder verificar les proves. Ara, per tal de crear una prova que demostri que un bloc de
dades L j no pertany a L , en primer lloc cal localitzar els blocs Li i Li+1 tals que Li < L j < Li+1. La prova
de no pertinença Π̄ consistirà en els dos blocs de dades, Li i Li+1, juntament amb les proves de pertinença de
cadascun d’ells.

A partir d’aquesta prova Π̄, es pot verificar que un bloc L j no pertany a L de la següent manera. En primer
lloc, es comprova que efectivament Li < L j < Li+1. A continuació, es calculen els hashos dels blocs de dades
Li i Li+1, i es validen les proves de pertinença de casdascun d’aquests blocs. Finalment, es comprova que els
blocs de dades Li i Li+1 són blocs consecutius, és a dir, que es troben un immediatament a continuació de
l’altre en les fulles de l’arbre de Merkle. Aquesta última comprovació es fa validant la posició que ocupen els
blocs de dades en l’arbre, que es pot derivar de l’ordre en què cal concatenar els hashos per tal d’aconseguir
obtenir el hash de l’arrel esperat.

També es poden generar proves de no pertinença per a valors L j inferior a L1 o superiors a Ln, amb una petita
variant del protocol que acabem de presentar.

Exemple 5.21 Exemple de prova de no pertinença amb arbre de Merkle

Seguint amb l’exemple de la Figura 5.8, suposem que hr és el valor del hash de l’arrel de l’arbre i que
els blocs de dades Li emmagatzemen els següents enters: L1 = 31,L2 = 37,L3 = 41,L4 = 43. L’arbre
de Merkle és un arbre ordenat, ja que L1 < L2 < L3 < L4. En aquest exemple crearem una prova de no
pertinença per al bloc 42.

En primer lloc, es localitzen els dos blocs de dades consecutius entre els quals es trobaria el bloc de dades
42, que són L3 i L4 (ja que L3 < 42 < L4 i 3 i 4 són consecutius).
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La prova de no pertinença seria Π̄ = (42,(L3,h11,h0),(L4,h10,h0)).

Per tal de verificar la prova de no pertinença, en primer lloc el verificador comprovaria que 41 < 42 < 43.

Després, procediria a calcular:
h10 = H(L3)

h1 = H(h10||h11)

hr′ = H(h0||h1)

h11 = H(L4)

h1 = H(h10||h11)

hr′ = H(h0||h1)

i validaria que els valors h′r obtinguts coincideixen amb l’hr que té emmagatzemat.

Finalment, comprovaria que les fulles en posicions L3 i L4 són consecutives.

Si les tres verificacions són satisfactòries, aleshores el provador pot estar segur que 42 no pertany a L .

Els arbres de Merkle es fan servir per a fer proves de pertinença o no pertinença en diversos contextos.
Per exemple, es fan servir en la criptomoneda Bitcoin per a que clients lleugers (com podrien ser els que
s’executen en un dispositiu mòbil) puguin validar la inclusió de transaccions en els blocs que formen la
cadena de blocs (la blockchain), sense haver d’emmagatzemar la cadena de blocs sencera (que ocupa diversos
centenars de gigabytes). Cada bloc de la cadena conté l’arrel de l’arbre de Merkle de totes les transaccions
que s’hi emmagatzemen. Quan un client lleuger necessita comprovar si una transacció s’ha inclòs en un bloc
(per exemple, per saber si ha rebut un pagament), el client demana una prova de pertinença de la transacció a
la cadena de blocs. Aleshores, un servidor que sí que disposa de totes les dades, genera la prova de pertinença
per a la transacció i l’envia al client, que la valida reconstruint l’arbre de Merkle. D’aquesta manera, el client
pot estar segur que la transacció s’ha inclòs a la cadena de blocs, ja que el servidor no pot falsificar la prova.

5.4.11 Filtres de Bloom

Els filtres de Bloom van ser proposats l’any 1970 per Burton Howard Bloom. Són estructures de dades
que permeten fer testos de pertinença fent servir molt poc espai d’emmagatzemament però, a diferència
dels arbres de Merkle, són estructures probabilístiques, que poden retornar resultats erronis (amb una certa
probabilitat).

.

Un filtre de Bloom és una estructura de dades probabilística que permet fer testos de
pertinença aproximats fent un ús eficient de l’espai d’emmagatzemament.

Un filtre de Bloom pot retornar falsos positius però mai falsos negatius. És a dir, la resposta a una consulta
de pertinença amb un filtre de Bloom serà o bé que l’element no es troba en el filtre o bé que probablement sí
que hi és.

Un filtre de Bloom f està format per:

1. un vector binari V d’n bits,
2. i un conjunt de k funcions hash independents h1,h2, · · · ,hk que tenen rang [0,n−1].
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El procés de creació del filtre consisteix a seleccionar els paràmetres del filtre (la mida del vector n, el
nombre de funcions hash k i les k funcions hash a utilitzar) i a inicialitzar el vector, assignant 0 a totes les
posicions.

Per tal d’afegir un element al filtre es procedeix de la manera següent. Primer, s’apliquen les k funcions
hash a l’element, obtenint k valors entre 0 i n−1 (un valor per a cada funció hash). A continuació, s’assignen
a 1 les k posicions del vector indicades per les sortides de les funcions hash. Definirem doncs la funció
d’afegir un element e al filtre de Bloom com:

V [hi(e)] = 1 ∀i ∈ [1,k]

on V [ j] és la posició j del vector V .

Aquest procediment es repeteix per a tots els elements a afegir al filtre, procés en el qual es poden generar
col·lisions. És a dir, es pot haver d’assignar un 1 a una posició que ja havia estat fixada a 1 per un altre
element. La freqüència de les col·lisions vindrà determinada per la mida del filtre i el nombre de funcions
hash utilitzades. En aquest cas, si un dels bits a assignar a 1 ja és 1, no caldrà modificar-lo, i seguirà sent 1.

Per tal de comprovar si un element e es troba en el filtre, s’apliquen de nou les k funcions hash a l’element,
i es comprova si totes les posicions del vector binari indicades per les sortides de les funcions hash són 1. Si
alguna de les posicions indicades conté un 0, aleshores direm amb tota seguretat que l’element no pertany al
filtre. En canvi, si totes les posicions contenen un 1, aleshores direm que l’element pertany al filtre, tot i que
en aquest cas només podrem afirmar-ho amb certa probabilitat. Així, doncs, definim la funció p que retorna
1 si l’element e es troba en el filtre f i 0 en cas contrari com a:

p(e, f ) =
k

∏
i=1

V [hi(e)]

És interessant notar perquè un filtre de Bloom mai no dóna falsos negatius. La funció p retornarà 0 si alguna
de les posicions indicades per les funcions hash són 0. En aquest cas, tenint en compte que quan s’afegeixen
els elements les posicions es marquen amb 1, podem estar segurs que l’element no hi és. En canvi, la funció
p retornarà 1 si totes les posicions indicades per les funcions hash són 1. En aquest cas, podria ser que les
posicions estessin a 1 perquè s’han modificat a l’afegir l’element, però també podria ser que s’haguessin
marcat a 1 afegint d’altres elements, generant aleshores un fals positiu.

Exemple 5.22 Exemple de filtre de Bloom

En aquest exemple tenim un filtre de Bloom f que consta d’un vector binari de mida n = 8 bits i k = 3
funcions hash.

Inicialment, el filtre es troba buit i, per tant, totes les posicions del vector es troben a 0:

A continuació s’afegeixen dos elements, e1 i e2, al filtre. Per fer-ho, s’apliquen les tres funcions hash a
cadascun dels elements, i s’estableixen a 1 els bits indicats. Suposem que els resultats de les funcions
hash són els següents:

h1(e1) = 1 h1(e2) = 7
h2(e1) = 3 h2(e2) = 4
h3(e1) = 4 h3(e2) = 5
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La següent figura mostra el filtre de Bloom després d’afegir els elements e1 i e2.

A partir del vector binari i les tres funcions hash, es poden fer testos de pertinença sobre el filtre. Així, per
exemple, per a comprovar si l’element e1 pertany al filtre, calcularíem:

p(e1, f ) =
k

∏
i=1

V [hi(e1)] =V [1]×V [3]×V [4] = 1×1×1 = 1

i diríem, per tant, que l’element e1 es troba en el filtre.

Suposem ara que disposem de dos elements addicionals, e3 i e4 per als quals també volem comprovar si es
troben al filtre, i que els resultats d’aplicar les funcions hash a aquests elements són els següents:

h1(e3) = 1 h1(e4) = 7
h2(e3) = 0 h2(e4) = 3
h3(e3) = 7 h3(e4) = 1

Calculem doncs si els elements es troben al filtre:

p(e3, f ) =
k

∏
i=1

V [hi(e3)] =V [1]×V [0]×V [7] = 1×0×1 = 0

p(e4, f ) =
k

∏
i=1

V [hi(e4)] =V [7]×V [3]×V [1] = 1×1×1 = 1

Per a e3 obtenim una resposta correcta, indicant que l’element no es troba al filtre quan, efectivament,
no hi és. En canvi, per a e4 obtenim una resposta errònia: el filtre ens indica que l’element hi és quan,
en realitat, aquest no ha estat afegit. El filtre genera un fals positiu per a l’element e4, produït per les
col·lisions que es generen en afegir els elements e1 i e2.

Exercici 5.9 Sigui f un filtre de Bloom amb el vector binari següent:
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i les 5 funcions hi definides de la manera següent:

h1(e) = e mod 16
h2(e) = e+1 mod 16
h3(e) = e+2 mod 16
h4(e) = e+3 mod 16
h5(e) = e+4 mod 16

on els elements e a afegir al filtre sempre són enters.

1. Digueu si els elements següents es troben al filtre:
e1 = 0, e2 = 1429, e3 = 117 i e4 = 15839.

2. Justifiqueu si l’elecció de les funcions hi és adient per al seu ús en filtres de Bloom.

Exercici 5.10 Siguin f1 i f2 dos filtres de Bloom de la mateixa mida n i que fan servir les mateixes k
funcions hi. Expliqueu com construiríeu un únic filtre que contingui tots els elements que hi ha en els dos
filtres.

Pel que fa a l’eficiència de l’estructura de dades, els filtres de Bloom permeten tant afegir elements com
consultar si hi pertanyen amb complexitat temporal O(k), ja que les dues operacions impliquen calcular k
hashos. És a dir, afegir elements i comprovar si hi són no depèn de la mida del filtre ni del nombre d’elements
que hi pertanyen! Aquesta característica dels filtres de Bloom els fa adequats per a tractar certs tipus de
problemes com els que presentem a continuació.

Exemple 5.23 L’ús de filtres de Bloom en aplicacions reals

Un dels usos més habituals dels filtres de Bloom és com a part d’un sistema de cache. Per exemple,
a l’estudiar el problema del disseny de sistemes de cache per a pàgines web, es va observar que la
gran majoria de pàgines només són descarregades una única vegada, mentre que un conjunt petit de
pàgines es descarreguen molt sovint. A partir d’aquesta observació, els proveïdors intenten crear sistemes
de cache que incloguin aquest conjunt petit de pàgines que es fan servir sovint, ja que això permet
optimitzar la descàrrega sense consumir innecessàriament recursos de cache per a pàgines que no tornaran
a descarregar-se més.

En aquest cas, es pot servir un filtre de Bloom per emmagatzemar les pàgines que han estat visitades
alguna vegada. Quan un client fa una petició d’una pàgina, es consulta el filtre per saber si aquesta pàgina
ja ha estat buscada anteriorment.

• Si la pàgina no es troba al filtre, vol dir que no ha estat buscada en el passat. Aleshores, s’afegeix la
pàgina al filtre i es recupera de l’emmagatzemament principal. Com que la pàgina només ha estat
buscada una vegada, aquesta no s’afegeix a la cache, ja que potencialment no és d’interés per a
altres usuaris.

• Si la pàgina es troba ja al filtre, vol dir que aquesta ja havia estat consultada en el passat. Aleshores,
s’intenta recuperar la pàgina de la cache. Si hi és, se serveix al client aquesta versió, guanyant
velocitat de descàrrega. En canvi, si la pàgina no es troba a la cache, voldrà dir que és el segon cop
que es busca, i aleshores s’afegirà a la cache.

D’aquesta manera, la cache contindrà totes les pàgines que s’han buscat com a mínim dues vegades.

Facebook i Akamai fan servir aquest tipus d’estratègies en les seves plataformes.

Un filtre de Bloom és una tècnica eficient per a un sistema de cache com el que acabem de presentar: el
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nombre de possibles pàgines a descarregar és immens (de manera que mantenir una llista completa amb el
nombre de descàrregues de cada pàgina seria costós) i un fals positiu no provoca un error en el sistema
(sinó que simplement implica afegir una pàgina addicional a la cache).

Probabilitat de generar falsos positius

El disseny del filtre de Bloom presenta un compromís entre l’espai que es vol destinar al filtre i la probabilitat
de generar falsos positius que es vol acceptar.

La probabilitat de generar un fals positiu en un filtre de Bloom (FPP o False Positive Probability) ve
determinada per la mida del vector binari (n), el nombre funcions hash (k) i el nombre d’elements que conté
(m):

FPP(n,k,m) =

(
1−
(

1− 1
n

)km
)k

Vegem pas per pas d’on sorgeix aquesta expressió. La probabilitat que un bit específic del vector segueixi a 0
després d’haver afegit un element al filtre és (1−1/n)k, ja que amb probabilitat 1/n el bit es fixarà a 1 per
cadascuna de les k funcions hash. Després d’haver afegit els m elements, la probabilitat que un bit segueixi
a 0 és doncs (1−1/n)km (repetim m vegades el procés d’afegir un element). Finalment, la probabilitat de
generar un fals positiu és la probabilitat que les k posicions consultades per a l’element siguin 1.

Així doncs, donat un filtre d’una mida i nombre de funcions hash determinats, la FPP augmenta conforme es
van afegint elements al filtre. La Figura 5.9 mostra com varia la probabilitat d’un fals positiu per a un filtre
de 64 bits que fes servir dues, tres o quatre funcions hash.
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n= 64, k= 2
n= 64, k= 3
n= 64, k= 4

Figura 5.9: Probabilitat de fals positiu (FPP) segons el nombre d’elements del filtre (m), per a
k = 2 (blau), k = 3 (taronja) i k = 4 (verd) funcions hash.

Donat un filtre de mida n amb m elements, ens podem preguntar quin és el nombre de funcions hash k òptim
per tal de minimitzar la FPP del filtre. La resposta no és immediata, doncs d’una banda, augmentar k permet
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comprovar més bits per cada element que es vulgui testejar, minimitzant així la FPP però, d’altra banda,
disminuir k permet augmentar la probabilitat de trobar un bit a 0, que és el que ens permet evitar un fals
positiu.

El valor de k òptim per minimitzar la FPP ve donat per l’expressió següent:

kopt ≈
n
m

ln2

Nombre òptim
de funcions
hash

El lector interessat pot consultar el capítol 5 del llibre Mitzenmacher, Michael, and
Eli Upfal. Probability and computing: Randomization and probabilistic techniques
in algorithms and data analysis. Cambridge university press, 2017, per aprendre com
deduir l’expressió que permet calcular el nombre òptim de funcions hash a partir de
l’expressió de la FPP.

Així, el nombre òptim de funcions hash ve determinat pel factor n/m, que representa el nombre de bits per
element emmagatzemat al filtre. La Figura 5.10 mostra l’evolució de la FPP en base al nombre de funcions
hash que s’utilitzen per a filtres amb diferents bits per element (n/m). També s’hi mostra el nombre òptim de
funcions hash a fer servir en cadascun dels casos.
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n/m=16
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kopt=1.39

Figura 5.10: Probabilitat de fals positiu (FPP) segons el nombre de funcions hash (k).

Cal tenir en compte que l’expressió que permet calcular kopt pot retornar un nombre real, però el nombre de
funcions hash d’un filtre sempre serà un enter, que caldrà triar en el moment del disseny.

Les funcions hash dels filtres de Bloom

Els filtres de Bloom fan ús de diverses funcions hash, que han de ser independents entre elles i han de tenir
una distribució de sortida uniforme.

Es fan servir diferents tècniques per tal de poder implementar aquestes funcions sense fer ús de funcions
hash diferents, cosa que sovint seria molt costosa. Així, per exemple, es poden agafar diferents parts de la

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


5.4 Aplicacions de les funcions hash 147

sortida d’una mateixa funció hash per a cadascuna de les hi; es pot concatenar un valor inicial, diferent per
a cada hi, a l’entrada de la funció hash; o bé es poden combinar les sortides de dues funcions hash per a
recrear-ne les k necessàries.

Exemple 5.24 Exemples de definicions per a les hi

Suposem que construim un filtre per a una cache d’n = 256 bits i k = 4 funcions hash, i que hi volem
afegir la pàgina uoc.edu. Per a indexar les 256 posicions del filtre necessitem 8 bits (28 = 256), de
manera que cadascuna de les hi haurà de tenir una sortida de 8 bits.

Particionar la sortida d’una funció hash

Una manera d’implementar les quatre hi que necessitem és fer servir una única funció hash que tingui
una sortida de 32 bits com a mínim, i prendre blocs de 8 bits d’aquesta sortida per a cadascuna de les k
funcions hash.

Per exemple, prenem el SHA-1, que té una sortida de 160 bits, com a funció hash base, i calculem els hi
de la manera següent:

SHA1(uoc.edu) = 0xe6a62a58a28f94d745d3ea9a47163c846a065a3c

h1(uoc.edu) = SHA1(uoc.edu)0..7 = 0xe6= 230
h2(uoc.edu) = SHA1(uoc.edu)8..15 = 0xa6= 166
h3(uoc.edu) = SHA1(uoc.edu)16..23 = 0x2a= 42
h4(uoc.edu) = SHA1(uoc.edu)24..31 = 0x58= 88

on l’expressió Xi.. j denota els bits des de la posició i a la posició j del valor X .

L’avantatge d’aquest mètode és que només requereix el càlcul d’una única funció hash. En canvi, però, el
nombre de bits que s’obtenen queda limitat per la mida de la sortida de la funció hash, de manera que no
serveix per a filtres molt grans o que utilitzin moltes funcions hash.

Exercici 5.11 Sigui f un filtre de Bloom amb un vector n = 65536 posicions i k = 10. Justifiqueu
quina de les següents tres funcions hash seria més adient per a utilitzar per definir les 10 funcions hi
amb la tècnica de particionar la sortida i proposeu una possible definició de les hi.

1. MD5
2. SHA1
3. SHA256

Ús d’una llavor

Una alternativa és fer servir una llavor concatenada amb l’element com a entrada d’una única funció hash,
i variar el valor de la llavor per a cada hi. Per exemple, si prenem de nou el SHA-1 com a funció hash base
i un comptador com a llavor, procediríem a calcular:

h1(uoc.edu) = SHA1(1uoc.edu)0..7 = 0x81= 129
h2(uoc.edu) = SHA1(2uoc.edu)0..7 = 0x87= 135
h3(uoc.edu) = SHA1(3uoc.edu)0..7 = 0xe9= 233
h4(uoc.edu) = SHA1(4uoc.edu)0..7 = 0x16= 22

En aquest cas, com que només necessitem 8 bits per cada hi, hem conservat els primers 8 bits de la sortida
i hem descartat la resta de bits.
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L’avantatge d’aquest mètode respecte a l’anterior és que no té límit en relació al nombre de funcions hash
k a implementar ni el nombre de bits de sortida de cada hi individual (si se’n necessiten més dels que
ofereix la sortida de la funció hash base, es poden fer servir diverses llavors per a cada hi). No obstant
això, aquest mètode és molt més costós computacionalment que el mètode de particionar la sortida, ja que
per cada element a afegir o comprovar caldrà calcular diversos hashos.

Alternatives
eficients per al
càlcul de les
funcions hash

Per a conèixer una alternativa eficient per a derivar les k funcions hash recomanem la
lectura de l’article Kirsch, Adam, and Michael Mitzenmacher. “Less hashing, same
performance: building a better bloom filter.” European Symposium on Algorithms.
Springer, Berlin, Heidelberg, 2006.

Més enllà de com aconseguir k funcions hash per a construir filtres de Bloom, ens podem preguntar també
quin tipus de funció hash és adient com a funció hash base en aquestes construccions. Hem esmentat que
és necessari que les diferents hi siguin independents entre elles, i també que generin una sortida uniforme.
Les funcions hash criptogràfiques poden complir aquests requisits. Ara bé, fer servir com a funció base
una funció hash criptogràfica (com ara el SHA1) és costós computacionalment. Serien útils, per a aquesta
aplicació, l’ús de funcions hash no criptogràfiques, que tot i que no compleixen certs requisits de seguretat,
són molt més ràpides de calcular? La resposta no és absoluta, i dependrà de l’entorn en el qual preveiem
desplegar el filtre de Bloom. Si l’entorn no té adversaris, potser podem fer servir funcions no criptogràfiques,
sempre que es repecti la uniformitat de les sortides i la independència entre les hi que en derivem. Alguns
exemples de funcions hash no criptogràfiques que es fan servir en implementacions de filtres de Bloom són
la funció hash Murmur3 o la funció Fowler-Noll-Vo (FNV). En canvi, si l’entorn en el qual despleguem el
filtre pot tenir adversaris, que tinguin un interés en fer fallar els testos de pertinença, aleshores en general
serà preferible l’ús de funcions criptogràfiques, ja que les seves propietats faran el filtre més robust a atacs.
En qualsevol cas, cal estudiar amb detall l’escenari i els possibles adversaris que s’hi poden trobar, per tal de
decidir quin tipus de funció hash cal implementar.

Murmur3 La funció hash no criptogràfica Murmur3 deu el seu nom a les operacions en què basa
el seu funcionament: multiplicar-rodar-multiplicar-rodar. La primera versió d’aquesta
funció hash (coneguda com a Murmur1) va fer-se pública el 2008, i la versió actual té
dues variants: Murmur3A, que genera una sortida de 32 bits, i Murmur3F, que té una
sortida de 128 bits.

Fowler-Noll-Vo
(FNV)

La funció hash no criptogràfica Fowler-Noll-Vo deu el seu nom als autors que la van
dissenyar. La primera versió es va començar a gestar al 1991. La versió actual d’aquesta
funció ofereix variants amb sortides de 32, 64, 128, 256, 512 i 1024 bits.

Variants de filtres de Bloom

Els filtres de Bloom que acabem de descriure corresponen a la variant bàsica d’aquesta estructura de dades.
Ara bé, existeixen una gran diversitat de variants dels filtres de Bloom, cadascuna de les quals aporta alguna
nova característica en relació a la versió bàsica.

Així, per exemple, la variant bàsica del filtre de Bloom no permet eliminar elements del filtre. Una vegada
s’ha afegit un element ja no es pot esborrar, ja que si fixéssim a 0 totes les posicions indicades per les
funcions hash per a aquell element, podríem estar afectant altres elements que també haguessin modificat
aquelles posicions. Els filtres de Bloom amb comptadors (en anglès, es coneixen com a Counting Bloom
filters) són una variant que permet eliminar elements.

Els filtres de Bloom amb comptadors canvien el vector binari per un vector d’enters, que s’inicialitza
també a 0. Per a afegir un element, s’incrementa el comptador de les posicions indicades per les funcions
hash. D’aquesta manera, es pot definir una operació d’esborrat, que consisteix simplement en decrementar el
comptador de les posicions afectades.
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Exercici 5.12 Sigui f un filtre de Bloom amb comptadors d’n = 16 posicions i k = 3 funcions hash, on
hi = SHA14i..4i+3.

1. Mostreu el contingut del filtre després d’afegir els tres elements següents: uoc.edu, cv.uoc.edu,
biblioteca.uoc.edu.

2. Elimineu l’element uoc.edu del filtre i mostreu com queda el vector després d’aquesta operació.

Un altre dels problemes que presenta la variant bàsica en el seu ús en aplicacions reals és que cal decidir la
mida del filtre abans de començar a treballar-hi, en base al nombre d’elements que s’hi preveuen emmagat-
zemar i la probabilitat de falsos positius que l’aplicació pot tolerar. Ara bé, estimar el nombre d’elements
que s’hi emmagatzemaran abans de desplegar l’aplicació pot no ser fàcil i les conseqüències d’una mala
estimació afectaran al rendiment. D’una banda, si l’estimació és superior als elements que realment s’hi
emmagatzemen, estarem desaprofitant espai de disc. D’altra banda, si l’estimació és inferior, la probabilitat
de falsos positius augmentarà per sobre del llindar que l’aplicació pot tolerar. Els filtres de Bloom escalables
permeten afrontar aquest problema, oferint la possibilitat d’augmentar la mida dels filtres a mesura que
aquests es van omplint.

Els filtres de Bloom escalables (SBF) estan formats per un o més filtres de Bloom bàsics. Quan els filtres
existents en un moment donat s’omplen, aleshores s’afegeix un nou filtre bàsic a l’SBF. Cada nou filtre es
dissenya de manera que la probabilitat de fals positiu en l’estructura completa (l’SBF) sigui l’especificada en
el moment del disseny. D’aquesta manera, es pot desplegar una aplicació amb un filtre de Bloom petit, i
anar-lo ampliant conforme creixen les necessitats de l’aplicació sens que augmenti la probabilitat de falsos
positius.

5.5 Funcions hash amb propietats addicionals

Algunes de les aplicacions que acabem de presentar es poden beneficiar de l’ús de funcions hash amb algunes
propietats addicionals, més enllà de les necessàries per a funcions hash criptogràfiques que s’han presentat
a l’inici del capítol. Una d’aquestes propietats és que siguin computacionalment costoses de calcular i/o
difícilment optimitzables en hardware específic. Aquesta propietat pot ser d’interès en les funcions hash
utilitzades per emmagatzemar contrasenyes, per derivar claus o en proves de treball.

En el cas de les contrasenyes i la derivació de claus, augmentar el temps de còmput de la funció hash té
poc impacte en l’ús legítim de les aplicacions, doncs l’usuari legítim que s’ha d’autenticar només necessita
calcular un únic resultat. En canvi, aquest augment dificulta els atacs contra aquests sistemes, ja que els
atacants necessiten calcular moltes vegades la funció hash (per exemple, per fer atacs de diccionari o de
força bruta).

En el cas de les proves de treball, la situació és similar en el seu ús com a protecció per a correu brossa. El
cas de les criptomonedes és una mica diferent, i té a veure amb la descentralització del minat: certs tipus de
funcions hash són fàcilment implementables en dispositius hardware específics (ASICs o FPGAs) per al
càlcul de la funció hash, però la creació i adquisició d’aquests dispositius no es troba a l’abast de tothom.
Això fa que hi hagi un interès en evitar utilitzar funcions hash optimitzables per hardware, ja que aquestes
porten a dificultar l’accés al minat per al públic en general.
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ASICs Un ASIC (de l’anglès, application-specific integrated circuit) és un circuit integrat
d’aplicació específica, és a dir, un circuit dissenyat i fabricat per a dur a terme una
funció específica. Això es contraposa amb circuits d’ús genèric, com ara les CPUs,
que estan pensades per a poder executar diverses aplicacions diferents. Els ASICs es
dissenyen fent servir llenguatges de descripció de harware, que després se sintetizen
per produir una descripció a nivell de portes lògiques de l’aplicació. El disseny i
creació d’un ASIC té uns costos fixos molt elevats, però en canvi són circuits molt
eficients (en quant a velocitat i consum energètic) per a fer la tasca per la qual estan
dissenyats. A més, els costos variables són petits, de manera que són adients per a fer
grans produccions.

FPGAs Una FPGA (de l’anglès, Field-programmable gate array) és un circuit dissenyat per a
ser configurat després de la seva producció. Les FPGAs contenen arrays de blocs lògics,
que poden implementar portes lògiques o altres funcions més compexes, i permeten
configurar les interconnexions entre aquests blocs. Com els ASICs, es configuren
fent servir també llenguatges de descripció de hardware. Les FPGAs ofereixen un
rendiment menor que els ASICs, però el cost d’una implementació és molt més barat
que el d’un ASIC, ja que són configurables després d’haver sortit de la fàbrica de
producció.

Així, hi ha un interès creixent en el disseny de funcions hash resistents a ASICs, és a dir, funcions hash que
no donin un gran avanatge al ser implementades en ASICs. Una de les tècniques que s’utilitza és la creació
de funcions amb un ús intensiu de memòria (en anglès, es coneixen com a memory-hard functions). Com
que la memòria té un cost similar, tant si es fa servir en un ASIC com des d’un dispositiu de propòsit general,
les funcions que requereixen d’un ús intensiu de la memòria no es beneficien molt de la seva implementació
en ASICs.

.

Una funció hash amb ús intensiu de memòria (en anglès, en diem memory-hard hash
function) és una funció hash que requereix d’un ús intensiu de memòria per a avaluar-la
de manera ràpida.

Noteu que l’ús intensiu de memòria no és un requisit indispensable per a poder avaluar la funció hash: la
memòria és necessària per a avaluar-la de manera ràpida. Si no es disposa de la memòria, aleshores la funció
es pot avaluar però aquesta avaluació és molt més lenta.

La funció hash scrypt és una funció amb ús intensiu de memòria feta presentada l’any 2009 i publicada com a
RFC el 2016 (RFC 7914). Per aconseguir l’ús intensiu de memòria, la funció fa ús d’un vector pseudoaleatori
molt gran. Durant l’execució de la funció, cal accedir a diversos elements d’aquest vector, en un ordre
també pseudoaleatori, i recuperant una mateixa posició diverses vegades. La generació d’aquest vector és un
procés computacionalment costós. Així, una implementació que emmagatzemi el vector sencer serà ràpida a
executar-se, ja que només calcularà el vector una única vegada i recuperarà els elements que vagi necessitant
del vector durant l’execució. En canvi, una implementació que no desi aquest vector, necessitarà calcular els
elements cada vegada que els necessiti, un procés costós per disseny.
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5.6 Resum

Com hem pogut veure en aquest capítol, les funcions hash són una eina criptogràfica extremadament
versàtil que s’utilitza cada vegada més en diferents aplicacions i protocols criptogràfics. La seva principal
característica és la impossibilitat de predir-ne la sortida, malgrat conèixer-ne l’entrada, tot i assumint que
la definició de la funció hash queda totalment determinada de forma pública. A més, aquesta predicció no
es pot realitzar tot i conèixer la sortida d’altres valors propers a l’entrada, ja que les propietats d’aquestes
funcions impliquen que un petit canvi en l’entrada provoqui un canvi significativament gran en la sortida.

Per aconseguir aquestes característiques, hem vist que les funcions hash estan formades per un seguit de
subfuncions que incorporen un alt grau de no-linealitat justament per tal de fer imprevisible la seva sortida. A
més, les operacions internes d’una funció hash s’iteren diverses vegades perquè encara sigui més complicat
realitzar-ne una anàlisi. Per aquest motiu, la simple definició d’una funció hash, com ara el SHA-256, ja
implica una complexitat força elevada.

Gràcies a aquestes propietats, les funcions hash es poden utilitzar per realitzar autenticació de missatges
amb criptografia de clau simètrica, per obtenir resums quasi unívocs de missatges, per a generar valors
pseudoaleatoris, en protocols de compromís, per a l’emmagatzemament de contrasenyes o bé per a la
derivació de claus. A més, les funcions hash són també un dels pilars de les noves criptomonedes, gràcies a
la seva utilització en les proves de treball, els arbres de Merkle o els filtres de Bloom.
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5.7 Solucions dels exercicis

Exercici 5.1:

Utilitzant les expressions de l’Apartat 1.2, la probabilitat que en un grup de 50 persones triades a l’atzar, dues
d’elles tinguin l’aniversari el mateix dia és 1− [(1− 1

365 ) · (1−
2

365 ) · · ·(1−
49
365 )] = 0,97. D’altra banda, la

probabilitat que almenys una d’elles hagi nascut el dia 1 de gener és de 1− (1− 1
365

49
) = 0,12

Exercici 5.2:

El resultat de la funció hash és el valor 1100 i el procés de càlcul es mostra en el següent gràfic:
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g
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Exercici 5.3:

En primer lloc, cal passar el valor ’SALA’ a una cadena de bits, obtenint:

01010011010000010100110001000001.

A continuació afegim un ’1’ a la cadena, obtenint 010100110100000101001100010000011.

Després, hi afegim 448− (32+1) = 415 zeros i els últims 64 bits són la representació en binari de la mida
del missatge ’SALA’ en bits. Com que la mida del missatge era de 32 bits, tenim que els 64 bits finals del
missatge són: 000 · · ·00100000. Per tant els 512 bits de padding són:

010100110100000101001100010000011 00 · · ·0︸ ︷︷ ︸
415 zeros

00 · · ·00100000︸ ︷︷ ︸
64 bits

Exercici 5.4:

Els resultats de les funcions són els següents:

ROT R7(m1) = 11111110000000000000000111111111
SHR10(m1) = 00000000000000000000000000111111
σ0(m1) = 11000001111111111101111000000000
σ1(m1) = 01100000000000000110000000111111
∑0(m1) = 00111100000001111100001111111000
∑1(m1) = 00000011100111111111110001100000
Ch(m1,m2,m3) = 11111111000000001111111111110000
Maj(m1,m2,m3) = 11110000000000001111111111110000

Exercici 5.5:

La utilització d’una HMAC amb secret prefix no és segura perquè la informació secreta s’afegeix a l’inici i a
continuació es calcula el hash. Això fa que en un disseny estàndard de funció hash, afegir un bloc al final
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d’un missatge únicament requereixi continuar iterant la funció hash amb el nou bloc sense necessitat de
conèixer el valor de la clau secreta utilitzada per calcular l’HMAC. Així, en aquest exercici, com que volem
calcular l’HMAC de la cadena 01111111 però coneixem l’HMAC de la cadena més curta 0111, només caldrà
utilitzar la funció hash una iteració més amb el valor 0111 com a vector inicial i el fragment nou, 1111, com
a missatge a calcular el hash. Si realitzem els càlculs trobarem que l’HMAC per al missatge 01111111 serà
0001.

Exercici 5.6:

Una funció hash de 64 bits té un nombre total de possibles imatges de 264. En 10 minuts, si podem provar
100.000 hashos per segon, haurem provat 100.000 ·60 ·10 = 60.000.000 valors. Per tant, el valor objectiu
per a la nostra prova de treball serà 264

60.000.000 ≈ 307445734561 que si ho expressem com una cadena de 64
bits tenim

0000000000000000000000000100011110010101001100011001110010100001

Exercici 5.7:

En primer lloc es calculen els hashos de cadascun dels blocs de dades:

h000 = H(L1) = ea64f9d949b9508d847c85de6a03a0db71258ee7d7b01d135c5b7c794bbb9848

h001 = H(L2) = 9689fc250b6c60ec0c5c6b6f9bc7e621c69df7febb4ad1e641cc4e7792b26146

h010 = H(L3) = 876cb92390cf4b52cb3e58a48b7f221eccd99f01c1925eefc9aa1da5d4c88901

h011 = H(L4) = bb063417e4eddab0426c3cdfef9da597af388a60690ceaa01fb15f49ce30c1e4

h100 = H(L5) = ce9b1b67eb23b708147ac7a35c5a77ecdedf9ac991e0f084d1248521918795ab

h101 = H(L6) = 94335c418b09a0223a6f90757209ca69f96a26f5705d6c14d132b33cdea84c4e

h110 = H(L7) = 032cf476fae7facbb766e98e7dac817e75cd29434b15108e2b10b3d9b3a68967

h111 = H(L8) = d7409ed2339ca2803e527d63ec1e4b08ae3705ebf97b8de4646911f91ee1294c

Després, es procedeix a calcular els hashos del tercer nivell de l’arbre:

h00 = H(h000||h001) = H(ea64f9d9 · · ·9689fc25 · · ·) =
= f4aceecdaec0b6e7702331a7d5c4d2dfd708dcda5becc9e6ae2ebcb55b891771

h01 = H(h010||h011) = 344bdb1d3370f4e61c676421c048a4c9284ea5538dd678b4d2bb7ee9756c5337

h10 = H(h100||h101) = 3dbbcce400af55fc8acdca4013550a0d76169ce584a82b802ddf2b4a2761c897

h11 = H(h110||h111) = 2988ac56ddbfed1dfae8966ef1dfa1d8fe31bbd52f0002afd2d4cbbe1148f8e8

A continuació es calculen els hashos del segon nivell:

h0 = H(h00||h01) = H(f4aceecd · · ·344bdb1d · · ·) =
= 04d15a9750de7caa93411a12a1d53a9672cf1fd5213e31d4241650f4e7f34a59

h1 = H(h10||h11) = e2f528e5024516fdaaeaeb2b92fcde9b8228908f780141e936a89b6cd6dc6c0d

I finalment es calcula l’arrel de l’arbre:

hr = H(h0||h1) = H(04d15a97 · · ·e2f528e5 · · ·) =
= 3cb579c97652a53b9997027665390bf927943a1cc09b69e5a5c2518862811d37

Exercici 5.8:
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La prova de pertinença per al bloc de dades MILFORD SOUND és:

Π = (MILFORD SOUND,h110,h10,h0) =

= (MILFORD SOUND,032cf476 · · · ,3dbbcce4 · · · ,04d15a97 · · ·)

El verificador, que coneix hr = 3cb579c9 · · · procedirà a validar la prova calculant:

h111 = H(MILFORD SOUND) = d7409ed2 · · ·
h11 = H(h110||h111) = H(032cf476 · · ·d7409ed2 · · ·) = 2988ac56 · · ·
h1 = H(h10||h11) = H(3dbbcce4 · · ·2988ac56 · · ·) = e2f528e5 · · ·
h′r = H(h0||h1) = H(04d15a97 · · ·e2f528e5 · · ·) = 3cb579c9 · · ·

Com que h′r és efectivament igual a hr, el verificador donarà la prova per vàlida.

Exercici 5.9:

1. L’element e1 = 0 no es troba al filtre, ja que el bit h5(0) = 4 és 0. En canvi, els elements e2, e3 i e4 sí que
es troben al filtre, ja que totes les posicions indicades pels hi són 1 al vector:

h1(e2) = h1(1429) = 5; h2(e2) = h2(1429) = 6; h3(e2) = h3(1429) = 7;
h4(e2) = h4(1429) = 8; h5(e2) = h5(1429) = 9;

h1(e3) = h1(117) = 5; h2(e3) = h2(117) = 6; h3(e3) = h3(117) = 7;
h4(e3) = h4(117) = 8; h5(e3) = h5(117) = 9;

h1(e4) = h1(15839) = 15; h2(e4) = h2(15839) = 0; h3(e4) = h3(15839) = 1;
h4(e4) = h4(15839) = 2; h5(e4) = h5(15839) = 3;

2. La tria de les funcions hi és nesfasta ja que les funcions hi no només no són independents entre elles,
sinó que el resultat de qualsevol d’elles determina de forma única el resultat de la resta. Això fa que l’ús de
diverses funcions hi sigui contraproduent i augmenta els errors.

Exercici 5.10: Podem crear un filtre f3 de la mateixa mida que f1 i f2 que contingui la unió dels elements
que hi ha a f1 i f2 fent una OR lògica de cadascuna de les posicions dels dos filtres f1 i f2. Així, a la posició
i del filtre f3 hi posaríem el resultat d’una OR entre el valor de la posició i del filtre f1 i el valor de la posició
i del filtre f2, per a i = 1 . . .n.

Així, tot element que es troba a f1 o a f2 es trobaria també al filtre f3, ja que les posicions que aquest element
ha fixat a 1 seguirien sent 1 al nou filtre. No obtant això, la probabilitat de fals positiu seria superior a f3 (ja
que hi hauria més elements per a un filtre amb la mateixa mida i mateix nombre de funcions hash).

Exercici 5.11:

Per a indexar les n = 65536 posicions es necessiten 16 bits (216 = 65536). Com que k = 10, la sortida de la
funció hash haurà de tenir 10 ·16 = 160 bits com a mínim. Això descarta l’ús d’MD5, que té una sortida de
128 bits. Per tant, pel que fa a la mida de la sortida, tant SHA1 (160 bits) com SHA256 (256 bits) serien
bones candidates.

Tot i que els resultats específics de velocitat de càlcul de SHA1 i SHA256 depenen del maquinari que es faci
servir, en general SHA1 és més ràpid. Per tant, si volem prioritzar la velocitat d’afegir i consultar elements,
preferirem utilitzar SHA1.

L’eina openssl permet executar testos de rendiment de les primitives criptogràfiques que implementa. Per
comparar les tres funcions hash, podem executar:

openssl speed md5 sha1 sha256
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El resultat d’executar la instrucció anterior en un Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz és:

The numbers are in 1000s of bytes per second processed.
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
md5 112326.65k 262123.46k 462351.10k 571945.30k 613750.10k
sha1 123068.22k 284170.87k 593228.37k 787015.58k 865129.81k
sha256 70635.03k 158946.75k 292461.14k 359245.23k 389903.70k

En aquest cas, SHA1 és prop del doble de ràpid que SHA256 a l’hora de calcular el hash.

Exercici 5.12:

Calculem h1, h2 i h3 per a cada element a afegir al filtre:

SHA1(uoc.edu) = 0xe6a62a58a28f94d745d3ea9a47163c846a065a3c

h1(uoc.edu) = SHA1(uoc.edu)0..3 = 0xe= 15
h2(uoc.edu) = SHA1(uoc.edu)4..7 = 0x6= 6
h3(uoc.edu) = SHA1(uoc.edu)8..11 = 0xa= 10

SHA1(cv.uoc.edu) = 0x061053c6a11e8cd254a35edca6d8ab0a29765bb2b

h1(cv.uoc.edu) = SHA1(cv.uoc.edu)0..3 = 0x0= 0
h2(cv.uoc.edu) = SHA1(cv.uoc.edu)4..7 = 0x6= 6
h3(cv.uoc.edu) = SHA1(cv.uoc.edu)8..11 = 0x1= 1

SHA1(biblioteca.uoc.edu) = 0x37a00421948415623523179cc7d97877302d98d0

h1(biblioteca.uoc.edu) = SHA1(biblioteca.uoc.edu)0..3 = 0x3= 3
h2(biblioteca.uoc.edu) = SHA1(biblioteca.uoc.edu)4..7 = 0x7= 7
h3(biblioteca.uoc.edu) = SHA1(biblioteca.uoc.edu)8..11 = 0xa= 10

Per tant, el contingut del filtre una vegada s’han afegit els elements uoc.edu, cv.uoc.edu i biblioteca.uoc.edu
és:

El contingut del filtre després d’eliminar l’element uoc.edu és:
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6. Criptografia de clau pública

En aquest capítol ens introduirem en el món de la criptografia de clau pública. En primer lloc, descriurem el
concepte de criptografia de clau pública o asimètrica, així com les característiques més destacades d’aquest
tipus d’algorismes. Seguidament, veurem dos dels algorismes de xifrat de clau pública més utilitzats avui en
dia: l’RSA i l’ElGamal.

Seguidament presentarem el concepte de signatura digital i descriurem tres dels algorismes més populars de
signatura digital: l’esquema de signatura RSA, el d’ElGamal, i el DSA.

A continuació, compararem els algorismes de clau pública presentats amb els algorismes de criptografia
simètrica que havíem vist en capítols anteriors, destacant-ne les seves fortaleses i debilitats.

Després, descriurem alguns detalls a tenir en compte a l’hora d’implementar els algorismes de clau pública
descrits.

Finalment, presentarem una pinzellada d’altres famílies de criptografia de clau pública que, a diferència de
les presentades amb detall en aquest capítol, no estan basades en els problemes de factorització d’enters i
càlcul del logaritme discret.

6.1 L’origen de la criptografia de clau pública

La criptografia de clau simètrica es caracteritza per fer servir una mateixa clau tant per xifrar com per a
desxifrar. És a dir, en criptografia simètrica, tant l’emissor d’un missatge (que el xifrarà abans d’enviar-lo),
com el receptor (que l’haurà de desxifrar per poder-lo interpretar), comparteixen una única clau.

La criptografia de clau simètrica presenta algunes limitacions:

1. La distribució de claus s’ha de realitzar sobre un canal segur. Com que els dos usuaris comparteixen
la mateixa clau i aquesta clau pot ser utilitzada directament per xifrar i desxifrar missatges, la clau
no pot ser transmesa per un canal insegur, ja que aleshores un atacant que estigués escoltant el
canal podria capturar-la i utilitzar-la. Per tant, per aconseguir que dos usuaris, l’Alice i en Bob,
aconsegueixin tenir una clau simètrica amb què comunicar-se, caldrà que aquests dos usuaris hagin
tingut un canal segur amb què transmetre-la amb anterioritat. Per exemple, caldrà que l’Alice i en
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Bob s’hagin trobat presencialment o bé que ja disposin d’un canal segur per on transmetre la clau.
2. La gestió de claus es complica quan el número d’usuaris creix. Si hi ha n usuaris i cada parell

d’usuaris necessita compartir una clau, caldrà gestionar n(n− 1)/2 claus, és a dir, el número de
claus d’un sistema creix quadràticament amb el número d’usuaris d’aquest. Així doncs, apareixen
problemes d’escalabilitat a l’hora de gestionar totes aquestes claus. La Figura 6.1 mostra un exemple
de 6 usuaris que comparteixen claus 2 a 2, necessitant per tant l’existència de 15 claus.

Figura 6.1: Sis usuaris comparteixen 15 claus diferents.

3. No es disposa de la propietat de no-repudi. Diem que un criptosistema ofereix la propietat de
no-repudi si l’autor d’un missatge no en podrà negar posteriorment l’autoria. En criptografia simètrica,
com que més d’un usuari comparteixen una mateixa clau, no es pot garantir que un usuari en concret
ha realitzat una acció donada, ja que sempre hi haurà algun altre usuari que podria haver-la realitzat.

La criptografia de clau pública o asimètrica permet superar aquestes limitacions. D’una banda, la criptografia
de clau pública proporciona mètodes d’establiment de clau, és a dir, mètodes per aconseguir que dos usuaris
que es comuniquen per un canal insegur puguin crear claus que els permetin comunicar-se de manera segura.
D’altra banda, la criptografia de clau pública permet que un conjunt d’usuaris es comuniquin dos a dos de
manera segura fent servir únicament un parell de claus per cada usuari. Així, el nombre de claus d’un sistema
de clau pública creix linealment amb el número d’usuaris d’aquest sistema (en contraposició al creixement
quadràtic que presenten els esquemes de criptografia simètrica). Finalment, a través de les signatures digitals,
la criptografia de clau pública ens ofereix la propietat de no-repudi.

L’origen de la criptografia de clau pública és una mica discutit. L’article New directions in cryptography
(1979), de Whitfield Diffie i Martin Hellman, va donar a conèixer la criptografia de clau pública a la comunitat
científica i va suposar l’inici d’un canvi de paradigma en la seguretat de la informació. Posteriorment però,
amb la desclassificació de documents confidencials del govern Britànic l’any 1997, es va saber que James
Ellis, Clifford Cocks i Graham Williamson havien descobert el principi de clau pública uns anys abans que
Diffie i Hellman, però que el descobriment no s’havia fet públic ja que era confidencial. Tot i això, es creu
que els criptògrafs del govern britànic no eren conscients en aquell moment del potencial del que havien
descobert.
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6.2 Intercanvi de claus de Diffie-Hellman

L’algorisme d’intercanvi de claus de Diffie-Hellman (DHKE, de l’anglès, Diffie-Hellman Key Exchange) és
un algorisme d’intercanvi de claus basat en el problema del logaritme discret. L’algorisme va ser proposat
per Whitfield Diffie i Martin Hellman al 1976 i està inspirat en la feina de Ralph Merkle. Va ser el primer
algorisme de criptografia asimètrica.

L’ús del DHKE L’algorisme d’intercanvi de claus de Diffie-Hellman es fa servir actualment a Internet
en els protocols TLS, SSH o IPSec.

L’algorisme d’intercanvi de claus de Diffie-Hellman permet que dos usuaris que es comuniquen per un canal
insegur puguin aconseguir derivar una clau compartida de manera segura. D’aquesta manera, encara que un
atacant estigui escoltant el canal, l’atacant no pot aconseguir conèixer la clau derivada pels usuaris. Tot i així,
l’esquema no és segur davant d’atacants que puguin modificar la informació que viatja pel canal.

L’algorisme requereix d’un procés d’inicialització on es trien dos valors, p i α , que es fan públics:

.

L’algorisme d’intercanvi de claus de Diffie-Hellman entre dos usuaris, A i B, consta dels
següents passos:

1. Es tria un nombre primer aleatori p i un enter α ∈ [2, . . . , p− 2] primitiu. Es fan
públics els valors p i α .

2. A tria un valor aleatori a = kprivA ∈ [2, . . . , p−2] i calcula kpubA = αa mod p.
3. B tria un valor aleatori b = kprivB ∈ [2, . . . , p−2] i calcula kpubB = αb mod p.
4. A i B intercanvien els seus valors kpub, és a dir, A envia a B el valor kpubA i B envia

a A el valor kpubB.
5. A deriva la clau compartida kAB = ka

pubB mod p.
6. B deriva la clau compartida kAB = kb

pubA mod p.

Així doncs, efectivament, el valor kAB derivat per les dues parts participants en el protocol és el mateix, ja
que, d’una banda, l’usuari A calcula

kAB = ka
PubB mod p = (αb)a mod p

i, d’altra banda, l’usuari B calcula

kAB = kb
PubA mod p = (αa)b mod p = (αb)a mod p

L’esquema descrit fa servir un element α primitiu a Z∗p on p és un primer. Aquesta descripció correspon a la
implementació original de l’algorisme. Tot i això, l’algorisme pot ser generalitzat per fer servir qualsevol
grup cíclic finit G d’ordre n i un element α generador a G. En aquest cas, direm que el protocol es basa en el
Problema de Diffie-Hellman generalitzat.

Logaritme
discret en els
enters mòdul p

Al 2005 es va aconseguir calcular el logaritme discret mòdul un primer fort de 431 bits.
Al 2007 es va anunciar el càlcul d’un logaritme discret mòdul un primer segur de 530
bits. Al 2014 es va aconseguir per un primer segur de 596 bits i al 2016 d’un de 768
bits.

Pel que fa a la seguretat davant d’un atacant que escolti el canal, l’atacant coneixerà els dos valors intercanviats
pel canal, kPubA i kPubB, a més dels paràmetres públics p i α , però calcular kAB a partir d’aquests valors és un
procés computacionalment difícil.
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Exemple 6.1 Exemple d’intercanvi de claus de Diffie-Hellman

Els usuaris A i B disposen d’un canal insegur amb el qual comunicar-se, i volen aconseguir crear una clau
compartida kAB:

1. Se seleccionen els valors públics p = 508107251 i α = 5203822.
2. A tria el valor aleatori a = 385641303 i calcula:

kpubA = αa mod p = 5203822385641303 mod 508107251 = 421539355.
3. B tria un valor aleatori b = 467804164 i calcula:

kpubB = αb mod p = 5203822467804164 mod 508107251 = 230346411.
4. A i B intercanvien els seus valors kpub.
5. A deriva la clau compartida, calculant:

kAB = (kpubB)
a mod p = 230346411385641303 mod 508107251 = 45453571.

6. B deriva la clau compartida, calculant:
kAB = (kpubA)

b mod p = 421539355467804164 mod 508107251 = 45453571.

El protocol finalitza amb A i B compartint el mateix valor secret kAB.

Exemple 6.2 Exemple de MiM en l’intercanvi de claus de Diffie-Hellman

Un dels problemes del protocol d’intercanvi de claus de Diffie-Hellman és que no és segur davant d’atacants
que puguin situar-se al mig de la comunicació entre els dos usuaris i puguin modificar la informació que
viatja entre ells. Suposem que els dos usuaris A i B de l’exemple anterior es comuniquen per un canal
insegur, on l’usuari M pot interceptar les seves comunicacions i modificar els missatges que viatgen a
través del canal. De nou, A i B intenten establir una clau compartida kAB.

1. Els passos 1-3 es realitzen exactament igual que a l’Exemple 6.1. Per simplicitat, farem servir
els mateixos valors, de manera que al finalitzar el pas 3, A ha calculat kpubA = 421539355 i B ha
calculat kpubB = 230346411 (p = 508107251 i α = 5203822).

2. A envia kpubA a través del canal que el comunica amb B. Alhora, B envia kpubB a través del mateix
canal.

3. M intercepta els missatges kpubA i kpubB, i procedeix a:
(a) Triar un valor aleatori ma = 361369039 i calcular:

kpubMA = αma mod p = 5203822361369039 mod 508107251 = 176105595.
(b) Triar un valor alearoti mb = 504619741 i calcular:

kpubMB = αmb mod p = 5203822504619741 mod 508107251 = 342944530.
(c) Enviar el valor kpubMA a A i el valor kpubMB a B. Noteu que, a partir d’aquest moment, A

espera rebre kpubB però rebrà kpubMA i B espera rebre kpubA però rebrà kpubMB.
4. A deriva la clau compartida, calculant:

k′AB = (kpubMA)
a mod p = 176105595385641303 mod 508107251 = 36322887.

A creu que el valor k′AB és una clau compartida amb B, però en realitat correspon a una clau
compartida amb M.

5. B deriva la clau compartida, calculant:
k′′AB = (kpubMB)

b mod p = 342944530467804164 mod 508107251 = 461525945.
B creu que el valor k′′AB és una clau compartida amb A, però en realitat correspon a una clau
compartida amb M. Noteu que els valors k′AB i k′′AB difereixen.

6. M deriva les claus compartides amb A i B, calculant:
kMA = (kpubA)

ma mod p = 421539355361369039 mod 508107251 = 36322887
kMB = (kpubB)

mb mod p = 230346411504619741 mod 508107251 = 461525945.

A partir d’aquest moment, M comparteix una clau amb A i una amb B, i és capaç de llegir i
modificar tots els missatges que s’intercanvien pel canal.
Noteu que aquest atac és possible ja que no hi ha autenticació de les parts que participen en el
protocol.
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6.3 Xifres de clau pública

Habitualment els algorismes de xifrat de clau pública comprenen tres funcions bàsiques: la generació de
claus, el xifrat i el desxifrat. L’algorisme de generació de claus retorna un parell de claus de criptografia
asimètrica, [kpub,kpriv]; l’algorisme de xifrat rep un missatge m i una clau pública kpub i genera el missatge
xifrat c; i l’algorisme de desxifrat rep un missatge xifrat c i una clau privada kpriv i permet recuperar el
missatge original m.

.

Les funcions bàsiques d’un esquema de xifrat amb clau pública són:
[kpub, kpriv] = generació_claus()
c = E( kpub, m )
m = D( c, kpriv )

6.3.1 Xifratge basat en la factorització d’enters: RSA

L’RSA és un criptosistema de clau pública basat en el problema de la factorització d’enters. Va ser el
primer criptosistema de clau pública proposat: presentat el 1977, només un any més tard que el concepte de
criptografia de clau pública es fes públic. RSA són les sigles formades a partir de les inicials dels cognoms
dels seus creadors, Ron Rivest, Adi Shamir i Leonard Adleman. Avui en dia, l’RSA és encara un dels
criptosistemes de clau pública més utilitzats, tot i que els criptosistemes basats en corbes el·líptiques cada
vegada van guanyant més terreny.

L’RSA es fa servir, principalment, en dos contextos: per xifrar dades de poca mida (normalment, per xifrar
claus criptogràfiques) i en signatures digitals. En l’apartat 6.5 veurem una de les construccions més utilitzades
per transmetre grans quantitats de dades fent servir l’RSA combinat amb un criptosistema de clau simètrica,
obtenint així els beneficis dels dos criptosistemes.

.

L’algorisme de generació de claus de l’RSA consta dels següents passos:
1. Es trien dos primers aleatoris p i q.
2. Es calcula n = p ·q.
3. Es calcula φ(n) = (p−1)(q−1).
4. Se selecciona un exponent públic e ∈ [1,φ(n)) tal que gcd(e,φ(n)) = 1.
5. Es calcula l’exponent privat d tal que d · e = 1 mod φ(n). És a dir, es calcula

d = e−1 mod φ(n).
6. La clau pública kpub és el parell (n,e), mentre que la clau privada kpriv és el valor

(d). Els valors φ(n), p i q també són valors secrets que només coneix el propietari
de la clau privada.

La funció φ(n) La funció totient d’Euler φ(n) (descrita al capítol de fonaments matemàtics) compta el
número d’enters positius menors a n que són coprimers amb n.

La mida d’n Les recomanacions a data de Febrer del 2016 del NIST són de fer servir claus d’almenys
2048 bits i augmentar la mida a 3072 bits per algunes claus d’ús més crític.

Noteu que el valor d sempre existirà, ja que amb la condició gcd(e,φ(n)) = 1 assegurem que e té invers a
Zn.

Quan parlem de la longitud de la clau RSA, parlem de la mida del mòdul n (normalment expressada en bits).

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


164 Capítol 6. Criptografia de clau pública

Exemple 6.3 Exemple de generació de claus RSA Procedim a generar una clau RSA de 32 bits
seguint els passos detallats a l’algorisme de generació de claus:

Seleccionem dos primers, per exemple, p = 5879 i q = 484487.
1.2. Calculem n:

n = pq = 5879 ·484487 = 2848299073.
Podem comprovar com, efectivament, la clau generada és de 32 bits, ja que:
231 < 2848299073 < 232.

3. Calculem φ(n)
φ(n) = (p−1)(q−1) = (5879−1)(484487−1) = 2847808708.

4. Seleccionem e = 1535231195.
Comprovem que, efectivament:
gcd(e,φ(n)) = gcd(1535231195,2847808708) = 1.

5. Calculem d:
d = e−1 mod φ(n) = 1437751395.
Podem comprovar que, efectivament:
de = 1535231195 ·1437751395 = 1 mod 2847808708.

6. Obtenim:
kpub = (n,e) = (2848299073,1535231195)
kpriv = (d) = (1437751395).

Exercici 6.1 Indiqueu quins dels següents parells de claus RSA, kpub = (n,e) i kpriv = (d) són vàlids.
En cas que no ho siguin, detalleu-ne el motiu.

1. kpub = (3353361769,1647529266),kpriv = (1853372443)
2. kpub = (2660610913,700422517),kpriv = (339543773)
3. kpub = (111086984740301,1890731431),kpriv = (66185553158551)

Factorització
d’enters

L’empresa RSA Laboratories va esponsoritzar durant uns anys una sèrie de reptes
de factorització de mòduls RSA. Dins d’aquests reptes, un mòdul de 512 bits va ser
factoritzat amb èxit al 1999, un de 704 bits al 2012, i un de 729 al maig de 2016.

Per tal de xifrar un missatge amb RSA, s’aplicarà l’algorisme de xifrat, que fa servir la clau pública del
destinatari:

.

A partir d’un missatge en clar m i la clau pública del destinatari kpub = (n,e), es calcula el
missatge xifrat c:

c = me mod n

Quan el destinatari rebi el missatge xifrat c, podrà desxifrar-lo fent servir la seva clau privada (que només ell
coneix):

.
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A partir d’un missatge en xifrat c i la clau privada del destinatari kpriv = (d), es recupera
el text en clar m:

m = cd mod n

Noteu que, per tal de poder desxifrar correctament un missatge, caldrà que el missatge en clar original m
sigui menor que el mòdul n.

Podem veure com, efectivament, desxifrar un missatge que ha estat prèviament xifrat resulta en l’obtenció
del missatge original m:

cd mod n = (me)d mod n = mde mod n = m

Per a realitzar l’últim pas, recordem, d’una banda, que seguint l’algorisme de generació de claus assegurem
que:

d · e = 1 mod φ(n)

D’altra banda, el Teorema d’Euler estableix que si x i n són coprimers, aleshores:

xφ(n) = 1 mod n

I, per tant:

xde mod n = x1+tφ(n) mod n = x1 · xtφ(n) mod n = x · xφ(n)t mod n = x ·1 = x mod n

Exemple 6.4 Exemple de xifrat i desxifrat amb RSA

L’usuari Bob és el propietari del parell de claus RSA generats en l’Exemple 6.3. Si l’Alice vol enviar un
missatge xifrat m = 424242 a en Bob, procedirà de la següent manera:

c = me mod n

= 4242421535231195 mod 2848299073
= 1914597261

En Bob, per desxifrar c i obtenir el missatge en clar original, procedirà a calcular:

m = cd mod n

= 19145972611437751395 mod 2848299073
= 424242

Exercici 6.2 L’Alice i en Bob són dos usuaris d’un sistema de clau pública RSA. Les seves respectives
claus públiques i privades són:
kpubA = (3714176377,1471178161),kprivA = (696390481)
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kpubB = (3720779831,2037827401),kprivB = (2233915321)
L’Alice vol enviar el missatge m = 249 xifrat a en Bob. Reproduïu el procés de xifrat realitzat per l’Alice i
el procés de desxifrat que realitzarà en Bob al rebre el missatge, comprovant que efectivament el missatge
rebut per en Bob coincideix amb el text en clar enviat per l’Alice.

Exercici 6.3 L’Alice i en Bob s’intercanvien missatges xifrats amb RSA fent servir la convenció de
xifrar cada caràcter del missatge per separat, fent servir la codificació ASCII i utilitzant únicament lletres
majúscules. Un atacant intercepta aquest missatge de l’Alice dirigit a en Bob:
[2269693817,1639486112,1818812718,2032163849,3308958529,251951562,2224890518,
1639486112,3489265165,2032163849,228316393,1818812718]
L’atacant coneix la clau pública d’en Bob (que l’Alice ha fet servir per xifrar el missatge), així com les con-
vencions que fan servir l’Alice i en Bob en els intercanvis de missatges: kpubB =(3720779831,2037827401)
Quin és el missatge que l’Alice ha enviat a en Bob?
Nota: Trobeu el missatge sense calcular la clau privada d’en Bob, procés que no podríeu realitzar si les
claus utilitzades en l’exercici fossin de mida real.

6.3.2 Xifratge basat en el logaritme discret: ElGamal

ElGamal és un criptosistema de clau pública basat en el problema del logaritme discret. En concret, ElGamal
està basat en l’algorisme d’intercanvi de claus de Diffie-Hellman que s’ha presentat anteriorment a la
Secció 6.2. El criptosistema deu el seu nom al seu creador, Taher ElGamal, que el va descriure el 1985.

.

L’algorisme de generació de claus del ElGamal consta dels següents passos:
1. Es tria un primer p i un element α d’ordre q.
2. Es tria un valor aleatori d = kpriv ∈ [2, . . . , p−2] i calcula β = αd mod p.
3. La clau pública és kPub = (p,α,β ) i la clau privada és el valor kpriv = d.

L’element α No és necessari que α sigui un element primitiu de Z∗p, pot ser-ho d’un subgrup de Z∗p
d’ordre q.

Per tal de xifrar un missatge amb ElGamal, es procedirà a aplicar l’algorisme de xifrat.

.

A partir d’un missatge en clar m i la clau pública del destinatari kpub = (p,α,β ), es calcula
el missatge xifrat c:

1. Es tria un nombre aleatori h i es calcula c1 = αh mod p.
2. Es recupera la clau pública del receptor i es calcula c2 = m ·β h mod p.
3. S’envia el missatge xifrat (c1,c2).

Noteu que el xifratge amb el criptosistema ElGamal és probabilístic, ja que per a una mateixa clau pública i
un mateix missatge en clar, es poden generar múltiples textos xifrats, triant diferents valors aleatoris h durant
el procés de xifrat.

Fixeu-vos, també que el xifrat amb ElGamal és expansiu, ja que per un missatge de mida m es generen textos
xifrats de mida 2m.

Quan un receptor rep el parell de valors que conformen un missatge xifrat, procedirà a desxifrar-lo amb
l’algorisme de desxifrat.

.
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A partir d’un missatge xifrat (c1,c2) i la clau privada del destinatari kpriv = d, es recupera
el text en clar m:

m =
c2

cd
1

mod p

Desxifrar amb
ElGamal

Per tal de calcular c2
cd

1
mod p, es pot calcular l’invers modular de cd

1 i multiplicar el

resultat per c2.

Exemple 6.5 Exemple de generació de claus ElGamal Un usuari vol generar un parell de claus
ElGamal i procedeix a executar l’algorisme de generació de claus:

Es tria un primer p = 3725468627 i un element α = 150083912.
1.2. Es tria un valor aleatori d = 807878087 i es calcula:

β = αd mod p = 150083912807878087 mod 3725468627 = 3398986020.
3. La clau pública és kpub = (3725468627,150083912,3398986020) i la clau privada és el valor

kpriv = 807878087.

Exercici 6.4 Indiqueu quins dels següents parells de claus ElGamal, kpub = (p,α,β ) i kpriv = d són
vàlids. Per als que no ho són, detalleu-ne el motiu.

a) kPub = (1474315399,79643891,269853666),kpriv = 84990634
b) kPub = (3383730189,2011758775,2122190089),kpriv = 2878050547
c) kPub = (337681733,14736556,93610277),kpriv = 144823569
d) kPub = (98011540216022814571886828168594180107,

73706495652936837455240336262679206568,
30382876101164794220971335754154344479),

kpriv = 61488904351572748379732502783030097644

Exemple 6.6 Exemple de xifrat i desxifrat amb ElGamal

L’usuari Bob és el propietari del parell de claus ElGamal generats en l’Exemple 6.5. Si l’Alice vol enviar
un missatge xifrat m = 424242 a en Bob, procedirà de la següent manera:

1. Alice tria un nombre aleatori h = 1052400195 i calcula:
c1 = αh mod p = 1500839121052400195 mod 3725468627 = 434020969.

2. Alice calcula:
c2 = m ·β h mod p = 424242 ·33989860201052400195 mod 3725468627 = 2787237740.

3. Alice envia el missatge xifrat:
(c1,c2) = (434020969,2787237740).

En Bob, per desxifrar (c1,c2) i obtenir el missatge en clar original, procedirà a calcular:
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m =
c2

cd
1

mod p =
2787237740

434020969807878087 mod 3725468627

=
2787237740
1565777894

mod 3725468627

= 2787237740 ·1602291419 mod 3725468627
= 424242

Exercici 6.5 L’Alice i en Bob són dos usuaris d’un sistema de clau pública ElGamal. Les seves
respectives claus públiques i privades són:
kpubA = (3346900289,2210916257,849352893),kprivA = (713795492)
kpubB = (3575204279,1113291034,792418784),kprivB = (2036555019)
L’Alice vol enviar el missatge m = 424242 xifrat a en Bob. Reproduïu el procés de xifrat realitzat per
l’Alice i el procés de desxifrat que realitzarà en Bob al rebre el missatge, comprovant que efectivament el
missatge rebut per en Bob coincideix amb el text en clar enviat per l’Alice.

6.4 Signatures digitals

Més enllà d’oferir una solució al problema de la distribució de claus, la criptografia de clau pública ens
permet realitzar signatures digitals.

Tradicionalment, una signatura analògica, realitzada en bolígraf sobre un paper, permet demostrar que una
persona concreta l’ha generada. Així, per exemple, les signatures permeten donar validesa a contractes legals,
autoritzar compres amb targetes sense pin o emetre xecs. D’una manera anàloga, les signatures digitals ens
permeten demostrar que el propietari d’una determinada clau privada ha realitzat una signatura sobre un
document, de manera que només el propietari és capaç de generar una signatura vàlida per aquell document i
que qualsevol que conegui la clau pública associada n’és capaç de validar-la.

Generalment, els algorismes de signatures digitals comprenen tres funcions bàsiques: la generació de claus,
la generació de signatures i la validació de signatures. L’algorisme de generació de claus retorna un parell de
claus de criptografia asimètrica, [kpub,kpriv]; l’algorisme de signatura rep un missatge m i una clau privada
kpriv i genera una signatura digital s del missatge m; i l’algorisme de verificació rep una signatura s, un
missatge m i una clau pública kpub i valida la correctesa de la signatura.

.

Les funcions bàsiques d’un esquema de signatura digital són:
[kpub, kpriv] = generació_claus()
s = signatura( kpriv, m )
v = validació( s, m, kpub )

Atès que només el propietari de la clau privada és capaç de generar signatures amb aquella clau, diem que
les signatures digitals ofereixen la propietat de no-repudi.

.

La propietat de no-repudi s’aconsegueix quan un usuari que realitza una acció (per
exemple, signar un contracte) no pot negar posteriorment que l’acció ha estat realitzada
per ell.
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Així doncs, com que el propietari d’una clau privada n’és l’únic coneixedor, no podrà negar que ha signat
algun document, ja que és l’únic capaç de realitzar aquella signatura.

D’altra banda, cal remarcar que per validar una signatura digital només cal conèixer la clau pública i el
missatge signat, és a dir, la validació d’una signatura digital pot ser duta a terme per qualsevol part que
conegui la clau pública.

Finalment, també cal destacar que les signatures digitals ofereixen integritat sobre els documents signats.
En efecte, si un atacant modifica el contingut del document signat, la signatura s’invalida, i el receptor pot
detectar aquesta modificació.

6.4.1 Signatures basades en la factorització d’enters: RSA

L’esquema de signatura RSA està basat en l’algorisme de xifrat RSA que s’ha descrit a la Secció 6.3.1 De la
mateixa manera, la seguretat de l’algorisme de signatura RSA recau en la dificultat de factoritzar productes
de dos primer grans.

.

A partir d’un missatge en clar m i la clau privada de l’emissor kpriv = (d), es calcula la
signatura digital del missatge s:

s = md mod n

Quan el destinatari rebi el missatge m i la seva signatura s, podrà verificar la signatura fent servir la clau
pública de l’emissor (que és de domini públic):

.

A partir d’un missatge m, la seva signatura s, i la clau pública de l’emissor kpub = (n,e),
es valida la signatura calculant m′:

m′ = se mod n

i validant que m′ ?
= m. Si m′ = m, aleshores la signatura digital és vàlida, mentre que en

cas contrari la signatura digital és invàlida.

Efectivament, si la signatura s no s’ha modificat, aleshores:

m′ = se mod n = (md)e = mde = m mod n

Exemple 6.7 Exemple de signatura i validació amb RSA

L’usuari Bob és el propietari del parell de claus RSA que s’han fet servir en l’Exemple 6.3:
kpub = (n,e) = (2848299073,1535231195)
kpriv = (d) = (1437751395).

En Bob vol enviar a l’Alice el missatge m = 424242 signat. Per fer-ho, procedirà de la següent manera:
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s = md mod n

= 4242421437751395 mod 2848299073
= 2060449075

Quan el destinatari, en aquest cas l’Alice, rebi el missatge i la signatura, podrà validar la correctesa de la
signatura a partir de la clau pública de Bob, calculant:

m′ = se mod n

= 20604490751535231195 mod 2848299073
= 424242

I comprovant que el valor m′ obtingut és igual al missatge m.

6.4.2 Signatures basades en el logaritme discret: ElGamal

L’algorisme de signatura d’ElGamal va ser proposat al 1985 i es basa en la dificultat de calcular el logaritme
discret.

Exercici 6.6 Calculeu el logaritme discret de 12483 en base 36848 a Z42841, és a dir, trobeu el valor x
tal que 36848x = 12483 mod 42841. Podríeu fer aquest mateix càlcul per a valors de 1024 bits?

A diferència de l’RSA, on els esquemes de xifrat i signatura són molt similars, l’algorisme de signatura
d’ElGamal presenta diferències notables amb l’algorisme de xifratge.

.

A partir d’un missatge en clar m i la clau privada de l’emissor kpriv = d, es calcula la
signatura digital del missatge s:

1. Es tria un valor aleatori h∈ [0, p−2] coprimer amb p−1 (és a dir, gcd(h, p−1) = 1).
2. Es calcula el valor r = αh mod p.
3. Es troba el valor s tal que m = dr+hs mod p−1. El valor s es pot trobar calculant:

s = (m−d · r) ·h−1 mod p−1
4. La signatura correspon al parell de valors (r,s).

El càlcul del
valor s

Noteu que sempre podem calcular h−1 mod p−1 ja que al triar h hem assegurat que
gcd(h, p−1) = 1.

Quan el destinatari rebi el missatge m i la seva signatura (r,s), podrà verificar la signatura fent servir la clau
pública de l’emissor (que és de domini públic):

.
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A partir d’un missatge m, la seva signatura s, i la clau pública del destinatari kPub =
(p,α,β ), es valida la signatura calculant:

t = β
rrs mod p

Es comprova si:

t == α
m mod p

Si la igualtat es compleix, la signatura és correcta. En cas contrari, la signatura és
incorrecta.

Noteu com l’esquema de signatura de ElGamal, de la mateixa manera que amb l’esquema de xifratge, és
probabilístic: per un mateix missatge i una mateixa clau privada, es poden generar múltiples signatures
vàlides, variant el paràmetre h.

Noteu també que, a l’igual que en l’algorisme de xifrat, la mida de la signatura digital també és el doble que
la del missatge.

Exemple 6.8 Exemple de signatura i validació amb ElGamal

L’usuari Bob és el propietari del parell de claus ElGamal que s’han fet servir en l’Exemple 6.5:
kpub = (p,α,β ) = (3725468627,150083912,3398986020)
kpriv = 807878087.

En Bob vol enviar el missatge m = 424242 signat a l’Alice. Per fer-ho, procedirà de la següent manera:

1. Tria un valor aleatori h = 249 (comprovant que gcd(249,3725468627−1) = 1).
2. Calcula el valor r:

r = αh mod p = 150083912249 mod 3725468627 = 1675101370

3. Troba el valor s tal que m = dr+hs mod p−1.

s = (m−dr) ·h−1 mod p−1 =

= (424242−807878087 ·1675101370) ·249−1 mod 3725468626 =

= 1431688902

4. La signatura correspon al parell de valors (r,s):
(r,s) = (1675101370,1431688902)

El càlcul d’s Noteu que el càlcul del valor s s’efectua mòdul p−1 i no pas mòdul p.

Quan el destinatari, en aquest cas l’Alice, rebi el missatge i la signatura, podrà validar la correctesa de la
signatura a partir de la clau pública de Bob, calculant:

t = β
rrs mod p =

= 33989860201675101370 ·16751013701431688902 mod 3725468627 = 1954079850

α
m mod p = 150083912424242 mod 3725468627 = 1954079850

I comprovant com, efectivament, el resultat és igual al valor t, donant la signatura per vàlida.
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Exercici 6.7 Genereu dues signatures diferents per al missatge m = 45678 fent servir l’esquema de
signatura ElGamal i valideu, després, les signatures generades. Feu servir el parell de claus:
kPub = (p,α,β ) = (797445667,386331185,505206688)
kpriv = (d) = (373845532)

L’estàndard DSA

El DSA (per les seves sigles en anglès, Digital Signature Algorithm) és una variant molt popular de
l’algorisme de signatura d’ElGamal que va ser proposada al 1991. Aquesta popularitat és deu, en part, a
què des de 1994 és considerada un estàndard per a signatures digitals (DSS) del FIPS (de l’anglès, Federal
Information Processing Standards), un conjunt d’estàndards públics que desenvolupa el govern federal dels
Estats Units.

.

Els passos a seguir en l’algorisme de generació de claus DSA són els següents:
1. Es tria un primer p tal que 2L−1 < p < 2L.
2. Es busca un divisor q de p−1 tal que q sigui primer i 2N−1 < q < 2N .
3. Es busca un element g d’ordre q a Zp (1 < g < p), és a dir, g és un generador del

subgrup de q elements.
4. Es tria un valor aleatori x = kpriv tal que 0 < x < q
5. Es calcula la clau pública y = gx mod p.
6. La clau pública és kpub = (p,q,g,y) i la clau privada és el valor kpriv = (x).

L’estàndard especifica quatre possibles alternatives per a l’elecció de la mida (en bits) dels valors p i q
(respectivament, els valors L i N).

L N
1024 160
2048 224
2048 256
3072 256

Taula 6.1: Valors per a L i N detallats a l’estàndard.

.

A partir d’un missatge en clar m i la clau privada de l’emissor kpriv = x, es calcula la
signatura digital del missatge s:

1. Es genera un valor aleatori k tal que 0 < k < q.
2. Es calcula el valor r = (gk mod p) mod q.
3. Es troba el valor s tal que m = ks− xr mod q. El valor s es pot trobar calculant:

s = k−1(m+ x · r) mod q
4. La signatura correspon al parell de valors (r,s).

Si durant el procés de generació de signatura es donés el cas que s o r fossin 0, aleshores es repeteix el procés
triant un nou valor k. D’aquesta manera, s’assegura que la signatura generada mai tingui un 0 en cap de les
dues parts que la formen.

.

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


6.4 Signatures digitals 173

A partir d’un missatge m, la seva signatura (r,s), i la clau pública de l’emissor kpub =
(p,q,g,y), es valida la signatura calculant:

1. Es comprova que s ̸= 0 i r ̸= 0.
2. Es calcula:

w = s−1 mod q

u1 = mw mod q

u2 = rw mod q

v = (gu1yu2 mod p) mod q

3. Es valida que v == r mod q.
Si la igualtat es compleix, la signatura és correcta. En cas contrari, la signatura és
incorrecta.

6.4.3 Atacs als esquemes de signatura digital

En el context de les signatures digitals, existeixen tres tipus d’atacs de falsificació:

.

Direm que un adversari realitza un atac de falsificació existencial quan aquest és capaç de
crear almenys una signatura s corresponent a un missatge m.

En aquest tipus d’atacs, l’adversari no té cap control sobre el valor m, és a dir, m pot prendre qualsevol valor
(el contingut del missatge no és important). L’atacant aconsegueix el seu objectiu només pel fet d’aconseguir
una signatura vàlida s. Els atacs de falsificació existencial són els més senzills de realitzar.

.

Un atac de falsificació selectiva és un atac de falsificació en què l’adversari té com a
objectiu crear una signatura vàlida per a un missatge m que ha triat el propi adversari amb
anterioritat a l’inici de l’atac.

Així, si un atacant és capaç de dur a terme un atac de falsificació selectiva, això implica que és capaç també
de dur a terme un atac de falsificació existencial.

.

Direm que un adversari pot dur a terme un atac de falsificació universal si és capaç de
crear una signatura s vàlida per a qualsevol missatge donat m.

Un adversari capaç de realitzar falsificació universal pot, per tant, crear signatures vàlides per a missatges
triats a l’atzar, seleccionats per ell mateix, seleccionats per una tercera part, etc.

Falsificació existencial de signatures RSA

L’algorisme de signatura RSA explicat anteriorment és susceptible a atacs de falsificació existencial de
signatures.

En efecte, donada una clau pública kpub = (n,e), un atacant pot procedir de la següent manera:
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1. L’atacant tria una signatura s ∈ Zn.
2. L’atacant calcula el missatge m = se mod n.
3. L’atacant obté una signatura vàlida s per al missatge m.
4. La signatura és vàlida ja que se = m mod n.

Noteu que, en aquest cas, l’atacant és capaç de construir signatures vàlides, però no té cap mena de control
sobre els missatges que està signant.

Falsificació existencial de signatures ElGamal

L’algorisme de signatura d’ElGamal explicat anteriorment també és susceptible a atacs de falsificació
existencial.

En efecte, donada una clau pública kpub = (p,α,β ), un atacant pot procedir de la següent manera:

1. Tria dos enters i i j tals que gcd( j, p−1) = 1.
2. Calcula la signatura:

r = α
i
β

j mod p

s =−r j−1 mod p−1

3. Calcula el missatge:

m = si mod p−1

4. L’atacant obté una signatura vàlida (r,s) per al missatge m.
5. La signatura és vàlida ja que la igualtat β rrs = αx és manté.

Vegem perquè, efectivament, la validació de la signatura és correcta:

β
rrs mod p = α

drrs mod p

= α
dr

α
(i+d j)s mod p

= α
dr

α
(i+d j)(−r j−1) mod p

= α
dr−dr

α
(−ri j−1) mod p

= α
si mod p

= α
x mod p

De la mateixa manera que amb els atacs de falsificació existencial de signatures RSA, en aquest cas l’atacat
tampoc té cap control sobre els missatges signats.

Vulnerabilitat en la reutilització de valors ElGamal

L’algorisme de signatura de ElGamal fa servir un valor aleatori h a l’hora de signar els missatges. Aquest
valor és el que permet que l’algorisme sigui probabilístic i que existeixin múltiples signatures vàlides per a
un únic missatge i una clau determinada. L’aleatorietat en la selecció del paràmetre h és, però, crucial per a
la seguretat del sistema. De fet, la seva reutilització permet a un atacant descobrir la clau privada feta servir
per crear les signatures digitals.

En efecte, l’algorisme de signatura d’ElGamal (així com algunes de les seves variants) té una vulnerabilitat a
través de la qual un atacant que obté dues signatures diferents, sig1 i sig2, realitzades amb la mateixa clau
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privada d i fent servir el mateix valor h, pot recuperar la clau privada feta servir per a signar:

sig1 = (r,s1)

sig2 = (r,s2)

s1 ·h = (m1−d · r) mod p−1
s2 ·h = (m2−d · r) mod p−1

(s2− s1) ·h = m2−m1 mod p−1

h =
m2−m1

s2− s1
mod p−1

d = (m1−hs1) · r−1 mod p−1

Noteu que el càlcul descrit només pot realitzar-se si (s2− s1) és invertible, és a dir, si gcd(s2− s1, p−1) = 1.
En cas contrari, es pot realitzar el càlcul descomposant p−1 i tractant els casos concrets individualment.

Equacions
modulars amb
elements no
invertibles

Malgrat que per resoldre equacions modulars en ocasions ens aniria bé calcular inversos,
també les podem resoldre en cas que no poguem calcular algun invers explícitament. Per
exemple, podem tenir una equació modular del tipus 10x= 4 mod 26 que clarament no
podem resoldre directament perquè el 10 no té invers mòdul 26, perquè gcd(10,26) ̸= 1.
Ara bé, podem calcular el gcd(10,26) = 2 i dividir tota l’equació, incloent el mòdul,
per aquest valor. Si ho fem tindrem 5x = 2 mod 13. Fixeu-vos que en aquest cas, 5
sempre tindrà invers amb el nou mòdul (aquest cas 13) perquè sempre serà coprimer
amb aquest valor, justament perquè el nou mòdul és el mòdul anterior al qual li hem
tret el propi factor 2. Si resolem l’equació 5x = 2 mod 13 obtindrem x = 3 mod 13.
Si us hi fixeu, el valor x = 3 és solució de la primera equació 10x = 4 mod 26, però a
més també tenim una altra solució, que serà x = 3+13 = 16. De fet, tindrem tantes
solucions com el valor del gcd(10,26), en aquest cas, aquestes dues indicades. Ara bé,
podem tenir equacions de primer grau en mòduls no primers que no tinguin solució.
Per exemple, si volem resoldre l’equació 10x = 5 mod 26, clarament aquesta equació
no té solució, perquè és equivalent a 2x = 1 mod 26 i això és calcular l’invers de 2
mòdul 26 que ja sabem que no existeix.

Per tant, és important que el valor h sigui únic per a cada signatura.

Aconseguir una font d’aleatorietat prou bona com per garantir que el valor h serà únic per cada una de les
signatures realitzades per un dispositiu pot ser problemàtic en segons quins entorns (per exemple, en telèfons
mòbils). Per aquest motiu, existeix una variant del DSA determinista, on el valor h queda determinat de
manera única per la clau privada i el missatge a signar. L’algorisme que genera el valor h actua de manera
similar a un generador pseudoaleatori, fent servir la clau privada i el hash del missatge com a llavors del
generador. Noteu que, amb aquesta versió del DSA, amb una mateixa clau només es podrà generar una única
signatura per un missatge concret. Addicionalment, és important notar que la variant determinista del DSA
no modifica l’algorisme de generació de claus ni la validació de signatures, de manera que és compatible
amb sistemes que implementen el DSA probabilístic.

6.5 Criptografia simètrica i asimètrica

Més enllà de les propietats que ens ofereix la criptografia de clau pública, aquesta també difereix de la
criptografia simètrica en la mida de les claus i les necessitats computacionals dels seus algorismes. Pel que
fa a la mida de les claus, normalment es fa servir el concepte de nivell de seguretat per avaluar la fortalesa
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d’un algorisme criptogràfic amb una mida de claus concreta, i poder així comparar la seguretat que ofereixen
els diferents algorismes:

.

El nivell de seguretat d’un algorisme criptogràfic és el número de passos que necessita
el millor atac conegut per descobrir la clau. Direm que un algorisme proporciona una
seguretat d’n bits quan el millor atac necessita 2n passos.

És important notar que el nivell de seguretat d’un algorisme pot variar amb el descobriment de nous atacs
que milloren l’eficiència dels ja coneguts.

Tenint en compte la definició de nivell de seguretat, és fàcil veure que un algorisme de criptografia simètrica
amb mida de clau n bits ens proporciona una seguretat d’n bits. En canvi, calcular el nivell de seguretat d’un
algorisme de clau pública no és tan directe. La Taula 6.2 ens descriu els nivells de seguretat que s’assumeixen
avui en dia per als algorismes de clau simètrica i asimètrica més populars.

Nivell de seguretat
Algorisme 80 128 192 256
AES 80 128 192 256
RSA 1024 3072 7680 15360
ElGamal 1024 3072 7680 15360
DSA 1024 3072 7680 15360

Taula 6.2: Nivell de seguretat segons la mida de la clau.

Criptografia
de corbes
el·líptiques

Els criptosistemes de clau pública basats en corbes el·líptiques (que queden fora de
l’abast d’aquest document) permeten obtenir el mateix nivell de seguretat que els
algorismes de clau simètrica amb mides de clau superiors però molt més similars. Així,
per exemple, caldrà una clau ECDSA de 160 bits per aconseguir 80 bits de seguretat.

Com es pot apreciar, d’una banda com més gran és la mida de la clau utilitzada major és la seguretat que ens
ofereix. D’altra banda, per tal d’obtenir un mateix nivell de seguretat en un criptosistema de clau pública
que en un de clau simètrica, caldrà que la clau del primer sigui molt més gran que la del segon. Això,
unit al fet que els algorismes de clau pública requereixen càlculs computacionalment intensius, fa que en
general els algorismes de clau pública siguin més lents que els de clau simètrica. Aquesta lentitud pot no ser
problemàtica per als ordinadors actuals, però sí que pot ser-ho en dispositius amb capacitats més limitades
com ara targetes intel·ligents. A continuació, es descriuen dues de les tècniques que s’utilitzen habitualment
per accelerar el procés de xifrat i desxifrat amb RSA.

Per tal d’aprofitar els avantatges de la criptografia de clau pública pel que fa a la gestió de claus i a l’hora la
rapidesa de la criptografia simètrica per xifrar, sovint es combinen els dos sistemes amb la tècnica coneguda
com a sobre digital.

.

La tècnica del sobre digital consisteix a xifrar un missatge amb una clau simètrica aleatòria
k i xifrar la clau simètrica k amb una clau pública.

Exercici 6.8 L’Alice i en Bob són dos usuaris d’un sistema de clau pública RSA. Les seves respectives
claus públiques i privades són:
kpubA = (3714176377,1471178161),kprivA = (696390481)
kpubB = (3720779831,2037827401),kprivB = (2233915321)
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L’Alice vol enviar el missatge:
m = 011235813213455891442333776109871597258441816765
xifrat a en Bob. Reproduïu el procés de xifrat realitzat per l’Alice.

A l’hora de realitzar signatures digitals, si volguéssim signar directament els missatges amb un sistema de
clau pública ens trobaríem també amb la limitació de la mida de la clau, que reduiria en gran mesura el
conjunt de missatges que seríem capaços de signar. En aquest cas, el que es fa és combinar les signatures
digitals amb les funcions hash, descrites en el Capítol 5. És a dir, a l’hora de signar un missatge, l’usuari
procedeix primer a calcular-ne un resum a través d’una funció hash, signant després aquest resum (en
comptes del missatge original). Com que les funcions hash tenen una sortida de mida fixada, això ens permet
assegurar que podem signar qualsevol missatge (de qualsevol mida) amb una clau d’una mida concreta (fent
ús d’una funció hash amb una sortida de mida inferior a la clau).

.

El procediment a seguir per tal de signar un missatge m fent servir una funció hash H és:
1. Calcular el hash del missatge, h = H(m).
2. Calcular la signatura del hash del missatge, s = signatura( kpriv, h )

El receptor del missatge m podrà validar la signatura s, procedint de la següent manera:
1. Calcular el hash del missatge, h = H(m).
2. Valida la signatura s, v = validació( s, h, kpub )

Noteu que en aquest cas emissor i receptor s’han de posar d’acord no només amb l’algorisme de signatura
que utilitzaran sinó també amb la funció hash que faran servir.

6.6 Implementació dels algorismes de clau pública

Els algorismes de criptografia de clau pública descrits fins ara requereixen de l’ús d’operacions computacio-
nalment costoses per funcionar. Per aquest motiu, a l’hora d’implementar aquests algorismes, es fan servir
optimitzacions que permeten millorar-ne l’eficiència. En aquest capítol veurem algunes de les optimitzacions
més populars que s’utilitzen a l’hora d’implementar l’RSA i l’ElGamal.

6.6.1 Optimització del xifrat RSA

L’algorisme de generació de claus RSA que hem vist a la Secció 6.3.1 tria un exponent públic e de manera
aleatòria, amb les condicions que e estigui en l’interval (1, phi(n)) i que e sigui coprimer amb phi(n). A la
pràctica però, s’acostumen a triar valors d’e petits i amb pes de Hamming també petit, ja que això fa que el
xifratge sigui més eficient.

Pes de
Hamming

El pes de Hamming d’una seqüència binària és el número d’uns que conté. El pes de
Hamming és equivalent a la distància de Hamming entre una seqüència donada i la
seqüència de zeros de la mateixa longitud.

En concret, per xifrar (o per validar una signatura) amb RSA necessitem calcular xe mod n. Si fem servir
l’algorisme d’exponenciació ràpida de multiplicar i elevar, caldran de l’ordre de log2 e+ pes(e) operacions
per tal de realitzar el càlcul, amb pes(e) representant el pes de Hamming de la representació binària d’e.
Valors d’e petits minimitzen el terme log2 e mentre que valors amb pes de Hamming petit minimitzen el
terme pes(e).

Així, alguns dels valors que es fan servir habitualment per a l’exponent públic e són 3 i 65,537 (216 +1), que
requereixen 3 i 17 operacions per xifrar, respectivament. Aquest últim és el valor per omissió que fa servir la
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llibreria OpenSSL1. El valor 65,537 té alguns avantatges. En primer lloc és un primer de Fermat, el que fa
que calguin poques multiplicacions per elevar a aquest valor i alhora simplifica la cerca dels primers p i q
adequats. En segon lloc i a diferència de 3, 216 +1 és prou gran com per evitar certs atacs que es poden dur a
terme amb valors d’e petits si no es fa servir padding de manera correcta.

Primers de
Fermat

Els primers de Fermat són primers de la forma Fn = 2(2
n)+1. Els únics primers de

Fermats coneguts (a data de Febrer de 2016) són F0 = 3, F1 = 5, F2 = 17, F3 = 257 i
F4 = 65,537.

La selecció de l’exponent públic fent servir aquestes consideracions fa que xifrar amb RSA sigui molt més
ràpid que desxifrar, i també redueix el temps de comprovació de les signatures RSA. Tot i així, aquest no és
l’únic factor que afecta la velocitat de les implementacions d’RSA.

Tot i que l’algorisme d’exponenciació ràpida de multiplicar i elevar permet xifrar missatges amb RSA de
manera molt ràpida, aquest no es fa servir per desxifrar (ni per signar) ja que és vulnerable a atacs de canal
lateral.

.

Els atacs de canal lateral (en anglès, side channel attacks) són atacs que es basen en
informació adquirida de la implementació física d’un criptosistema. Aquests tipus d’atacs
poden fer servir, per exemple, informació sobre el temps d’execució, el consum energètic,
els camps electromagnètics, el so, etc.

Un atacant que analitzi el consum energètic d’un dispositiu que implementa l’algorisme de multiplicar i
elevar pot obtenir directament la clau. D’una banda, per cada bit de la clau, l’algorisme de multiplicar i elevar
calcula una única potència si el bit és 0 o bé una potència i una multiplicació si el bit és 1. D’altra banda, el
consum energètic d’un dispositiu implementant aquest algorisme és elevat mentre s’estan realitzant aquestes
operacions (tant multiplicació com exponenciació), i baix quan no s’estan fent aquestes operacions. Així,
veient la traça de consum energètic del dispositiu, es pot diferenciar clarament cadascuna de les iteracions de
l’algorisme (moments de consum energètic elevat separats per instants de consum energètic baix). La durada
dels moments de consum energètic elevat ens permet distingir quan s’estan processant bits de la clau a 1 o a
0. D’aquesta manera, només obtenint la traça de consum energètic d’una única operació, es pot obtenir la
clau.

Existeixen altres algorismes d’exponenciació ràpida que ofereixen protecció contra atacs d’anàlisi del consum
energètic, com ara l’algorisme d’exponenciació de Montgomery (en anglès, Montgomery Powering Ladder).
Aquests algorismes fan que cada iteració, independentment de si aquesta tracta un bit de la clau fixat a 0 o a
1, tingui un còmput similar, de manera que el consum energètic de cada iteració és similar.

6.6.2 Optimització del desxifrat RSA

A més de triar valors d’e que permetin accelerar el xifratge i la validació de signatures digitals, algunes de
les llibreries més populars emmagatzemen tres valors intermedis durant la generació de claus RSA, amb
l’objectiu de reduir el temps de desxifrat i de signatura. Aquests valors són:

• exponent 1: dp = d mod (p−1)
• exponent 2: dq = d mod (q−1)
• coeficient: qinv = (1/q) mod p

Aquests valors permeten optimitzar el càlcul de cd mod n a través del Teorema Xinès del Residu. Així, per

1https://www.openssl.org/docs/manmaster/apps/genpkey.html
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a calcular m = cd mod n es procedeix a calcular:

m1 = cdp mod p

m2 = cdq mod q

h = qinv(m1−m2) mod p

m = m2 +hq

Exemple 6.9 Exemple de desxifrat RSA

Suposem que tenim la clau privada RSA de 64 bits formada pels valors:
d = 7506774701030841737
n = 10639337161500789943
i que en el moment de generar la clau hem desat també els valors:
p = 696734729
q = 15270283967
dp = d mod (p−1) = 7506774701030841737 mod (696734729−1) = 259426577
dq = d mod (q−1) = 7506774701030841737 mod (15270283967−1) = 8567289973
qinv = (1/q) mod p = 1/15270283967 mod 696734729 = 284277123

Aleshores, per desxifrar el missatge c = 3510853621447083634, procediríem de la següent manera:
m1 = cdp mod p = 3510853621447083634259426577 mod 696734729 = 627709010
m2 = cdq mod q = 35108536214470836348567289973 mod 15270283967 = 11944757133
h = qinv(m1−m2) mod p = 284277123(627709010−11944757133) mod 696734729 = 27
m = m2 +hq = 11944757133+27 ·15270283967 = 424242424242

Noteu que això és equivalent a fer directament:

m = cd mod n =

= 35108536214470836347506774701030841737 mod 10639337161500789943 =

= 424242424242

però, en canvi, totes les operacions implicades tenen exponents i mòduls molt menors que els requerits per
a aquest càlcul. D’aquesta manera, s’aconsegueix reduir el temps de càlcul.

Podem veure com s’emmagatzemen aquests valors en claus RSA de mida real fent servir l’eina OpenSSL:

openssl genrsa -out private.pem 1024
openssl rsa -noout -text -in private.pem

Hem vist com s’optimitza el xifratge i la validació de signatures a partir de la tria de l’exponent públic e i
com s’optimitza el desxifrat i la realització de signatures emmagatzemant uns valors auxiliars relatius a la
clau privada. Després de realitzar aquestes optimitzacions, ens podríem preguntar quin dels dos processos és
doncs més ràpid. Per comprovar-ho a nivell pràctic podem recórrer de nou a la llibreria Openssl. En concret,
podem analitzar les diferències de temps necessaris per signar i validar signatures digitals en RSA amb la
sentència:

openssl speed rsa

Els resultats de l’execució de l’anterior sentència en un Intel Core i7-4770 CPU @ 3.40GH (Taula 6.3)
indiquen clarament que és molt més ràpid validar signatures (i per tant xifrar) que no pas realitzar les
signatures (o desxifrar).

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


180 Capítol 6. Criptografia de clau pública

Mida de la clau Temps sign. Temps val. Sig. per segon Val. per segon
512 bits 0.000041s 0.000003s 24317.5 328106.1
1024 bits 0.000118s 0.000008s 8485.8 131766.6
2048 bits 0.000548s 0.000024s 1825.2 41486.7
4096 bits 0.005865s 0.000088s 170.5 11299.6

Taula 6.3: Temps per signar / validar amb RSA.

6.6.3 Optimització del xifrat ElGamal

El procés de xifrat amb ElGamal consta de tres operacions: dues exponenciacions, que permeten calcular
c1 = αv mod p i un operand de c2, caux

2 = β v; i una multiplicació que realitza el càlcul final de c2, c2 =
m · caux

2 .

Com en el cas de l’RSA, les exponenciacions es poden calcular amb l’algorisme d’exponenciació ràpida de
multiplicar i elevar, de manera que s’agilitza el càlcul. Ambdues exponenciacions fan servir com a exponent
el paràmetre aleatori v, de manera que les exponenciacions poden optimitzar-se seleccionant valors v amb
propietats especials, com ara valors amb pes de Hamming petit. Si es fa servir aquesta tècnica cal anar en
compte, però, de tenir un número adequat d’exponents possibles.

Ara bé, en el cas del xifrat amb ElGamal, hi ha un altre detall important a tenir en compte: les dues
exponenciacions a calcular són completament independents del missatge a xifrar. Això fa que en algunes
aplicacions aquests valors puguin precalcular-se amb anterioritat al procés de xifrat, en moments quan la
càrrega del sistema és baixa. A l’hora de xifrar, caldrà doncs recuperar els valors precalculats i calcular
únicament la multiplicació, operació que sí que depèn del missatge a xifrar.

6.6.4 Optimització del desxifrat ElGamal

El procés de desxifrar amb el criptosistema ElGamal consta també de tres operacions: una exponenciació, que
permet calcular cd

1 ; una inversió, que calcula (cd
1)
−1; i finalment una multiplicació, que recupera m calculant

c2 · (cd
1)
−1. El desxifrat es pot optimitzar unint les dues primeres operacions en una sola exponenciació, fent

ús del Petit Teorema de Fermat (que és un cas concret del Teorema d’Euler). El Petit Teorema de Fermat
afirma que, donat un p primer:

xp−1 = 1 mod p,∀x tal que gcd(x, p) = 1

Aprofitant aquesta igualtat, podem reduir el càlcul de (cd
1)
−1 a una única exponenciació: cp−d−1

1 , és a dir, el
valor c1 elevat a l’exponent p−d−1. Comprovem que realment les dues alternatives són equivalents:

(cd
1)
−1 mod p = (cd

1)
−1 · cp−1

1 mod p = cp−d−1
1 mod p

D’aquesta manera, desxifrar un missatge amb ElGamal se simplifica i passa a consistir en una exponenciació
i una multiplicació.

6.7 Criptografia post-quàntica

Com hem vist, els algorismes de criptografia de clau pública més populars avui en dia es basen en la dificultat
de resoldre tres problemes matemàtics: la factorització d’enters, el logaritme discret i el logaritme discret
sobre corbes el·líptiques. Aquest problemes, però, deixarien de ser difícils si disposéssim d’un ordinador
quàntic de prou capacitat.
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L’algorisme de Shor és un algorisme quàntic que permet resoldre’ls en un temps polinomial respecte a la
mida de l’entrada. L’algorisme de Shor va ser proposat per Peter Shor l’any 1994 a l’article Polynomial-Time
Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.

Hi ha tot un conjunt de famílies d’algorismes de criptografia de clau pública que es basen en altres problemes
matemàtics, que es creuen difícils de resoldre tant en ordinadors clàssics com en ordinadors quàntics. A
tots ells se’ls engloba sota el nom de criptografia post-quàntica. Exemples d’aquestes famílies en són la
criptografia basada en hashos, en codis, en reticles o en equacions quadràtiques multivariades. Així, per
exemple, el criptosistema de McEliece (desenvolupat per Robert McEliece el 1978) està basat en la dificultat
de descodificar un codi lineal i l’esquema de signatura de Merkle (ideat per Ralph Merkle el 1979) es basa
en la generació d’un arbre de hashos.

Atès que els algorismes de criptografia post-quàntica són segurs davant d’ordinadors quàntics, hom podria
preguntar-se el motiu per el qual el seu ús no es troba molt més estès actualment que el dels algorismes que
hem descrit en aquest mòdul, que no són segurs en aquesta situació. D’una banda, l’eficiència computacional
dels algorismes de criptografia asimètrica post-quàntics és baixa, molt pitjor que la que ens ofereixen
actualment l’RSA o ElGamal. D’altra banda, alguns d’aquests esquemes són molt nous, i la comunitat
criptogràfica encara no hi ha depositat prou confiança. Per tal de generar aquesta confiança, és necessari
que els criptoanalistes dediquin molt temps a analitzar-los. Finalment, els algorismes criptogràfics sovint
necessiten d’un conjunt de protocols que n’estandarditzin el seu ús en diferents circumstàncies. Com veurem
més endavant, aquest fet pot arribar a ser crític per la seguretat dels esquemes. La criptografia post-quàntica
encara no ha arribat a la maduresa en aquest sentit.
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6.8 Resum

En aquest capítol hem après el concepte de criptografia de clau pública, concepte que engloba tot un conjunt
d’algorismes criptogràfics que fan servir parells de claus: una clau pública coneguda per tothom i una
clau privada només coneguda pel seu propietari. En els esquemes de xifrat amb clau pública, els usuaris
poden xifrar missatges per a un destinatari utilitzant la clau pública d’aquest destinatari. Alhora, només
el destinatari del missatge, que coneix la clau privada, serà capaç de desxifrar els missatges dirigits a ell.
Oposadament, els esquemes de signatura digital permetran a l’emissor d’un missatge signar-lo amb la seva
clau privada (que només ell coneix), permetent que aquesta signatura sigui validada per qualsevol que en
conegui la clau pública.

També s’ha explicat l’intercanvi de claus de Diffie-Hellman, un protocol que permet a dues parts establir un
secret comú per mitjà d’un canal insegur. Així mateix, ens hem centrat a descriure els dos criptosistemes de
clau pública més utilitzats avui en dia, l’RSA i ElGamal.

La tècnica del sobre digital ens permet disposar dels avantatges de la criptografia de clau pública sense
trobar-nos amb les limitacions de mida i de capacitat computacional d’aquesta, combinant criptografia de
clau pública amb algorismes de criptografia simètrica.
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6.9 Solucions dels exercicis

Exercici 6.1:

La clau a no és vàlida ja que e ·d mod φ(n) ̸= 1:

1647529266 ·1853372443 mod φ(3353361769) =
= 1647529266 ·1853372443 mod 3353239120 =

= 1499866678 ̸= 1

La clau c no és vàlida ja que el mòdul no és producte de dos primers:
n = 111086984740301 = 45613 ·41141 ·59197

Exercici 6.2:

Per tal de xifrar el missatge, l’Alice farà servir la clau pública d’en Bob i procedirà a calcular: c = me

mod n = 2492037827401 mod 3720779831 = 1920900242.

Quan en Bob rebi el missatge xifrat c, procedirà a desxifrar-lo amb la seva clau privada, calculant: m = cd

mod n = 19209002422233915321 mod 3720779831 = 249

Exercici 6.3:

L’atacant pot aprofitar el fet que coneix tots els possibles missatges que els usuaris s’intercanvien juntament
amb el fet que l’RSA no és una xifra probabilística per generar tots els possibles textos xifrats i comparar el
resultat amb el missatge intercanviat. Així, l’atacant procediria a calcular:

Lletra m c
A 65 652037827401 mod 3720779831 = 3489265165
B 66 662037827401 mod 3720779831 = 3192216487
C 67 672037827401 mod 3720779831 = 2269693817
D 68 682037827401 mod 3720779831 = 3031724104
E 68 692037827401 mod 3720779831 = 1496836939

...
G 71 712037827401 mod 3720779831 = 2224890518
H 72 722037827401 mod 3720779831 = 228316393
O 79 792037827401 mod 3720779831 = 251951562
P 80 802037827401 mod 3720779831 = 2032163849
R 82 822037827401 mod 3720779831 = 1639486112
T 84 842037827401 mod 3720779831 = 3308958529
Y 89 892037827401 mod 3720779831 = 1818812718

Taula 6.4: Càlculs realitzats per l’atacant.

Descobrint que el missatge xifrat correspon a la cadena:

[67,82,89,80,84,79,71,82,65,80,72,89]

que alhora codifica el missatge CRYPTOGRAPHY.

Exercici 6.4:

Les claus a i d són vàlides;
La clau b no és vàlida ja que p = 3383730189 no és primer.
La clau c no és vàlida ja que β ̸= al phad mod p:

14736556144823569 mod 337681733 = 93610276 ̸= 93610277
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Exercici 6.5:

Per tal de xifrar el missatge, l’Alice farà servir la clau pública d’en Bob i procedirà a seleccionar un valor
aleatori v, per exemple, v = 8341864 i calcular:
c1 = αv mod p = 11132910348341864 mod 3575204279 = 3323366879.
c2 = m ·β v mod p = 424242 ·7924187848341864 mod 3575204279 = 3166979642.
El text xifrat és el parell (c1,c2) = (3323366879,3166979642).

Quan en Bob rebi el missatge xifrat (c1,c2), procedirà a desxifrar-lo amb la seva clau privada, calculant:
m = c2

cd
1

mod p = 3166979642
33233668792036555019 mod 3575204279 = 3166979642 ·663237018 = 424242

Noteu que la solució de l’exercici no és única, ja que depèn de la selecció del paràmetre aleatori v.

Exercici 6.6:

Podem calcular el logaritme discret proposat per força bruta, és a dir, calculant 36848x mod 42841 per a
tots els valors possibles d’x (de 0 a 42840), fins a trobar el resultat que busquem, 12483. Així, trobarem que
368484928 mod 42841 = 12483. No podríem seguir aquest mateix enfocament per a valors de 1024 bits, ja
que el número de possibilitats a provar és massa gran.

Exercici 6.7:

Seleccionem un valor aleatori h, per exemple, h = 55. Calculem:
r = αh mod p = 38633118555 mod 797445667 = 673983968
s = (m−d · r) ·h−1 mod p−1 = (45678−373845532 ·673983968) ·55−1 mod 797445666 = 1042804
La signatura correspondria al parell (r,s) = (673983968,1042804).

Per a realitzar una segona signatura, seleccionaríem un segon valor aleatori h, per exemple, h = 77:
r = αh mod p = 38633118577 mod 797445667 = 205790131
s = (m−d · r) ·h−1 mod p−1 = (45678−373845532 ·205790131) ·77−1 mod 797445666 = 284046946
(r,s) = (205790131,284046946).

Per tal de validar les signatures, procedim a calcular:
t = β rrs mod p = 505206688673983968 ·6739839681042804 mod 797445667 = 137624270
i comprovem que el valor sigui igual a αm mod p:
αm mod p = 38633118545678 mod 797445667 = 137624270

Per a la segona signatura, realitzem el mateix procediment:
t = β rrs mod p = 505206688205790131 ·205790131284046946 mod 797445667 = 137624270
i comprovem que el valor sigui igual a αm mod p:

α
m mod p = 38633118545678 mod 797445667 = 137624270

Noteu que la solució de l’exercici no és única, ja que depèn de les eleccions del paràmetre aleatori h.

Exercici 6.8:

El missatge m és major que el mòdul de la clau pública d’en Bob n = 3720779831. Per aquest motiu, el
missatge no es pot xifrar directament amb RSA. Una alternativa es fer servir la tècnica del sobre digital:
l’Alice genera una clau simètrica k aleatòria i xifra el missatge amb la clau k, c = Ek(m), fent servir com
a algorisme de xifrat E qualsevol esquema de clau simètrica. L’Alice xifra després la clau k amb la clau
pública d’en Bob fent servir RSA, ck = EKpub(k). Finalment, l’Alice envia en Bob els dos valors, c i ck.
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7. Infraestructura de clau pública

En el capítol anterior s’ha vist com l’aparició de la criptografia de clau pública permetia solucionar el
problema de la distribució de claus. Ara bé, quan dues entitats volen iniciar una comunicació segura, com
poden saber quina és la clau pública que correspon a cada una?

Per cobrir aquesta necessitat, és a dir, per vincular identitats amb les seves respectives claus públiques,
apareixen els certificats digitals i, amb ells, la infraestructura de clau pública (en anglès Public Key Infras-
tructure, PKI), un conjunt de processos, rols i especificacions que permeten gestionar aquests certificats.
Així, la infraestructura de clau pública permet transferir informació de manera segura, tot oferint serveis
d’autenticació, integritat i confidencialitat.

En aquest capítol, es detallen quines són les principals entitats que formen part d’una infraestructura de clau
pública i la seva funció, es descriu què són els certificats digitals i quin n’és el seu cicle de vida, s’exposen
diferents estàndards que es fan servir en l’àmbit de les PKIs i, finalment, es discuteix sobre els problemes
que pateixen els desplegaments de PKIs a nivell pràctic.

7.1 Entitats d’una PKI

Una PKI està formada per diverses entitats que interactuen entre elles. Algunes d’aquestes entitats existeixen
en tots els desplegaments de PKI, mentre que d’altres en són opcionals i només existiran en segons quin
tipus de desplegament. En aquesta secció, descriurem les diferents entitats que poden formar part d’una PKI,
tot indicant si la seva existència és opcional si n’és el cas.
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7.1.1 Autoritat de certificació

.

Una autoritat de certificació (CA per les seves sigles en anglès, Certification Authority)
és una entitat que certifica el lligam entre un parell de claus i una identitat. Aquesta
certificació es realitza mitjançant la signatura digital d’una estructura de dades que conté
tant la identitat com la clau pública corresponent. L’autoritat de certificació també és
l’encarregada de revocar aquest lligam si n’és el cas.

L’estructura de dades que signa una autoritat de certificació es coneix amb el nom de certificat de clau
pública. Així:

.

Un certificat digital de clau pública és una estructura de dades que vincula una clau
pública a una identitat.

Formats de
certificats
digitals

Existeixen diversos formats per a certificats digitals, per exemple, els certificats X.509
(que presentarem més endavant en aquest mateix capítol), els certificats PGP o els
SPKI.

Aquesta vinculació es produeix fent que una autoritat de certificació de confiança signi el certificat digital,
que conté tant la clau pública com la identitat. Addicionalment, un certificat digital acostuma a contenir
altres camps com ara informació sobre l’emissor, la validesa, identificadors dels algorismes involucrats en la
signatura del certificat, etc. A la Secció 7.3.1 es descriuen amb detall els certificats digitals X.509, un dels
formats més utilitzats avui en dia.

Figura 7.1: Abstracció del contingut d’un certificat digital.

Les autoritats de certificació disposen d’un document anomenat Declaració de Pràctiques de Certificació
(CPS, de l’anglès, Certification Practice Statement) que estableix les normes que regeixen l’emissió i gestió
de certificats d’aquella CA. Alhora, la CPS deriva de la Política de Certificació (CP, per les seves sigles en
anglès, Certificate Policy), que és un document més general que descriu l’arquitectura de la PKI en què
s’engloba la CA i els actors que hi participen, els usos permesos per als certificats que emet la CA, la política
de generació de claus, l’ús de CRLs i diversos processos que du a terme la CA.
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7.1.2 Autoritat de registre

Tot i que les tasques de registre poden ser dutes a terme per les autoritats de certificació, en certs escenaris
(com ara quan les entitats finals es troben dispersades geogràficament o bé quan el número de entitats a
certificar és molt gran) pot ser d’interès que se separin i siguin realitzades per una altra entitat.

.

Una autoritat de registre (RA per les seves sigles en anglès, Registration Authority) és
una autoritat que verifica la identitat de l’entitat que se certifica en un certificat digital.

Aquesta verificació de la identitat pot ser duta a terme, per exemple, a través de la personificació física i
mostrant el document nacional d’identitat o el passaport.

Addicionalment, l’autoritat de registre pot dur a terme altres tasques. Per exemple, la generació de claus o bé
la iniciació del procés de revocació del certificat, ambdues en nom de l’usuari final.

L’autoritat de registre és una entitat opcional en una PKI, ja que les tasques que realitza poden ser fetes per
la pròpia CA.

7.1.3 Autoritat de validació

Amb la utilització pràctica de certificats digitals apareix la necessitat de poder-los revocar, és a dir, d’anul·lar-
ne la seva validesa abans de la data de caducitat del propi certificat. Aquesta necessitat pot sorgir, per
exemple, quan les claus privades corresponents s’han vist compromeses.

.

Una llista de revocació de certificats o CRL (de l’anglès, Certificate Revocation List) és
una llista dels certificats que es troben revocats (però que no estan caducats) en un moment
concret. Aquesta llista és signada per la CA (o bé per l’emissor de la CRL) i conté una
marca de temps.

Així doncs, la publicació periòdica de llistes de certificats revocats és una manera de donar a conèixer els
certificats que es troben revocats. A la Secció 7.3.2 es descriu amb detall les llistes de revocació de certificats
definides per l’estàndard X.509 així com les diferents alternatives de publicació d’aquestes llistes.

Una alternativa (o un complement) a l’ús de CRLs és l’ús del protocol OSCP:

.

El protocol OCSP (de l’anglès, Online Certificate Status Protocol) permet obtenir l’estat
d’un certificat digital identificat de manera interactiva.

En concret, el protocol OCSP permet a un client emetre una petició sobre l’estat d’un certificat digital a un
servidor OSCP. El servidor OCSP respondrà amb una resposta signada indicant l’identificador del certificat,
el seu estat de revocació, l’interval de temps en el qual es considera vàlida la resposta i informació addicional.
L’estat del certificat pot ser bo, revocat (ja sigui permanentment o en suspensió) o desconegut.

.

Una autoritat de validació (VA per les seves sigles en anglès, Validation Authority) és
una autoritat que ofereix un servei que permet verificar la validesa d’un certificat digital.
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7.1.4 Autoritat de segellat de temps

Certes aplicacions requereixen de segells de temps segurs per operar. Dins d’una PKI, l’autoritat de segellat
de temps és l’entitat encarregada de proporcionar aquests segells.

.

Una autoritat de segellat de temps o TSA (per les seves sigles en anglès, Time Stamping
Authority) és una entitat que crea segells de temps que permeten demostrar que una dada o
document existia en un instant particular en el temps.

Un segell de temps és doncs una signatura digital realitzada per una TSA sobre una estructura de dades
que conté, d’una banda, el hash d’un document i, d’altra banda, una representació d’un instant de temps
(Figura 7.2).

És important notar que un segell de temps ens assegura que el document existia en la data esmentada en el
segell, però no ens dóna informació sobre en quin moment va ser creat. Un ús habitual dels segells de temps
es troba en la verificació que una signatura digital d’un missatge va ser creada abans que el corresponent
certificat digital fos revocat. D’aquesta manera es permet que un certificat digital revocat pugui ser utilitzat
per validar signatures digitals creades amb anterioritat a la revocació. Un altre dels usos habituals és en el
lliurament de documents o sol·licituds que tenen una data límit: l’ús del segell de temps permet demostrar
que el document o la sol·licitud existia en un instant de temps concret, anterior a la data límit.

Figura 7.2: Abstracció del contingut d’un segell de temps.

A la Secció 7.3.4 es descriu el protocol de timestamp definit per l’estàndard X.509.

7.1.5 Entitat final

.

Una entitat final és una entitat que disposa d’un certificat en una PKI i que no és una
autoritat de certificació. Les entitats finals poden ser individus, però també organitzacions,
aplicacions o fins i tot dispositius.

Les entitats finals són titulars d’un certificat digital. S’anomenen entitats finals ja que apareixen al final de la
cadena de certificació.
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7.1.6 Repositori de certificats

L’existència d’un certificat digital emès per una entitat de confiança que vinculi una identitat amb un parell
de claus és de poca utilitat si hom no es troba en disposició del certificat digital en qüestió.

La manera més senzilla de solucionar aquest problema consisteix a deixar que siguin els propis usuaris els
que es facin arribar els certificats els uns als altres, per exemple, enviant-los per correu electrònic o trobant-se
en persona i fent l’intercanvi en un suport físic. Aquest mètode es coneix com a disseminació privada i
és viable quan el nombre d’usuaris és reduït i la majoria d’usuaris es coneixen, però no escala bé quan el
nombre d’usuaris creix. Una de les alternatives consisteix a publicar els certificats digitals, de manera que
els usuaris en tinguin accés.

.

Els repositoris de certificats emmagatzemen i proporcionen accés als certificats digitals.

El terme repositori és un terme genèric que es fa servir per referir-se a qualsevol base de dades centralitzada
(almenys a nivell lògic) capaç d’emmagatzemar informació i servir-la quan aquesta és sol·licitada.

Pel que fa a la seguretat d’aquests repositoris, la integritat dels certificats queda garantida per la pròpia
signatura que inclouen, de manera que un atacant no pot modificar amb èxit els certificats digitals del
repositori sense ser detectat. Tot i això, els repositoris poden ser susceptibles a altres atacs, per exemple,
atacs de denegació de servei que inhabilitin l’accés al repositori als usuaris legítims.

7.1.7 Repositori de llistes de revocació de certificats

A part dels repositoris de certificats, les PKI també poden disposar de repositoris de llistes de revocació
de certificats, on les aplicacions que necessitin validar un certificat digital puguin descarregar-se la CRL
corresponent. De la mateixa manera que amb els repositoris de certificats digitals, les CRLs garanteixen la
integritat del seu contingut a través de signatures digitals, però els repositoris poden ser susceptibles a altres
atacs.

.

Els repositoris de llistes de revocació de certificats emmagatzemen i proporcionen accés
a les CRLs.

A la Secció 7.3.2 es descriuen les característiques i format de les CRLs segons l’estàndard X.509.

7.2 Cicle de vida d’un certificat digital

En aquesta secció es descriu el cicle de vida d’un certificat digital, és a dir, les etapes o processos per els
quals passa un certificat, des dels preparatius que cal fer per poder-lo crear fins al processos que es duen a
terme una vegada el certificat ja no està en ús.

Alguns d’aquests processos són intrínsecs a la vida d’un certificat digital i, per tant, sempre es duran a terme.
Per exemple, sempre caldrà generar les claus que quedaran vinculades a un certificat generat, ja que les claus
són essencials en la utilitat del certificat. En canvi, altres processos són opcionals, i només es duran a terme
en circumstàncies concretes. N’és el cas, per exemple, de la revocació d’un certificat.

7.2.1 Generació del parell de claus

Existeixen diverses maneres de crear un parell de claus per a un usuari, totes elles amb els seus inconvenients
i els seus avantatges. Tot i que alguns mètodes són preferits a altres, no hi ha una opinió unànime sobre quin
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és el millor mètode a utilitzar de manera universal:

• L’usuari crea el seu propi parell de claus. Aquest mètode té com a principal avantatge que l’usuari és
l’únic que coneix la seva clau privada, ja que aquesta ha estat generada pels seus propis mitjans en el
seu propi equip. Aquest mètode és especialment indicat quan les claus generades es volen utilitzar per
realitzar signatures digitals amb no-repudi, ja que en aquest cas és convenient que cap altra entitat
conegui la clau privada. Com a inconvenient, però, l’usuari ha de ser prou competent a nivell tècnic
per poder generar el parell de claus de manera segura i per gestionar-ne les còpies de seguretat de
manera adequada. Així, per exemple, un dels problemes que es poden presentar en aquest cas és la
generació de claus en sistemes informàtics domèstics infectats de malware.

• El parell de claus és generat per la CA (o l’autoritat de registre). Tenint en compte que la CA ja és un
element de confiança dins la PKI, hi ha qui opina que s’hi pot confiar també fins al punt de deixar que
sigui aquesta qui generi les claus. El principal avantatge d’aquest mètode és que les CAs acostumen a
tenir personal especialitzat, que és capaç de garantir la seguretat dels equips que generen les claus.
Com a inconvenients, a més del fet de tenir una segona entitat que coneix la clau privada de l’usuari,
apareix la centralització de la generació de claus.

• El parell de claus és generat per una tercera part. La tercera part genera aleshores les claus i comunica
de manera físicament segura la clau privada a l’usuari. Després, la tercera part destrueix tota la
informació relativa a la creació de les claus.

• El parell de claus és generat en un dispositiu hardware especialitzat. En aquest cas, sovint les claus
privades queden emmagatzemades en una zona de seguretat del propi hardware, de manera que no
poden ser extretes.

Altres consideracions que poden influir sobre la decisió de qui ha de generar el parell de claus són les
implicacions legals que comporten o la capacitat de còmput necessària per a realitzar el procés. Aquest últim
punt no és gaire problemàtic avui en dia, ja que els dispositius informàtics actuals tenen recursos suficients
per generar claus de les mides que s’utilitzen en aquests moments.

Estàndards de
CSR

Una de les sintaxis més utilitzades per a peticions de certificat és la que es descriu al
PKCS#10.

Quan el parell de claus no és generat per la CA, serà necessari fer-li arribar la clau pública per tal que pugui
ser inclosa en el certificat digital. La Petició de Signatura de Certificat (o CSR, de l’anglès, Certificate
Signing Request) és un missatge amb una estructura de dades coneguda que envia el sol·licitant a la CA per
tal d’informar-la de la clau pública que demana certificar. A més de la clau pública, la CSR inclou informació
addicional, com ara informació d’identificació del sol·licitant.

Exemple 7.1 La generació de claus per a l’idCAT

La política de l’idCAT detalla que el ciutadà ha de generar les seves pròpies claus per a la identificació i la
signatura electrònica en el seu ordinador personal. Així, el ciutadà serà l’encarregat de generar les claus i
enviarà a la CA la clau pública a incloure en el certificat digital.

Per tal de simplificar aquest procés i fer-lo accessible a usuaris sense coneixements tècnics, el procés de
generació de claus es pot realitzar a través del navegador, de manera gairebé transparent per a l’usuari.

Exemple 7.2 La generació de claus del DNI electrònic

El DNIe 3.0 conté un xip amb informació sobre el ciutadà que n’és propietari. Entre la informació que
incorpora aquest xip, s’hi troben dos parells de claus RSA, un parell d’autenticació i un parell de signatura.
Aquestes claus són generades dins del propi xip, amb una llibreria criptogràfica que porta incorporada.
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Exercici 7.1 Quin procediment s’ha de seguir alhora de generar les claus vinculades a un certificat
digital per tal de poder garantir que les signatures realitzades amb la clau privada corresponent tenen la
propietat de no-repudi?

1. El subscriptor ha de crear el seu propi parell de claus
2. El parell de claus ha de ser generat per l’autoritat de certificació
3. El parell de claus ha de ser generat per una tercera part
4. El parell de claus és generat en un dispositiu hardware especialitzat

7.2.2 Registre

.

El registre és el procés per el qual una entitat final, ja sigui un individu o una organització,
és verificada.

El nivell de verificació necessària dependrà de la Política de Certificació o de la Declaració De Pràctiques de
Certificació. Així, per exemple, per a certificats amb polítiques de verificació laxes, l’usuari pot simplement
omplir un formulari per tal de sol·licitar el registre. En canvi, per a polítiques de certificat més estrictes, serà
necessari que l’usuari es personi físicament davant de l’autoritat de registre amb algun document d’identitat
reconegut que incorpori una fotografia.

Exemple 7.3 El registre per a l’idCAT

L’Agència Catalana de Certificació ofereix els certificats digitals idCAT a la ciutadania. Per tal de realitzar
el procés de registre, el ciutadà ha de personar-se a qualsevol de les Entitats de Registre idCAT (per
exemple, als ajuntaments) i mostrar un document identificatiu (DNI, NIE o passaport). Prèviament, el
ciutadà pot omplir un formulari amb les seves dades personals, de manera que el tramit s’agilitza.

Exemple 7.4 El registre per als certificats de persona física de la FNMT

La Fábrica Nacional de la Moneda y Timbre ofereix diferents tipus de certificats digitals, entre els quals hi
ha els certificats de persona física. Per realitzar el registre d’un certificat de persona física de la FNMT,
cal omplir un formulari per Internet i personar-se en alguna de les oficines de registre amb el codi de
sol·licitud que s’obté al complimentar el formulari i un document d’identitat (DNI, passaport, carnet de
conduir o NIE). Entre les oficines de registre disponibles s’hi troben les oficines de la Seguretat Social i
les delegacions de l’Agència Tributària.

7.2.3 Creació del certificat

Una vegada s’ha generat el parell de claus i s’ha verificat la identitat de l’entitat, es crea el certificat digital.
El certificat digital contindrà, principalment, la clau pública del titular (que haurà de ser enviada a la CA
si el parell de claus no ha estat generat directament per la CA), la identitat verificada durant el registre i la
signatura digital de la CA.

Exemple 7.5 La creació del certificat idCAT

Després de comprovar la identitat i les dades incloses en el certificat, i una vegada rebuda la clau pública,
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l’Agència Catalana de Certificació pot generar el certificat digital del sol·licitant. El titular del certificat el
podrà obtenir mitjançant el procediment telemàtic d’obtenció del certificat, que també es realitza a través
del navegador.

7.2.4 Disseminació i recuperació del certificat

El procés de disseminació del certificat dependrà del cas d’ús concret i de la Política de Certificació. En
alguns casos, el certificat es lliura directament al seu titular, que serà l’encarregat de distribuir-lo a terceres
parts sota la seva discreció. En altres casos, el certificat es publica en algun repositori públic, de manera que
tothom en té accés lliure.

Addicionalment, si la generació de claus no ha estat realitzada per l’entitat final del certificat, caldrà que la
clau privada sigui enviada també a l’usuari.

D’altra banda, quan parlem de recuperació del certificat ens referim a l’habilitat d’obtenir un certificat
d’entitat final quan aquest és necessari. Els casos d’ús més habituals són quan es necessita enviar informació
xifrada a un destinatari o bé quan és necessari verificar una signatura digital rebuda d’una altra entitat.

Exemple 7.6 El repositori de claus públiques del MIT

El MIT PGP Public Key Server (http://pgp.mit.edu/) és un dels repositoris de claus públiques més
popular. Actualment, el repositori forma part de la xarxa SKS de servidors de claus públiques, de manera
que totes les claus que s’hi publiquen es disseminen cap al centenar de servidors que formen part de la
xarxa.

7.2.5 Validació del certificat

La validació d’un certificat digital és, en realitat, un procés constituït per un conjunt de validacions, que
caldrà realitzar abans de permetre fer cap operació criptogràfica amb la clau que aquest certifica. Aquestes
validacions passen per comprovar que:

• La signatura digital del certificat és vàlida, és a dir, la signatura ha estat realitzada amb la clau de
l’emissor del certificat i és correcta per al contingut del certificat. Noteu que aquesta validació ens
garanteix la integritat de les dades del certificat.

• La data actual es troba dins del període de validesa del certificat digital, és a dir, el certificat no ha
expirat.

• El certificat no ha estat revocat.
• L’ús que s’està donant al certificat digital és correcte (tenint en compte les restriccions d’utilització,

de nom, de política, les extensions d’utilització de la clau, etc.).
• El certificat ha estat emès per una entitat de confiança.

Per tal de validar un certificat digital, caldrà construir la cadena de certificats entre el certificat que es vol
validar i l’entitat de confiança.

.

Una cadena de certificats és una llista ordenada de certificats de clau pública començant
per un certificat signat per una entitat de confiança i acabant amb el certificat que es vol
validar. Tots els certificats intermedis són certificats de CA en els quals el titular d’un
certificat correspon amb l’emissor del següent.

Per tal de validar doncs un certificat, caldrà comprovar tots els certificats de la cadena.
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7.2.6 Expiració del certificat

Els certificats digitals tenen un període de validesa en el qual es consideren vàlids per a la seva funció. Quan
aquest període de validesa acaba, diem que el certificat digital ha expirat.

Abans que finalitzi el període de validesa d’un certificat digital, es pot actualitzar el certificat digital, de
manera que l’entitat final certificada pugui seguir gaudint dels serveis de la PKI ininterrompudament. El
procés d’actualització passa per la creació d’un nou parell de claus i d’un nou certificat associat a les noves
claus, amb un nou període de validesa. Aquest procés s’acostuma a dur a terme quan s’aproxima la data
d’expiració del certificat original. Com que el titular del certificat ja ha passat pel procés de registre i disposa
d’un certificat vàlid en el moment d’actualitzar-lo, el procés d’actualització no requereix que el titular del
certificat torni a passar pel procés de registre.

Una alternativa és la renovació del certificat digital. En aquest cas, la mateixa clau pública que hi ha al
certificat que està a punt d’expirar s’inclou en un nou certificat, amb un nou període de validesa. Cal anar en
compte, però, a l’hora de renovar certificats digitals, ja que pot suposar problemes de seguretat en certes
circumstàncies.

Exemple 7.7 L’expiració dels certificats del DNI electrònic

Els certificats del DNIe 3.0 tenen una validesa de 60 mesos des de la data d’emissió (o inferior si la data de
caducitat del dni és anterior a aquests 60 mesos). Els certificats del DNIe es poden actualitzar personant-se
en un Punt d’Actualització del DNIe dins d’una oficina d’expedició. El procés d’actualització és un procés
automatitzat on el ciutadà s’autentica amb dades biomètriques i introdueix el seu pin, i noves claus i
certificats són creats.

7.2.7 Revocació del certificat

Els certificats digitals tenen un període de validesa indicat en el propi certificat. A vegades però, és necessari
poder invalidar un certificat abans que finalitzi aquest període. N’és el cas, per exemple, quan la clau privada
corresponent és compromesa, quan es produeix un canvi de nom o quan canvia l’associació entre un titular
i la CA (en particular, quan un treballador es desvincula d’una empresa). En aquest casos, serà necessari
revocar el certificat digital.

.

Un certificat digital revocat és aquell que ha estat cancel·lat abans de la seva data d’expira-
ció.

Exemple 7.8 La revocació certificats del DNI electrònic

El certificat de signatura digital del DNIe pot ser revocat personificant-se físicament en qualsevol de les
oficines d’expedició del DNIe.

7.2.8 Història i arxivament de claus

Tot i que els certificats digitals tenen una data d’expiració, això no implica que totes les dades xifrades
amb les claus d’aquests certificats hagin de deixar de ser accessibles quan el certificat caduca. Per tant, és
necessari que les claus siguin emmagatzemades, encara que el corresponent certificat digital hagi caducat.
Aquest procés es coneix amb el nom d’història de claus i és dut a terme, principalment, per a emmagatzemar
claus privades que permetin desxifrar contingut que va ser xifrat en el passat. Normalment, la pròpia entitat
final realitza aquest procés de manera local.
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En canvi, quan es parla d’arxivament de claus, normalment es parla d’un servei ofert per una tercera
part, que emmagatzema material de claus de vàries entitats finals. L’arxivament de claus consisteix en
l’emmagatzemament a llarg termini de claus (ja siguin de xifratge o de verificació de certificats). L’arxivament
de claus és útil, per exemple, quan s’intenta validar una signatura digital creada amb una clau associada a un
certificat que ja ha expirat.

7.3 Els estàndards X.509

L’estàndard X.509 de l’ITU-T defineix un framework per als certificats de clau pública, incloent l’especifi-
cació de les dades utilitzades per representar els certificats en si, així com la informació sobre revocacions
de certificats. Addicionalment, l’estàndard defineix també frameworks per a certificats d’atributs i serveis
d’autenticació. Així, l’estàndard no ofereix la descripció de tots els components d’una PKI, sinó només
d’una part, amb la intenció de servir com a base per a l’especificació i construcció de PKIs completes.

Certificats
d’atributs

Un certificat d’atributs o AC (de l’anglès, attribute certificate és una estructura
de dades signada digitalment que vincula uns valors d’uns atributs amb informació
d’identificació del seu propietari.

D’altra banda, l’IETF dedica esforços a l’estandardització de les infraestructures de clau pública basades en
X.509 a través del grup de treball PKIX. Inicialment, la feina del grup se centrava en perfilar les normes
X.509 que produïa la ITU-T, però posteriorment el grup també va començar a desenvolupar iniciatives
independents adreçades a cobrir les necessitats de la PKI a Internet. La IETF publica els seus documents
tècnics en les anomenades RFC (de l’anglès, Request For Comments), algunes de les quals tenen caràcter
estandarditzador.

ITU La ITU (de l’anglès, International Telecommunication Union és l’agència de les
Nacions Unides especialitzada en l’àmbit de les telecomunicacions, la informació i
les tecnologies de la comunicació. En concret, la ITU-T és la branca de la ITU que
coordina els estàndards sobre telecomunicacions.

IETF La IETF (de l’anglès, International Engineering Task Force és una comunitat internaci-
onal que té com a objectiu millorar i evolucionar Internet, a través de la producció de
documents tècnics que guiïn aquesta evolució.

La primera versió de l’estàndard internacional ITU-T X.509 va ser publicada el 1988 com a part de les
recomanacions per directori X.500 i defineix un format estàndard per a certificats digitals. La versió descrita
en aquest estàndard es coneix com a versió 1. El 1993, l’estàndard va ser revisat i es van afegir dos camps
més als certificats, amb el que es coneix com la versió 2 del format. També durant el 1993 es van publicar
les RFCs relacionades de Internet Privacy Enhanced Mail (PEM), que inclouen especificacions per a una
PKI basada en els certificats x.509 v1 (RFC1422). L’experiència obtinguda a l’intentar fer desplegaments
d’aquesta RFC va servir per mostrar les deficiències del format v1 i v2 dels certificats X.509. En resposta a
les deficiències detectades, es va crear la versió 3 del format del certificats, que extèn la versió 2 afegint la
possibilitat de crear camps d’extensions addicionals. L’estandardització del format v3 va ser completada al
juny de 1996 i es considera vigent en l’actualitat.

7.3.1 Certificats de clau pública

Com hem vist, un certificat digital de clau pública és una estructura de dades que vincula una clau pública amb
una identitat a través d’una signatura d’aquest vincle feta per una autoritat. En aquesta secció, descriurem
l’estructura d’un certificat X.509.

Gestió de
certificats
X.509

L’Openssl inclou l’eina x509 que incorpora tot de funcionalitats relatives als certifi-
cats X.509. Així, per exemple, l’eina permet visualitzar el contingut dels certificats,
convertir certificats a diferents formats o signar peticions de certificat.
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La Taula 7.1 mostra els camps d’un certificat X.509 versió 3. L’estructura de dades del certificat és similar a
moltes de les estructures de dades on s’hi emmagatzema contingut signat: s’inclou un camp amb el contingut
a signar, un camp amb l’identificador de l’algorisme que s’ha fet servir per resumir i signar el contingut i,
finalment, el valor de la signatura.

Camp Descripció
TBSCertificate El certificat a signar (en anglès, to-be-signed certificate).
signatureAlgorithm Identificador de l’algorisme de signatura utilitzat per

l’emissor del certificat per signar-lo.
signatureValue Cadena de bits amb el valor de la signatura.

Taula 7.1: Camps d’un certificat X.509.

L’identificador
de l’algorisme
de signatura

L’identificador de l’algorisme de signatura acostuma a especificar una funció hash amb
la qual es fa un resum del contingut a signar i un algorisme de signatura.

La Taula 7.3.1 mostra els camps del certificat a signar d’un certificat X.509 versió 3.

Els nom distingits (o DN, de l’anglès, Distinguished Name) acostumen a ser representats com una cadena
de caràcters, on diferents atributs i el seu valor són llistats separats per comes. Les claus reconegudes són
el nom comú (CN, de l’anglès, CommonName); el nom de la localitat (L, de l’anglès, LocalityName); el
nom de l’estat o província (ST, de l’anglès StateOrProvinceName); el nom de l’organització (O, de l’anglès,
OrganizationName; el nom de la unitat organitzativa (OU, de l’anglès, OrganizationalUnitName); el nom
del país ( C, de l’anglès, CountryName); i el carrer (STREET, de l’anglès, StreetAddres).

Exemple 7.9 Exemple de certificat x.509

A continuació s’inclou un exemple d’un certificat x.509 emès per a un estudiant de l’assignatura de
criptografia de la UOC.

C e r t i f i c a t e :
Data :

V e r s i o n : 3 (0 x2 )
S e r i a l Number : 8793 (0 x2259 )

S i g n a t u r e Algo r i t hm : sha1WithRSAEncrypt ion
I s s u e r : C=CAT, ST= Barce lona , L= Barce lona , O=UOC, OU=EIMT ,

CN= C o n s u l t o r C r i p t o g r a f i a
V a l i d i t y

Not Be fo re : May 23 1 3 : 2 7 : 1 9 2016 GMT
Not A f t e r : May 23 1 3 : 2 7 : 1 9 2018 GMT

S u b j e c t : C=CAT, ST= Barce lona , O=UOC,
OU= E s t u d i a n t s C r i p t o g r a f i a ,
CN= e s t u d i a n t / e m a i l A d d r e s s = e s t u d i a n t @ u o c . edu

S u b j e c t P u b l i c Key I n f o :
P u b l i c Key Algo r i t hm : r s a E n c r y p t i o n

P u b l i c −Key : (361 b i t )
Modulus :

0 1 : b4 : 5 0 : f5 : bc : 5 0 : 6 6 : 5 e : 8 0 : 0 f : a3 : 8 5 : 0 7 : de : c5 :
d0 : d4 : 3 6 : c6 : 5 4 : b1 : 6 6 : db : 4 6 : 4 9 : 0 6 : 3 7 : 4 d : 8 5 : e2 :
e7 : b3 : e8 : b4 : 3 9 : d7 : 0 5 : 7 7 : 2 0 : 6 7 : 8 c : 6 8 : be : f9 : 3 7 :
9d

Exponent : 65537 (0 x10001 )
X509v3 e x t e n s i o n s :

X509v3 B a s i c C o n s t r a i n t s :
CA: FALSE

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


198 Capítol 7. Infraestructura de clau pública

N e t s c a p e C e r t Type :
SSL C l i e n t , S /MIME

X509v3 Key Usage :
D i g i t a l S i g n a t u r e , Non R e p u d i a t i o n

N e t s c a p e Comment :
OpenSSL G e n e r a t e d C e r t i f i c a t e

X509v3 S u b j e c t Key I d e n t i f i e r :
32 :6C : 4 6 : E0 : A5 : 7A: 9 7 : E3 : EC : E6 : 0 F : 3D: 2 3 : 1 4 : 1 3 : 7 B :

5B : E0 : 9 7 : F3
X509v3 A u t h o r i t y Key I d e n t i f i e r :

k e y i d : D2 : D1 : 3D: A7 : 6 9 : 5 3 : C6 : B3 : 8A: 1 0 : D6 : 3A: 5 1 : 8 7 :
EB : 5 6 : 4C: 7C: 9 9 : 7A

DirName : / C=CAT/ ST= B a r c e l o n a / L= B a r c e l o n a /
O=UOC/OU=EIMT /CN= C o n s u l t o r C r i p t o g r a f i a

s e r i a l : D5 : 1 6 :AD: 0 4 : 2 0 :AA: 8C: 2 6

N e t s c a p e CA R e v o c a t i o n Ur l :
h t t p : / / www. uoc . edu / c r i p t o g r a f i a / ca − c r l . pem

S i g n a t u r e Algo r i t hm : sha1WithRSAEncrypt ion
a4 : 6 f : 8 9 : 4 e : 2 c : f e : 8 5 : 0 b : a2 : 7 e : 0 2 : e6 : 4 5 : 3 f : 8 1 : 7 9 : 2 2 : f a :
2 f : a1 : d8 : b f : 4 3 : f8 : 4 2 : b9 : b1 : 6 f : 6 c : 6 6 : 9 3 : 9 6 : a6 : 2 e : a f : cc :
c0 : 4 0 : 5 f : 2 1 : 6 9 : 6 0 : 7 7 : 0 b : 4 f : 0 0 : 0 6 : 4 0 : 6 1 : f7 : ad : 0 9 : 1 a : f2 :
1d : 5 5 : 3 c : a6 : f5 : dc : c2 : f6 : 3 9 : 8 1 : 5 7 : 5 9 : d6 : cc : c6 : b5 : ad : 0 0 :
7 8 : be : 2 f : ae : d4 : b6 : e6 : 7 1 : ab : 5 a : 0 3 : 7 6 : 3 d : 0 c : 5 5 : 3 d : 8 7 : b7 :
ab : a8 : 8 c : 2 a : e f : 8 7 : 0 9 : 3 e : f8 : 5 0 : 7 1 : b4 : 6 7 : 5 b : a2 : 7 2 : 8 e : a2 :
3d : 3 c : 0 6 : d4 : 0 9 : 9 3 : c6 : d7 : d f : 4 c : b3 : a9 : 6 f : ba : b2 : f9 : 3 b : 9 5 :
4 4 : e3 : 1 5 : 3 c : 1 5 : ce : 2 4 : 1 f : 2 3 : 1 6 : c9 : 0 7 : 7 2 : 9 1 : 9 0 : f f : 8 d : e2 :
c6 : 1 c : 9 5 : 2 2 : 1 8 : b1 : d9 : 3 9 : a1 : 3 1 : 9 7 : 4 f : cb : cc : 7 1 : 2 3 : 9 4 : 4 d :
e f : 0 b : f0 : 6 4 : 3 d : f7 : a0 : 7 0 : 4 c : 2 e : 0 f : 6 c : 5 4 : f1 : 9 5 : 5 2 : 0 0 : 8 5 :
62 :9 c : a3 : b2 : 2 8 : ea : f0 : 2 1 : 5 8 : ba : 4 c : 2 4 : 3 8 : d7 : 9 b : 9 c : 7 8 : 6 a :
a6 : f c : cc : 1 1 : 6 2 : 1 1 : 9 b : 5 5 : 5 9 : 6 6 : 0 8 : 9 d : 9 8 : 1 1 : 3 b : 4 c : 2 0 : e0 :
3 1 : 8 1 : e f : 1 b : 6 d : 3 b : 9 7 : 7 5 : de : 1 f : 7 5 : 6 c : e5 : 6 a : 9 5 : 9 6 : a5 : 9 b :
2d : f9 : 7 8 : f2 : 3 1 : 8 8 : f3 : 3 6 : b4 : 2 1 : cd : 2 0 : d4 : 9 1 : e2 : b0 : 0 b : 4 8 :
ab : f c : 6 4 : 5 7

Extensions dels certificats de clau pública

El camp d’extensions permet afegir nous camps a l’estructura de dades d’un certificat sense haver de
modificar-ne la seva definició en ASN.1.

ASN.1 L’ASN.1 (de l’anglès, Abstract Syntax Notation One) és un llenguatge que permet
definir estructures de dades de manera indepenent del dipositius o representacions
internes que aquests facin servir.

Un camp d’extensió consisteix en:

• Un identificador d’extensió.
• Un flag de criticitat.
• Un valor codificat.

Les extensions, al ser camps addicionals, poden no ser reconegudes per totes les entitats que poden processar
el certificat digital. El valor booleà del flag de criticitat condiciona com afectarà el reconeixement de
l’extensió a la validació del certificat. Si el flag de criticitat conté el valor FALSE i l’entitat que ha de
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Taula 7.2: Camps del certificat a signar.
Codi Descripció

version Indica la versió del certificat. Pot contenir els valors 0 (v1), 1 (v2) o
2 (v3).

serialNumber És un valor enter designat per la CA que és únic per cada certificat
emès per aquella CA en concret, és a dir, el parell de valors emissor
i número de serie identifica de manera única un certificat digital de
clau pública.

signature Conté l’identificador de l’algorisme i la funció de hash
fets servir per la CA per signar el certificat, per exemple,
sha-1WithRSAEncryption. Aquest valor ha de ser el mateix que
el del camp signatureAlgorithm.

issuer Conté el nom distingit de la CA que emet el certificat, que no pot ser
una cadena buida.

validity Indica el període de validesa del certificat digital. Durant aquest
interval, la CA garanteix que mantindrà informació sobre l’estat del
certificat. El període de validesa s’indica amb dos camps de temps:
notBefore i notAfter.

subject Nom distingit que identifica al titular de la clau pública que està
sent certificada. El camp pot estar buit si es tracta d’un certificat
d’entitat final amb l’extensió subjectAltName inclosa i marcada
com a crítica. En cas contrari, el camp no pot contenir una cadena
buida.

subjectPublicKeyInfo Conté dos components: algorithm i subjectPublicKey. El camp
algorithm ha de contenir l’algorisme al que pertany la clau pública.
El camp subjectPublicKey ha de contenir la clau pública que està
sent certificada.

issuerUniqueIdentifier Camp opcional que es fa servir per identificar de forma única l’emis-
sor en cas de reutilització de noms.

subjectUniqueIdentifier Camp opcional que es fa servir per identificar de forma única el
titular del certificat en cas de reutilització de noms.

extensions Camp opcional que permet afegir nous camps a l’estructura de dades.

processar el certificat no reconeix l’extensió, aleshores pot ignorar-la a l’hora de realitzar la validació. En
canvi, si el flag té el valor TRUE, una extensió no reconeguda causa que el certificat es consideri invàlid. Si
l’entitat que ha de processar el certificat reconeix l’extensió, aleshores l’estàndard especifica que aquesta
hauria de processar l’extensió, independentment del valor de criticitat que tingui.

Per tant, totes les extensions que tenen el flag de criticitat a FALSE poden causar comportaments inconsistents
entre les entitats que reconeixen l’extensió (i que, per tant, la processaran) i aquelles que no la reconeixen (i
que, per tant, la poden ignorar).

L’estàndard X.509 defineix algunes extensions. En el següents paràgrafs, es descriuen algunes d’aquestes
extensions.

L’extensió d’ús de la clau (KeyUsage) permet descriure la intenció d’ús del certificat. La Taula 7.3 descriu
els possibles usos reconeguts per l’extensió. Un mateix certificat pot indicar diversos usos, tot i que aquest
comportament pot suposar riscos de seguretat.

Concordança
de les
extensions

Si el booleà de cA de l’extensió BasicConstraints s’indica com a FALSE, aleshores
l’extensió KeyUsage no pot tenir l’ús de keyCertSign actiu.

L’extensió de restriccions bàsiques (BasicConstraints) permet identificar si el titular del certificat és una
autoritat de certificació i la profunditat màxima de les cadenes de certificació que inclouen el certificat en
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Taula 7.3: Usos de clau reconeguts.
Codi Descripció

digitalSignature Verificació de signatures digitals.
contentCommitment Verificació de signatures digitals on el signatari

es compromet amb el contingut signat.
keyEncipherment Xifratge de claus o d’algun altre tipus d’informa-

ció de seguretat.
dataEncipherment Xifratge de dades d’usuari.
keyAgreement Ús com a clau pública en un protocol d’establi-

ment de claus.
keyCertSign Verificació de signatures de certificats realitzades

per Autoritats de Certificació.
cRLSign Verificació de signatures de CRLs realitzades per

autoritats.
encipherOnly Ús com a clau pública en un protocol d’establi-

ment de claus per utilitzar únicament xifratge de
dades (cal indicar també l’ús keyAgreement).

decipherOnly Ús com a clau pública en un protocol d’establi-
ment de claus per utilitzar únicament desxifratge
de dades (cal indicar també l’ús keyAgreement).

qüestió. D’una banda, l’extensió permet incloure un valor booleà que indica si la clau pública certificada
pot ser utilitzada per verificar signatures de certificats digitals (camp cA). D’altra banda, i si el valor booleà
revela que és un certificat de CA, l’extensió inclou un enter que indica el número màxim de certificats
intermedis (no autoemesos) que poden seguir a aquest certificat en una cadena de certificació vàlida (camp
pathLenConstraint).

L’extensió d’identificador de la clau de l’autoritat (AuthorityKeyIdentifier) permet identificar la clau
privada utilitzada per signar un certificat digital. Això és particularment útil quan l’emissor del certificat
disposa de diverses claus.

L’extensió d’identificador de la clau del titular (SubjectKeyIdentifier) permet identificar els certificats
que tenen una clau pública donada. Així, quan una entitat final té diversos certificats (per exemple, de
diferents emissors) amb la mateixa clau pública, el conjunt de certificats pot ser identificat fàcilment.

Exercici 7.2 Una aplicació ha de validar un certificat digital que conté una extensió marcada com a
crítica. Indiqueu quin hauria de ser el resultat de la validació per les següents casuístiques (suposant que
la resta de comprovacions que es realitzen per validar el certificat són correctes).

Nota: Un resultat TRUE indica una validació satisfactòria, mentre que un resultat FALSE indica que la
validació no és correcta.

Resultat de processar l’extensió
TRUE FALSE

L’aplicació reconeix l’extensió
L’aplicació no reconeix l’extensió

Exercici 7.3 Una aplicació ha de validar un certificat digital que conté una extensió marcada com a no
crítica. Indiqueu quin hauria de ser el resultat de la validació per les següents casuístiques (suposant que
la resta de comprovacions que es realitzen per validar el certificat són correctes).
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Resultat de processar l’extensió
TRUE FALSE

L’aplicació reconeix l’extensió
L’aplicació no reconeix l’extensió

Tipus de certificats de clau pública

Existeixen, principalment, dos tipus de certificats de clau pública:

• Certificats de clau pública d’entitats finals.
• Certificats de clau pública d’autoritats de certificació (CA).

Un certificat d’entitat final és un certificat emès per una autoritat de certificació a una entitat que no és
emissora d’altres certificats. En canvi, un certificat de CA és un certificat emès per una CA a una entitat que
és també una CA i, per tant, també és capaç d’emetre certificats. Un certificat de CA ha d’incloure l’extensió
basicConstraints amb el component cA a True.

Els certificats de CA poden ser alhora classificats en tres tipus diferents:

• Un certificat autoemès és un certificat de CA on el titular i l’emissor són la mateixa CA. Aquest tipus
de certificat es pot fer servir, per exemple, per a realitzar un canvi de claus, transferint la confiança de
la clau antiga a la nova clau.

• Un certificat autosignat és un cas especial d’un certificat autoemès on la clau privada utilitzada per
signar el certificat correspon a la clau pública que se certifica amb el certificat. Es poden fer servir
certificats autosignats, per exemple, per donar a conèixer una clau pública o altra informació.

• Un certificat creuat és un certificat de CA on l’emissor i el titular són autoritats de certificació
diferents. Un certificat creuat es pot fer servir, per exemple, per a reconèixer l’existència de la CA
titular o bé per autoritzar-la.

7.3.2 Llistes de revocació de certificats

Les autoritats de certificació són responsables d’informar sobre l’estat de revocació dels certificats que
emeten. Un dels mètodes per oferir aquesta informació de revocació és la publicació de llistes de revocació
de certificats o CRLs (per les seves sigles en anglès, Certificate Revocation List). Normalment, la pròpia
autoritat de certificació emet les CRLs, però també pot delegar aquesta responsabilitat a alguna altra entitat.

Una CRL és una llista dels números de sèrie dels certificats revocats, juntament amb la signatura de la CA
(o l’emissor de la CRL) i una marca de temps. Normalment, les CRLs es publiquen periòdicament, per
exemple, cada hora o un cop al dia. Quan un certificat és revocat, el seu número de sèrie s’afegeix a la CRL
que s’emet després de la revocació. El número de sèrie no s’ha d’eliminar de la CRL fins que hagi aparegut
en una CRL emesa amb posterioritat a la fi del període de validesa del certificat.

Com que les CRLs contenen una signatura de l’entitat que les emet, la integritat del seu contingut està
garantida. D’aquesta manera, no és necessari confiar en què els servidors o els processos que distribueixen
les CRLs no intentaran modificar-les.

Un dels inconvenients que presenta l’ús de CRLs és l’endarreriment que es crea a l’hora d’informar sobre la
revocació d’un certificat. Entre la revocació d’un certificat i l’addició del seu número de sèrie a la propera
CRL que es publica passa un interval de temps, que podrà ser menor o major en funció de la periodicitat
de la publicació de la CRL. Durant aquest període, tot i que el certificat es troba revocat, la informació de
revocació no estarà disponible. Aquest problema es pot minimitzar amb l’ús de protocols interactius que
consulten l’estat d’un certificat digital en un moment concret.

Un altre dels inconvenients que presenta l’ús de CRLs és que són susceptibles a atacs de denegació de
servei. Un atacant pot evitar que la informació de revocació d’un certificat arribi a les aplicacions blocant la
distribució de la CRL. Així, mentre que un atacant no podrà modificar el contingut de la CRL (degut a la
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signatura sobre aquest), sí que pot atacar la disponibilitat del servei.

Generació de
CRLs

L’Openssl inclou l’eina ca, que incorpora funcionalitats per gestionar una autoritat de
certificació, entre les quals hi ha la creació de CRLs.

Així doncs, quan un sistema necessita validar un certificat digital, a més de comprovar-ne la seva signatura
i el període de validesa, també serà necessari que es descarregui una CRL prou recent i comprovi que el
número de sèrie del certificat no hi figura. La definició del que es considera prou recent dependrà de la
política de cada sistema.

Els certificats poden contenir informació sobre com obtenir informació de revocació a través de CRLs fent
servir l’extensió crlDistributionPoint.

Tipus de CRLs

Cada llista de revocació de certificats té un abast, és a dir, un conjunt de certificats que poden aparèixer en
aquella CRL. Per exemple, l’abast d’una CRL poden ser tots els certificats emesos per una determinada CA
o bé tots els certificats emesos per una CA per un motiu concret.

Una llista CRL completa enumera tots els certificats no expirats dins del seu abast que han estat revocats per
alguna de les raons cobertes per l’abast. D’altra banda, direm que una CRL és plena i completa quan conté
tots els certificats no expirats emesos per la CA que s’han revocat per qualsevol raó.

Els termes
plena i
completa

En anglès, es fan servir els termes complete i full and complete per diferenciar entre
CRLs que contenen únicament certificats revocats per un dels motius indicats a l’abast
o bé independentment del motiu.

Una CRL indirecta és una CRL amb un abast que inclou almenys un certificat emès per una entitat de
certificació diferent de l’emissor de la CRL. Una CRL indirecta pot incloure en el seu abast certificats emesos
per diverses autoritats de certificació. A més, si l’emissor de la CRL és una CA, aleshores l’abast de la CRL
pot incloure també els certificats emesos per aquesta CA.

Una delta CRL només enumera els certificats dins del seu abast que han canviat d’estat de revocació des
de l’emissió d’una CRL completa referenciada. La CRL completa referenciada s’anomena CRL base. Es
considera que l’estat d’un certificat ha canviat si aquest està revocat, si ha deixat d’estar suspès o si la raó
per la qual el certificat ha estat revocat ha canviat. L’abast de la delta CRL ha de ser el mateix que la CRL
base que referencia. A més, la clau privada utilitzada per signar la delta CRL també ha de ser la mateixa que
la feta servir per signar qualsevol CRL completa que pugui actualitzar. Generalment, les delta CRLs són
més petites que les CRLs que actualitzen, de manera que fer servir delta CRLs pot ajudar a reduir el consum
d’ample de banda d’un sistema que faci servir CRLs.

Una aplicació que fa servir delta CRLs ha de ser capaç de construir una CRL completa combinant una CRL
completa emesa amb anterioritat i la delta CRL més recent. Addicionalment, l’aplicació també pot construir
una CRL completa a partir de la delta CRL més recent i d’una CRL construïda localment que és completa
per aquest abast.

És considera que una delta CRL és actual si el temps actual es troba en el període comprés entre els camps
thisUpdate i nextUpdate. Per tant, podria passar que l’emissor de CRLs emetés més d’una delta CRL
abans del nextUpdate, existint aleshores més d’una delta CRL considerada actual. En aquests casos,
l’estàndard recomana (però no exigeix) que es faci servir la CRL que té el thisUpdate més actual.

Contingut d’una CRL

Una CRL és una llista de certificats revocats signada per una autoritat. Així, els camps que defineixen una
CRL segons l’estàndard X.509 es descriuen a la Taula 7.4.

La llista de certificats revocats és alhora una seqüència de diversos camps. La Taula 7.5 descriu els camps
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Taula 7.4: Camps d’una CRL.
Camp Descripció

tbsCertList La llista de certificats revocats (en anglès, to-be-signed
certificate list).

signatureAlgorithm Identificador de l’algorisme de signatura utilitzat per l’emis-
sor de la CRL per signar-la.

signatureValue Cadena de bits amb el valor de la signatura.

que la componen.

Taula 7.5: Camps de la llista a signar.
Camp Descripció

version Opcional, descriu la versió de la CRL codificada.
signature Identificador de l’algorisme de signatura utilitzat per l’emis-

sor de la CRL per signar-la. El valor d’aquest camp ha de
coincidir amb el valor del camp signatureAlgorithm.

issuer Nom de l’entitat que ha emès i signat la CRL.
thisUpdate Data d’emissió d’aquesta CRL.
nextUpdate Opcional, data d’emissió de la propera CRL. La propera

CRL pot ser emesa abans de la data indicada pel camp
nextUpdate, però no hauria de ser emesa més tard d’a-
questa.

revokedCertificates Opcional, la llista amb els certificats revocats. Si no hi ha
certificats revocats, aleshores la llista no s’inclou. En cas
contrari, els certificats revocats s’enumeren en base al seu
número de sèrie, i s’especifica la data en la qual han estat
revocats.

crlExtensions Opcional, extensions que poden contenir atributs addicio-
nals.

Extensions de les CRLs

El camp d’extensions és un camp opcional que pot aparèixer a partir de la versió 2 i que conté una seqüència
d’una o més extensions, que permeten afegir atributs addicionals a les CRLs. De manera anàloga a les
extensions dels certificats X.509, cada extensió d’una CRL pot ser marcada com a crítica o com a no crítica.
Les aplicacions que no siguin capaces de reconèixer o processar una extensió marcada com a crítica en una
CRL no han de fer ús d’aquella CRL. En canvi, si l’extensió està marcada com a no crítica, les aplicacions
poden ignorar-la. En els següents paràgrafs, descriurem algunes de les extensions més populars que es fan
servir en CRLs a Internet.

De la mateixa manera que als certificats de clau pública, l’extensió d’identificador de la clau de l’autoritat
(AuthorityKeyIdentifier) és una extensió que permet afegir informació sobre la clau pública correspo-
nent a la clau privada utilitzada per signar la CRL. Aquesta extensió és especialment útil quan un mateix
emissor té vàries claus de signatura.

El número de CRL (CRLNumber) és una extensió que permet incloure un número de seqüència a la CRL.
Donats un emissor de CRL i un abast concret, els números de seqüència són valors estrictament creixents.

L’indicador de delta CRL permet indicar que una CRL és una delta CRL. Per fer-ho, l’extensió inclou el
número de CRL de la CRL base (BaseCRLNumber) que va ser utilitzada per crear aquesta delta CRL.
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El codi de motiu (CRLReason) és una extensió que permet identificar el motiu per el qual s’ha revocat el
certificat. La Taula 7.6 mostra els codis reconeguts. Exceptuant el codi removeFromCRL, la resta de codis
indiquen que el certificat ha estat revocat.

Taula 7.6: Codis per especificar el motiu de revocació de certificats digitals.
Codi Descripció

unspecified Es pot fer servir per revocar certificats per algun motiu
diferent als que tenen un codi específic.

keyCompromise Es fa servir per revocar un certificat d’una entitat final i
indica que la clau privada del titular del certificat ha estat
compromesa.

cACompromise Es fa servir per revocar certificats d’autoritats de certificació
i indica que la clau privada de la CA ha estat compromesa.

affiliationChanged Indica que el nom del titular o bé alguna altra informació
del certificat ha estat modificada (però que no hi ha motiu
per sospitar que la clau privada ha estat compromesa).

superseded Indica que el certificat ha estat substituït (però que no hi ha
motiu per sospitar que la clau privada ha estat compromesa).

cessationOfOperation Indica que el certificat ja no és necessari per a l’objectiu pel
qual va ser emès (però que no hi ha motiu per sospitar que
la clau privada ha estat compromesa).

certificateHold Indica que el certificat es troba suspès temporalment.
removeFromCRL Aquest codi només pot aparèixer en delta CRLs i permet

indicar que el certificat s’ha d’eliminar de la CRL, ja sigui
perquè ha expirat o perquè ja no es troba suspès.

privilegeWithdrawn Indica que el certificat (de clau pública o d’atributs) es troba
revocat perquè un privilegi contingut al certificat ha estat
retirat.

aACompromise Es fa servir per revocar certificats d’autoritats d’atributs i
indica que la clau privada de l’autoritat d’atributs ha estat
compromesa.

Altres models
d’emissió de
delta CRLs

A l’exemple es mostra el model d’emissió de delta CRLs tradicional. Existeixen
altres models, com ara el model de finestres lliscants (en anglès, sliding windows) que
permeten estalviar més ample de banda en alguns escenaris.

Exemple 7.10 Exemple d’ús tradicional de CRLs

La següent taula es mostra un exemple de la manera tradicional d’emetre delta CRLs. En aquest exemple,
s’emeten CRLs completes cada dues hores i delta CRLs cada 30 minuts. L’abast de la CRL comprèn tots
els certificats emesos per l’autoritat de certificació C per qualsevol motiu excepte superseded.

La notació Cx indica el certificat emès per l’autoritat C amb número de sèrie x. Es fa servir l’hora amb
precisió de minuts per indicar el temps, però en un cas real es faria servir la data i l’hora completa. A la
llista de certificats revocats s’inclou el número de sèrie del certificat i el motiu de la revocació. S’omet la
data en la qual ha estat revocat el certificat per simplificar-ne la visualització.

El certificat C1 s’ha revocat per compromís de la clau privada en algun instant anterior a les 8:00. Quan
s’emet la CRL completa de les 8:00, C1 hi apareix amb motiu keyCompromise. Les delta CRL que tenen
com a base la CRL 1 no inclouen aquest certificat, ja que ja apareix a la CRL base.
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En algun moment entre les 8:30 i les 9:00, C33 es revoca amb motiu privilegeWithdrawn, i apareix
per tant a la primera delta CRL que es publica després de la revocació, la CRL 3. Entre les 9:00 i les 9:30
l’estat de revocació de C33 canvia a affiliationChanged, i aquest canvi es veu reflectit a la següent
delta CRL que es publica, la CRL 4. En el mateix interval de temps el certificat C25 es revoca amb motiu
superseded, però aquest certificat no apareix en cap de les CRLs ja que està fora de l’abast definit.

Entre les 9:30 i les 10:00 el certificat C22 es posa en espera. Aquest canvi es veu reflectit tant a la CRL
completa com a la delta CRL que es publica a les 10:00.

Entre les 10:00 i les 10:30 C55 és revocat per compromís de la clau privada, i apareix per tant a la delta
CRL de les 10:30. Tot i que el certificat expira a les 10:45, C55 segueix apareixent a les delta CRL fins
que apareix en una CRL completa (la CRL 9).

En l’interval de temps entre les 10:30 i les 11:00, s’aixeca la suspensió sobre el certificat C22. Per tant,
a partir de la CRL 7, les delta CRL indiquen que es pot eliminar el certificat de la CRL amb el codi
removeFromCRL. A partir de la CRL 10 aquesta notificació ja no s’inclou en les delta CRLs, ja que ja
s’ha publicat una CRL completa on no hi apareix C22 (la CRL 9). És important notar que la CRL no
inclou el certificat C22 amb codi removeFromCRL sinó que simplement no s’inclou el certificat a la llista
de certificats revocats. El codi removeFromCRL no apareix en CRLs completes.
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Temps
actual t

Estat dels certificats en
l’instant t

Contingut de la CRL
completa Contingut de la Delta CRL

8:00 {C1 : keyCompromise} CRLNumber : 1
thisUpdate: 8:00
nextUpdate: 10:00
revokedCertificates:
{C1 : keyCompromise}

CRLNumber : 1
thisUpdate: 8:00
nextUpdate: 8:30
BaseCRLNumber: 1
revokedCertificates: {}

8:30 {C1 : keyCompromise} CRLNumber : 2
thisUpdate: 8:30
nextUpdate: 9:00
BaseCRLNumber: 1
revokedCertificates: {}

9:00 {C1 : keyCompromise,
C33 : privilegeWithdrawn}

CRLNumber : 3
thisUpdate: 9:00
nextUpdate: 9:30
BaseCRLNumber: 1
revokedCertificates:
{C33 : privilegeWithdrawn}

9:30 {C1 : keyCompromise,
C33 : a f f iliationChanged,
C25 : superseded}

CRLNumber : 4
thisUpdate: 9:30
nextUpdate: 10:00
BaseCRLNumber: 1
revokedCertificates:
{C33 : a f f iliationChanged}

10:00 {C1 : keyCompromise,
C33 : a f f iliationChanged,
C25 : superseded,
C22 : certi f icateHold}

CRLNumber : 5
thisUpdate: 10:00
nextUpdate: 12:00
revokedCertificates:
{C1 : keyCompromise,
C33 : a f f iliationChanged,
C22 : certi f icateHold}

CRLNumber : 5
thisUpdate: 10:00
nextUpdate: 10:30
BaseCRLNumber: 1
revokedCertificates:
{C33 : a f f iliationChanged,
C22 : certi f icateHold}

10:30 {C1 : keyCompromise,
C33 : a f f iliationChanged,
C25 : superseded,
C22 : certi f icateHold,
C55 : keyCompromise}

CRLNumber : 6
thisUpdate: 10:30
nextUpdate: 11:00
BaseCRLNumber: 5
revokedCertificates:
{C55 : keyCompromise}

11:00 {C1 : keyCompromise,
C33 : a f f iliationChanged,
C25 : superseded}
C55 expired on t = 10:45

CRLNumber : 7
thisUpdate: 11:00
nextUpdate: 11:30
BaseCRLNumber: 5
revokedCertificates:
{C55 : keyCompromise,
C22 : removeFromCRL}

11:30 {C1 : keyCompromise,
C33 : a f f iliationChanged,
C25 : superseded}

CRLNumber : 8
thisUpdate: 11:30
nextUpdate: 12:00
BaseCRLNumber: 5
revokedCertificates:
{C55 : keyCompromise,
C22 : removeFromCRL}

12:00 {C1 : keyCompromise,
C33 : a f f iliationChanged,
C25 : superseded}

CRLNumber : 9
thisUpdate: 12:00
nextUpdate: 14:00
revokedCertificates:
{C1 : keyCompromise,
C33 : a f f iliationChanged,
C55 : keyCompromise}

CRLNumber : 9
thisUpdate: 12:00
nextUpdate: 12:30
BaseCRLNumber: 5
revokedCertificates:
{C55 : keyCompromise,
C22 : removeFromCRL}

12:30 {C1 : keyCompromise,
C33 : a f f iliationChanged,
C25 : superseded}

CRLNumber : 10
thisUpdate: 12:30
nextUpdate: 13:00
BaseCRLNumber: 9
revokedCertificates:
{}

7.3.3 Online Certificate Status Protocol

El protocol OCSP (de l’anglès, Online Certificate Status Protocol) permet determinar l’estat de revocació
actual d’un certificat digital a través d’un protocol interactiu. L’OCSP es pot fer servir ja sigui com a substitut
o com a complement de les CRLs.

En el protocol hi participen dues parts, el client OSCP (que està interessat en saber l’estat d’un certificat
digital) i el servidor OCSP (que respondrà a les consultes del client).

Quan un client necessita validar l’estat d’un certificat digital, aleshores envia una petició al servidor OCSP i
suspèn l’acceptació del certificat fins que arriba la resposta. Una petició OCSP conté els següents camps:
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• Versió del protocol.
• Identificador del certificat o certificats per als quals es demana l’estat de revocació.
• Opcionalment, extensions.

Una resposta OCSP (de tipus bàsic) conté la següent informació:

• Versió de la sintaxi de la resposta.
• Instant de temps en què s’ha generat la resposta.
• Conjunt de respostes (per cada un dels certificats que s’han demanat a la petició).
• Identificador de l’algorisme de signatura.
• Valor de la signatura.

Cada una de les respostes conté alhora quatre camps: l’identificador del certificat a la qual fa referència,
l’estat del certificat, l’interval de validesa de la resposta i, opcionalment, les extensions.

Implementació
de l’OCSP

L’Openssl inclou l’eina ocsp que incorpora funcionalitats per interactuar amb un
servidor OCSP i, fins i tot, per operar com un petit servidor OCSP.

L’especificació d’OCSP de la RFC6960 defineix tres alternatives per indicar l’estat del certificat: bo (good),
revocat (revoked) o desconegut (unknown). Cal anar amb compte, però, a l’hora d’interpretar aquestes
respostes, ja que els noms utilitzats per designar-les poden generar confusió sobre els detalls del seu significat.

Una resposta bona indica que no hi ha cap certificat amb el número de sèrie especificat a la petició que es
trobi revocat (i que estigui dins del seu periode de validesa). Això no implica necessàriament que el certificat
existeixi (podria ser que mai hagués estat emès) ni que el certificat sigui vàlid en aquell moment (podria ser
que la resposta del servidor OCSP no estigui compresa en l’interval de validesa del certificat). Una resposta
de certificat revocat indica que el certificat ha estat revocat, ja sigui temporalment (especificant el codi de
motiu certificateHold) o bé permanentment. Tot i això, un servidor OCSP també pot retornar aquesta
resposta si la CA corresponent no ha emès mai un certificat amb aquest número de sèrie. Una resposta d’estat
desconegut indica que el servidor no coneix el certificat.

Exercici 7.4 Indiqueu quines de les següents afirmacions són certes:

1. Per tal de comprovar la data de caducitat d’un certificat digital, podem utilitzar el protocol OCSP.
2. Per tal de comprovar la data de caducitat d’un certificat digital, podem utilitzar CRLs.
3. Per tal de comprovar la data de caducitat d’un certificat digital, només ens cal el propi certificat.
4. Una resposta OCSP good sempre indica que el certificat no està revocat.
5. Una resposta OCSP revoked sempre indica que el certificat està revocat.

7.3.4 Time Stamp Protocol

Com hem vist, les autoritats de segellat de temps o TSA són les autoritats d’una PKI encarregades de crear
segells de temps. Per fer-ho, la TSA signa els segells que emet amb una clau específicament reservada per
a aquest propòsit. En concret, el certificat digital corresponent ha de tenir una única instància del camp
extended key usage amb keyPurposeId id-kp-timeStamping i l’extensió marcada com a crítica.

El TSP (Time-Stamp Protocol) és el protocol que es fa servir per interactuar amb una TSA. El procediment
per aconseguir un segell de temps és el següent. En primer lloc, el sol·licitant envia una petició de segell de
temps a la TSA. Després, la TSA respon a la petició amb un missatge de resposta. Per acabar, el sol·licitant
hauria de comprovar l’estat d’error de la resposta. Si no hi ha errors, caldria validar el segell de temps
retornat.

Nonce Un nonce (de l’anglès, number used once) és un nombre arbitrari que es fa servir una
única vegada en un protocol criptogràfic.
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La petició de segell de temps que el sol·licitant envia a la TSA conté, entre d’altres:

• El hash de la dada que es vol segellar.
• L’identificador de l’algorisme de hash utilitzat.
• Opcionalment, un nonce. El nonce és un valor aleatori que té una probabilitat alta de ser generat una

única vegada pel client. El nonce és opcional però, si s’inclou, la resposta de la TSA ha de contenir
aquest mateix valor. El nonce permet detectar el reenviament d’un segell de temps, ja sigui realitzat
de manera involuntària per errors en la transmissió o bé com a conseqüència d’un atac.

• Opcionalment, un booleà certReq que permet indicar que es desitja que la TSA inclogui el certificat
corresponent a la signatura en la resposta. Si no s’inclou el camp o aquest és False, aleshores la
resposta de la TSA no ha de contenir el certificat.

La resposta de la TSA conté l’estat de la petició i, en alguns casos, el segell de temps demanat.

L’estat està format per tres camps: un codi que l’identifica i que sempre es troba present i, opcionalment, un
text i una explicació del motiu per el qual la petició ha fallat (si n’és el cas). Els codis d’estat reconeguts són:

• concedit: el segell de temps demanat s’adjunta a la resposta.
• concedit amb modificacions: s’adjunta un segell de temps, però aquest conté alguna modificació.
• rebutjat: es rebutja la petició de segell de temps.
• en espera: la creació del segell de temps es troba en espera.
• en alerta per revocació: el missatge conté un avís que la revocació és imminent.
• notificació de revocació: s’ha revocat el certificat.

La resposta ha de contenir el segell de temps només si l’estat és concedit o concedit amb modificacions.
En cas contrari, caldrà indicar el motiu de la fallada. Els motius de fallada poden ser diversos, com ara per
exemple, que l’algorisme de hash indicat no es reconegui, que el format de la petició sigui incorrecte, o que
la font utilitzada per la TSA per aconseguir el temps no estigui disponible en aquell moment.

Sintaxi dels
segells de
temps

L’explicació sobre el contingut dels segells de temps abstrau els detalls reals de la
sintaxis d’aquests. Els segells de temps són informació signada, que segueix la sintaxi
CMS (Cryptographic Message Syntax).

El camp de
temps

La codificació del temps en una resposta de la TSA sempre acaba en Z, el que indica
que representa el temps Zulu. El temps Zulu és un sinònim del Temps Universal
Coordinat que es fa servir en aviació civil.

Per la seva banda, el segell de temps estarà format per la signatura de la TSA (a la que s’adjuntarà
l’identificador del certificat utilitzat per realitzar-la) i el contingut del segell de temps, que tindrà, entre
d’altres, els següents camps:

• El hash de la dada que s’ha rebut.
• L’identificador de l’algorisme de hash utilitzat.
• Un número de sèrie, que serà assignat per la TSA a cada segell de temps i que serà únic entre els

segells emesos per aquesta TSA.
• El temps, indicant el moment en què la TSA ha generat el timestamp expressat en UTC (Temps

Universal Coordinat).
• Opcionalment, la precisió, que ens permet determinar l’interval de temps exacte en el qual s’ha creat

el segell de temps. Si el camp no s’inclou, la precisió es pot anunciar d’altres maneres, com ara a
partir de la política de la TSA.

• Opcionalment, el nonce. Si la petició contenia nonce, aleshores la resposta cal que també la contingui
i que el valor sigui igual que el de la petició.

• Opcionalment, el nom de la TSA, que permet ajudar en la identificació de la TSA.

Implementació
del TSP

L’Openssl inclou l’eina ts que incorpora les funcions bàsiques de client i servidor de
TSA.
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Finalment, quan es rep la resposta de la TSA, caldria validar-la. Per fer-ho, en primer lloc es comprova
l’estat d’error i, si no s’ha produït cap error, aleshores es valida el segell de temps: es comproven els camps,
es valida la signatura digital, es comprova que el segell de temps correspongui al que es va demanar (revisant
tant el valor del hash com l’identificador de l’algorisme fet servir), l’estat del certificat de la TSA i el temps.
El temps pot ser validat a partir de la referència d’un servei de temps local de confiança, o bé comprovant
que el nonce inclòs en la petició es troba també en la resposta.

Exercici 7.5 Un ciutadà està recollint signatures digitals per a recolzar una proposta. Per tal que les
signatures digitals siguin considerades vàlides, cal que estiguin realitzades en un interval de temps concret
(tinici, t f i), és a dir, que s’hagin més tard de tinici i abans de t f i. Quin d’aquests segells de temps seria vàlid
per demostrar que el conjunt de signatures s’han creat en el període establert?

1. Un segell de temps sobre totes les signatures realitzat en ts < tinici
2. Un segell de temps sobre totes les signatures realitzat en ts > t f i
3. Un segell de temps sobre totes les signatures realitzat en tinici < ts < t f i

7.3.5 Estructures de PKI

Potser el model d’estructura de PKI més simple és el model de CA única. En aquest model, hi ha una
única autoritat de certificació, que emet certificats per a totes les entitats finals que participen de la PKI. La
Figura 7.3 mostra un exemple d’aquest model.

Figura 7.3: Estructura amb CA única.

Una PKI amb un model jeràrquic amb arrel única té una una única CA arrel, però pot tenir altres CAs. Les
diferents CAs es troben estructurades seguint una jerarquia, on la CA arrel certifica a un conjunt d’autoritats
de certificació, que alhora poden crear certificats per a altres CAs (o per a entitats finals), creant els diferents
nivells de la jerarquia. Les CAs intermèdies també són conegudes amb el nom d’autoritats subordinades. El
model de CA única pot ser vist com un cas específic del model jeràrquic, on la única CA existent és la CA
arrel. La Figura 7.4 mostra un exemple d’aquest model.

Una variant d’aquesta estructura és el model jeràrquic amb llista de confiança, que disposa d’una llista
amb vàries CAs arrel. Cadascuna de les CAs arrel pot tenir autoritats subordinades seguint una jerarquia.
L’ús més conegut d’aquest model és en els navegadors web, que contenen una llista amb uns centenars de
CAs arrel. La Figura 7.5 mostra un exemple d’aquest model.

Existeixen altres estructures de PKI, com ara l’estructura de malla, on les autoritats de certificació emeten
certificats creuats, o la interconnexió a través de bridge CAs, on una autoritat fa de nexe entre les diferents
PKIs.
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Figura 7.4: Estructura jeràrquica amb arrel única.

7.4 Les normes PKCS

Les normes PKCS (de l’anglès, Public Key Cryptography Standards) són un conjunt d’especificacions sobre
criptografia de clau pública. Les especificacions les publica l’empresa RSA Laboratories i són elaborades
conjuntament amb altres empreses del sector, com ara Apple, Microsoft, DEC, Lotus, Sun i MIT. Algunes
d’aquestes especificacions han acabat esdevenint estàndards d’organismes internacionals com ara la IETF.
L’objectiu d’aquestes publicacions és fomentar l’ús de la criptografia de clau pública i accelerar-ne el seu
desplegament.

Actualment, hi ha 10 normes PKCS. Addicionalment, els PKCS#13 i #14, que cobreixen el xifrat i signatura
fent servir criptografia de corbes el·líptiques i la generació de nombres pseudo-aleatoris, respectivament, no
estan encara publicats. Els PKCS#2 i #4 es troben retirats des de 2010, quan van ser incorporats al PKCS#1
(tots dos descrivien també detalls sobre l’ús de l’RSA). El PKCS#6 descrivia la versió 1 dels certificats
X.509 i està sent eliminat en favor de la versió 3 de X.509.

• PKCS#1: defineix mecanismes per xifrar i signar dades fent servir el criptosistema de clau pública
RSA.

• PKCS#3: defineix el protocol d’establiment de claus de Diffie-Hellman.
• PKCS#5: descriu un mètode per xifrar una cadena amb una clau secreta derivada d’una contrasenya.
• PKCS#7: defineix una sintaxis general per missatges que inclouen atributs criptogràfics com ara

signatures digitals o xifrat.
• PKCS#8: descriu un format per informació sobre claus privades, que inclou la clau privada per alguns

algorismes de clau pública i, opcionalment, un conjunt d’atributs.
• PKCS#9: defineix tipus d’atributs per fer servir en altres estàndards PKCS.
• PKCS#10: descriu una sintaxi per peticions de certificació.
• PKCS#11: defineix una interfície de programació anomenada Cryptoki per a dispositius criptogràfics

com targetes intel·ligents.
• PKCS#12 especifica un format portable per a emmagatzemar o transportar claus privades d’usuari,

certificats, secrets, etc.
• PKCS#15 és un complement al PKCS#11 proveint un estàndard per credencials criptogràfiques

emmagatzemades en tokens criptogràfics.
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Figura 7.5: Estructura jeràrquica amb llista de confiança.

En aquest capítol, es detallen tres d’aquestes especificacions, els PKCS#1, #5 i #12.

7.4.1 PKCS#1

En el capítol anterior hem vist el funcionament bàsic de l’RSA. A la pràctica, però, no es fa servir l’RSA
directament com s’ha descrit al capítol, ja que això resultaria insegur. Dos dels problemes més coneguts que
té l’RSA amb la formulació que hem vist al capítol de Criptografia de Clau Pública són els atacs per l’ús
d’exponents petits i el determinisme de l’algorisme.

D’una banda, fer servir exponents petits en combinació amb missatges m també petits fa que l’esquema sigui
vulnerable. En concret, si me < n, aleshores podem desxifrar el missatge directament sense necessitat de
conèixer la clau privada, calculant l’arrel e-èsima d’m sobre els enters. És a dir, si c = me mod n i me < n,
aleshores c = me i per tant m = e

√
c.

Exemple 7.11 Exemple d’atac per l’ús d’exponents petits

Suposem que tenim un parell de claus RSA de 64 bits formada pels valors:
PubK = (e, n) = (3, 18230703860219055503)
PrivK = (d, n) = (616012317821603203, 18230703860219055503)

Si volem xifrar un missatge m = 55, procediríem a elevar el missatge a l’exponent públic, com s’ha vist al
capítol anterior:
c = me mod n = 553 mod 18230703860219055503 = 166375

Noteu com 553 = 166375 i, per tant, 553 < n.

Aleshores, un atacant que captura el missatge c i que coneix la clau pública, pot procedir a desxifrar el
missatge, fent:
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m = c1/e = 1663751/3 = 55

D’altra banda, l’RSA és un algorisme determinista: el resultat de xifrar un text pla m amb una clau pública
pubk és sempre un mateix valor xifrat c. Si repetim el xifrat del mateix missatge amb la mateixa clau, el
resultat és sempre el mateix valor c. Això fa que un atacant tingui un cert avantatge a l’hora d’intentar
esbrinar el text pla m corresponent a un cert text xifrat c.

Suposem que un missatge m s’ha xifrat amb la clau pública pubk fent servir RSA, donant com a resultat el
valor xifrat c. Un atacant que coneix el valor xifrat c i la clau pública pubk pot intentar desxifrar el missatge
xifrant repetidament diversos valors mi i anar comprovant si el resultat correspon al valor c que vol desxifrar.
Si el conjunt de possibles missatges és petit, aquest atac sempre tindria èxit ja que l’atacant seria capaç de
provar tots els possibles textos plans.

Exemple 7.12 Exemple d’atac pel determinisme de l’algorisme

Suposem que un elector que participa en unes eleccions on hi ha 4 candidats ({c2,c3,c4,c5}) ha d’enviar
el seu vot xifrat amb la clau pública de la mesa electoral, indicant l’identificador del candidat votat.

Suposant que la mesa electoral té el següent parell de claus RSA també de 64 bits (on els exponents no
són petits per evitar l’atac de l’exemple anterior):
PubK = (e, n) = (7387905850005970831, 16517425874601317047)
PrivK = (d, n) = (6515200225287789487, 16517425874601317047)
i que l’elector vol votar al candidat 4, el vot a enviar seria el valor:

vot = me mod n = 47387905850005970831 mod 16517425874601317047 =
8163478232469599798

Un atacant que capturi el vot i vulgui conèixer-ne el seu contingut, només cal que generi ell mateix tots els
possibles vots xifrats. Com que la clau pública de la mesa electoral és coneguda per tothom, l’atacant pot
aconseguir aquesta informació i calcular:

v2 = 27387905850005970831 mod 16517425874601317047 = 11673347059272354770
v3 = 37387905850005970831 mod 16517425874601317047 = 10980320764598560840
v4 = 47387905850005970831 mod 16517425874601317047 = 8163478232469599798
v5 = 57387905850005970831 mod 16517425874601317047 = 3701559658846578058

Aleshores, l’atacant descobreix que l’elector ha votat al candidat 4, sense necessitat d’haver de desxifrar el
vot.

Addicionalment, l’RSA ofereix xifratge homomòrfic. Donats dos missatges en pla, m1 i m2 i els seus
corresponents textos xifrats c1 i c2 (amb la mateixa clau), el resultat de multiplicar els dos textos xifrats
(c1c2) és precisament el mateix valor que s’obté al multiplicar els dos textos plans m1 i m2 i xifrar-los
posteriorment.

En efecte, si tenim que:
c1 = E(m1) = m1

e mod n
c2 = E(m2) = m2

e mod n
aleshores:
E(m1)∗E(m2) = c1 ∗ c2 = (m1

e)(m2
e) mod n = (m1 ∗m2)

e mod n = E(m1 ∗m2)

La propietat d’homomorfisme de l’RSA pot ser utilitzada per construir esquemes amb propietats interes-
sants, però, d’altra banda, també pot suposar problemes de seguretat en segons quins escenaris. A partir
d’un missatge xifrat c1 = E(m1), un atacant podrà construir un segon missatge xifrat c2 = c1 ∗E(α) que
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correspondrà al missatge en pla m1 ∗α sense conèixer la clau de xifratge ni el missatge en pla original m1.

Així doncs, mentre que la propietat d’homomorfisme és útil per construir esquemes que manipulin dades
mentre en preserven la seva confidencialitat, també pot ser una debilitat en segons quins desplegaments i
depenent de l’ús que se’n faci.

Per tal de solucionar aquests problemes que apareixen amb la utilització de l’RSA en la seva definició
bàsica, s’acostuma a afegir un conjunt de bits aleatoris com a padding al missatge en pla abans de xifrar-lo.
D’aquesta manera, s’aconsegueix que el mateix missatge m pugui correspondre a diversos textos xifrats
c, s’eviten els missatges m vulnerables per la seva representació i, alhora, es pot eliminar la propietat
d’homomorfisme que presenta l’RSA.

Noteu que amb la introducció de bits aleatoris, l’RSA passa a ser un criptosistema probabilístic, on un mateix
missatge xifrat amb una mateixa clau pot donar lloc a diversos textos xifrats. En canvi, el criptosistema
d’ElGamal ja és probabilístic per definició.

L’estàndard PKCS#1 defineix tot un conjunt de recomanacions per implementar l’RSA. En concret, l’estàn-
dard descriu primitives criptogràfiques, esquemes de xifrat, esquemes de signatura i detalls de codificació.

La versió 2.1 de l’estàndard PKCS#1 va ser republicada com a RFC 3447, amb unes petites correccions.

Esquemes de xifrat

Seguint la definició de l’estàndard, un esquema de xifrat consisteix en una operació de xifrat i una operació
de desxifrat.

El PKCS#1 defineix dos esquemes de xifrat: RSAES-OAEP i RSAES-PKCS1-v1_5. En aquest capítol,
veurem la descripció de l’esquema RSAES-OAEP. L’esquema RSAES-PKCS1-v1_5 s’inclou només per
mantenir la compatibilitat amb les aplicacions ja existents, ja que actualment es coneixen atacs que fan que
el seu ús no sigui recomanable. Abans però de descriure l’RSAES-OAEP, definirem i veurem un exemple de
funció de generació de màscara, una construcció que es fa servir en RSAES-OAEP.

Funcions de generació de màscara

RSAES-OAEP Tot i incloure les sigles AES, aquest esquema no te res a veure amb el criptosistema de
bloc.

L’esquema de xifrat RSAES-OAEP fa ús d’una funció de generació de màscara en dues ocasions per tal de
generar el valor EM a xifrar.

.

Una funció de generació de màscara (MGF per les seves sigles en anglès, Mask Genera-
tion Function) és una funció que rep com a paràmetres una cadena de mida variable i la
mida de sortida desitjada i retorna una cadena de la mida especificada a l’entrada.

És a dir, una funció MGF és una funció que rep una entrada de mida mi bits i un valor de mida de sortida mo
i retorna una sortida de mida mo bits:

MGF({0,1}mi ,mo)→{0,1}mo

Les funcions de generació de màscara són deterministes, ja que la sortida de la funció queda determinada de
manera única per la seva entrada. A més, la seva sortida ha de ser pseudoaleatòria, de manera que coneixent
una part de la sortida no se’n pugui generar la resta.

L’MGF1 és una funció de generació de màscara basada en una funció hash. Donada una funció hash H amb
sortida de mida hLen, l’MGF1 es defineix de la següent manera:
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definició mgf1(seed, maskLen)
si maskLen > 2^32*hLen aleshores

retornar "Error: màscara massa llarga"
fi si
T = ""
per iteracio = 0 fins a ceil(maskLen/hLen) - 1 fes
comptador = I2OSP(iteracio, 4)

T = T || H( seed || comptador )
fi per
retornar maskLen octets més significatius de T

fi definició

La funció
I2OSP

La funció I2OSP(x,y) retorna el valor x representat fent servir y octets.

És a dir, la funció va concatenant el resultat d’aplicar una funció hash a la concatenació del valor que rep com
a llavor (seed) i un comptador d’iteracions que es va incrementant d’un en un. Aquest procés es repeteix
fins a tenir prou octets com per generar una sortida de la mida especificada com a paràmetre (maskLen).
Finalment, com que maskLen pot no ser múltiple de la mida del hash (hLen), es possible que s’hagin de
descartar els octets menys significatius del resultat acumulat. A l’hora de concatenar el comptador amb la
llavor, es concatena la seva representació en quatre octets.

La funció ceil La funció ceil(x) retorna el menor enter major o igual que x.

Exemple 7.13 Exemple d’ús de l’MGF1 Suposem que volem fer servir l’MGF1 amb la funció hash
sha-1 amb els següents valors d’entrada:
maskLen = 45
seed = 0x5307

La funció sha-1 produeix una sortida de 160 bits, és a dir, 20 octets. Per tant,
hLen = 20

En primer lloc, es comprova que la mida de sortida desitjada no sigui superior a 232hLen. Com que no ho
és (maskLen < 232hLen), es continua l’execució normalment, calculant el valor màxim que assumirà el
comptador en el bucle:

ceil(maskLen/hLen) - 1 = ceil(45/20) - 1 = 3 - 1 = 2

Després, es procedeix a calcular el valor T a cada una de les iteracions del bucle:

Iteració 0:
comptador = 0x00000000
seed ∥ comptador = 0x530700000000
H(seed ∥ comptador) = 0xc5230b3bcb615dbc0b9a63f6e975b0f327fc576c
T ∥ H( seed || comptador ) = 0xc5230b3bcb615dbc0b9a63f6e975b0f327fc576c

Iteració 1:
comptador = 0x00000001
seed ∥ comptador = 0x530700000001
H(seed ∥ comptador) = 0x12f189b1d17e5b688d856fc700ffd2b20aabb14e
T ∥ H( seed || comptador ) = 0xc5230b3bcb615dbc0b9a63f6e975b0f327fc57

6c12f189b1d17e5b688d856fc700ffd2b20aabb14e
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Iteració 2:
comptador = 0x00000002
seed ∥ comptador = 0x530700000002
H(seed ∥ comptador) = 0x62f2e51fe23fdbfc3d200346f30157d5985d24ef
T ∥ H( seed || comptador ) = 0xc5230b3bcb615dbc0b9a63f6e975b0f327fc57

6c12f189b1d17e5b688d856fc700ffd2b20aabb14e62f2e51fe23fdbfc3d2003
46f30157d5985d24ef

Finalment, es retornen els 45 octets més significatius, de l’últim valor T calculat:
c5230b3bcb615dbc0b9a63f6e975b0f327fc576c12f189b1d17e5b688d856fc700ffd

2b20aabb14e62f2e51fe2

L’esquema de xifrat RSAES-OAEP

Figura 7.6: Esquema de l’RSA-OAEP.

L’esquema de xifrat RSAES-OAEP defineix com xifrar un missatge M amb RSA afegint padding i introduint
aleatorietat. L’esquema rep com a entrades tres valors, i retorna un valor xifrat:

C = RSAES-OAEP(M, (e,n), L)

on M és el missatge a xifrar; (e,n) és la clau pública RSA; i L és una etiqueta opcional (si no s’inclou, es
pren com a valor la cadena buida).
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A més de la funció de xifratge amb RSA que hem vist al capítol anterior, l’esquema també fa ús de dues
funcions addicionals: H, una funció hash i MGF, una funció de generació de màscara

Octet Un octet són 8 bits. En alguns estàndards es fa servir la paraula octet en comptes de
byte per definir conjunts de 8 bits ja que, en realitat, la mida d’un byte depèn de la
plataforma. Tot i que actualment gairebé tots els sistemes interpreten un byte com a 8
bits, en certs contextos el seu ús podria provocar ambigüitats.

Per descriure l’esquema, farem servir els termes mLen i hLen per referir-nos, respectivament, a la mida en
octets del missatge m i de la sortida de la funció hash H. A més, el valor k representa la mida (també en octets)
del capítol de la clau RSA utilitzada.

La Figura 7.6 mostra l’esquema de xifratge de l’RSA-OEAP. Com es pot apreciar, el primer pas de l’esquema
és construir el padding per al missatge M. Això es fa concatenant quatre valors: lHash, el resultat d’aplicar
la funció hash a l’etiqueta L (lHash = H(L)); PS, una cadena d’octets fixats a zero; un octet representant el
valor l; i M, el missatge a xifrar. La longitud de la cadena PS és variable, i dependrà de la mida del missatge i
de la sortida de la funció hash. De fet, es podria donar el cas que la cadena PS tingués longitud zero.

Així doncs,

DB = lHash ∥ PS ∥ 0x01 ∥ M

En segon lloc, es genera una llavor aleatòria de mida hLen, representada com a seed a l’esquema.

En els següents passos hi entren en joc, d’una banda, la funció xor i, d’altra banda, la funció de generació de
màscara MGF triada. Utilitzant aquestes dues funcions es calculen els valors maskedDB i maskedSeed:

maskedDB = DB ⊕ MGF(seed, k-hLen-1)
maskedSeed = seed ⊕ MGF(DB, hLen)

i es calcula el valor EM com la concatenació d’un octet de zeros amb maskedSeed i maskedDB:

EM = 0x00 ∥ maskedSeed ∥ maskedDB

Aquest valor EM té ara exactament k octets, i és el que es farà servir com a entrada de la funció de xifrat
de l’RSA que hem vist al capítol anterior. Noteu que fent servir l’esquema RSAES-OAEP per xifrar se
solucionen els problemes de l’RSA comentats anteriorment ja que, d’una banda, els valors a xifrar tenen ara
sempre k octets i, d’altra banda, el xifrat deixa de ser determinista amb la inclusió del valor aleatori seed.

Per desxifrar un valor C xifrat amb RSAES-OAEP, es procedeix a desfer el camí realitzat a l’hora de xifrar-lo:
en primer lloc, es desxifra el valor rebut fent servir la funció de desxifrat de l’RSA vista al capítol anterior.
En segon lloc, assignarem el resultat del desxifrat a EM, i desfarem els passos realitzats a l’hora de xifrar fins
a obtenir el valor original del missatge M.

Exemple 7.14 Exemple de xifratge fent servir RSAES-OAEP

En aquest exemple farem servir RSAES-OAEP per xifrar un missatge amb una clau de 512 bits i fent
servir la funció sha1 com a funció hash. La clau pública que farem servir és:

n = 121745231563782351101796726796023575630699986274537835886656686101963
66749040999892914856387609002413925126564321873531644179310315470260
085900075427092633

e = 65537

El missatge a xifrar serà:
message = 0x484f4c41

Deixarem l’etiqueta buida (L=‘’) i farem servir com a llavor el valor:
seed = 0000000000000000000000000000000000051ead
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Així doncs, la clau pública a utilitzar té 512 bits de manera que k = 64 octets. Alhora, la funció sha1 té
una sortida de 160 bits, pel que hlen = 20. El missatge a xifrar té mida mLen = 4 octets. Per tant, la
mida de PS serà:
k-mLen-2hLen-2 = 64-4-2*20-2 = 18 octets.

Sabent la mida de PS, podem calcular el valor DB:

lHash = H(‘’) = da39a3ee5e6b4b0d3255bfef95601890afd80709
DB = lHash ∥ PS ∥ 0x01 ∥ M = da39a3ee5e6b4b0d3255bfef95601890afd807090000

0000000000000000000000000000000001484f4c41

Ara, procedim a aplicar la funció de generació de màscara:

dbMask = MGF(seed, k-hLen-1) = MGF(seed, 43) = e68e82475a8216e69b2ac31ab2
0b60a168c155da68b1e64c8972335f90ebd96d57905b0ffe49ae92b14f3f

maskedDB = DB ⊕ dbMask =
da39a3ee5e6b4b0d3255bfef95601890afd80709000. . .001484f4c41 ⊕
e68e82475a8216e69b2ac31ab20b60a168c155da68b. . .9ae92b14f3f =
3cb721a904e95deba97f7cf5276b7831c71952d368b1e64c8972335f90ebd96d5790
5b0ffe49afdafe037e

seedMask = MGF(maskedDB, hLen) = MGF(maskedDB, 20) =
9e883239d0bc279884730611a7f07b5e65f17474

maskedSeed = seed ⊕ seedMask =
0000000000000000000000000000000000051ead ⊕
9e883239d0bc279884730611a7f07b5e65f17474 =
9e883239d0bc279884730611a7f07b5e65f46ad9

Per tant, el valor que xifrarem amb la primitiva bàsica de xifratge RSA serà:
EM = 0x00 ∥ maskedSeed ∥ maskedDB = 009e883239d0bc279884730611a7f07b5e65f

46ad93cb721a904e95deba97f7cf5276b7831c71952d368b1e64c8972335f90ebd96
d57905b0ffe49afdafe037e

Per acabar, es procedeix a realitzar el xifratge. Com que tenim la clau pública expressada en enters en base
decimal, una alternativa per a realitzar el càlcul és convertir prèviament la representació d’EM a base 10:
c = E(e,n)(EM) = me mod n = 53621703820891685515791899885533450958741320241

39077634594003538315944764911270805494744162555266564406433789864671
246348638999851571397862373399515115506

Finalment, convertim de nou el resultat del xifratge a la representació hexadecimal de k octets:
C = 6661be2c1357ba21cbc074362ae9e8e08898779e7df987d4ae2993e1e02ab051cf9f7

a109fc3389c96779e6206c49e695da846efa3945ba0c9e43adaddcc2ff2

7.4.2 PKCS#5

La norma PKCS#5 proveeix recomanacions per a la implementació de criptografia basada en contrasenyes.
En concret, la norma descriu funcions de derivació de claus, esquemes de xifrat, esquemes d’autenticació de
missatges i la sintaxi ASN.1 que identifica les diferents tècniques.

La versió 2.0 de l’estàndard PKCS#5 va ser republicada com a RFC 2898.

Sal criptogràfica i número d’iteracions

Avui en dia, l’ús de contrasenyes és un mètode molt freqüent per protegir accessos a sistemes o secrets. Les
contrasenyes escollides pels usuaris, però, acostumen a no ser adequades per a ser utilitzades directament
com a claus d’esquemes criptogràfics segurs. D’una banda, solen ser massa curtes i, d’altra banda, poden ser
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susceptibles a atacs per diccionari.

Bits de sal L’expressió bits de sal prové de la idea que la sal altera el gust dels aliments, de la
mateixa manera que aquests bits modifiquen les contrasenyes.

L’ús d’una sal en criptografia basada en contrasenyes s’ha utilitzat tradicionalment per produir conjunts de
claus grans a partir d’una única contrasenya. La clau corresponent a una contrasenya se selecciona de dins
d’aquest conjunt de manera aleatòria a partir del valor de sal. Una clau individual se selecciona aplicant una
funció de derivació de claus (KDF per les seves sigles en anglès, Key Derivation Function).

L’ús de bits de sal té, principalment, dos beneficis:

1. Es dificulta que un atacant pugui precalcular totes les claus corresponents a un diccionari de con-
trasenyes. Amb l’ús de n bits de sal, cada contrasenya té 2n possibles claus, pel que el cost de
precalcular-les augmenta considerablement.

2. S’aconsegueix que la probabilitat que la mateixa clau sigui seleccionada dues vegades sigui molt
baixa. Això soluciona alguns dels problemes que apareixen quan es reutilitzen claus.

A més de fer servir uns bits de sal, una altra tècnica que s’utilitza habitualment en criptografia basada en
contrasenyes és incrementar deliberadament el temps de càlcul necessari per calcular cada clau, de manera
que aquest increment no sigui significatiu per a un usuari que necessita calcular una clau però sí que ho
sigui per a un atacant que es troba fent una cerca exhaustiva. Aquest increment del temps de càlcul es fa
augmentant el número d’iteracions que realitza la funció de derivació de clau. La norma PKCS#5 recomana
fer servir com a mínim 1.000 iteracions. De totes maneres, moltes de les implementacions actuals ja superen
amb escreix aquest valor.

Exemple 7.15 Emmagatzemament de contrasenyes en sistemes basats en Unix

Els sistemes basats en Unix tradicionalment fan servir sal criptogràfica per emmagatzemar les contrasenyes
dels usuaris del sistema. Així, normalment les contrasenyes dels usuaris es troben emmagatzemades en el
següent format:
$id$salt$hashed

on id és l’identificador de l’algorisme de hash utilitzat, salt és el valor de sal i hashed és el valor del
hash contrasenya aplicant la sal.

Per exemple, les següents tres entrades serien vàlides per emmagatzemar la informació necessària per
validar un usuari que faci servir la contrasenya criptografia per entrar al sistema:

$6$76YTAM$mbfTXZY1.D7qaIPbzKcQX8yBXuhwTr4D9u3vpctvU7XFcqPkUzgK3.z.93DTJV
6.zzoMf9GaoDIugnJuY99CC1

$6$86YTAM$qG0.v6FvNTz9j4RKAXB5TMh1twEGhGPxvNlfZiCkpNhBYv4B4MBOYmUkdFUKIR
IEB.Qfs2Gyqv2ohmxLtgN170

$1$86YTAM$VD8sYNaSgNCoEzFlf2OhK.

Les dues primeres correspondrien a representacions de la mateixa contrasenya fent servir sha-512 com a
funció hash i dos valors de sal diferents. És important notar com un petit canvi en el valor de sal (76YTAM
en comptes de 86YTAM) canvia radicalment el valor resultant.

En canvi la tercera entrada correspondria a l’emmagatzematge de la mateixa contrasenya amb la segona
sal, però fent servir MD5. En aquest cas, podem veure com canviar la funció de hash també fa variar el
resultat, encara que la contrasenya i la sal coincideixin.

Funcions de derivació de clau

.
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Una funció de derivació de claus produeix una clau derivada a partir d’una clau base i
d’altres paràmetres.

Una funció de derivació de claus basada en contrasenyes és un cas específic d’una funció de derivació de
claus on la clau base és la contrasenya i els altres paràmetres són un valor de sal i un número d’iteracions.

La norma PKCS#5 defineix dues funcions de derivació de claus basades en contrasenyes: PKKDF1 i
PBKDF2. La funció PBKDF1 s’inclou només per mantenir la compatibilitat amb aplicacions ja existents i es
recomana l’ús de PBKDF2 per a les noves aplicacions.

7.4.3 PKCS#12

L’estàndard PKCS#12 especifica un format per emmagatzemar i transportar informació sobre l’identitat de
persones, com ara claus privades, certificats i secrets, entre d’altres dades criptogràfiques.

Un dels usos més habituals d’aquest format és l’emmagatzemament d’una clau privada i del seu corresponent
certificat digital x.509 o bé per emmagatzemar tots els certificats d’una cadena de confiança.

La versió 1.1 de l’estàndard PKCS#12 va ser republicada com a RFC 7292.

L’estàndard suporta diferents modes de privacitat i integritat per a la transferència d’informació personal. En
concret, l’estàndard suporta quatre combinacions, dos modes de privacitat i dos d’integritat:

• Mode de privacitat de clau pública: la informació personal s’empaqueta i es xifra amb una clau
pública de la plataforma de destí. Es poden recuperar les dades amb la clau privada corresponent.

• Mode de privacitat amb contrasenya: la informació personal es xifra amb una clau simètrica derivada
del nom d’usuari i d’una contrasenya.

• Mode d’integritat amb clau pública: la integritat es garanteix amb una signatura digital sobre el
contingut, realitzada amb la clau privada de la plataforma d’origen. La signatura és verificada a la
destinació, fent servir la clau pública corresponent.

• Mode d’integritat amb contrasenya: la integritat és garanteix a través d’un Codi d’Autenticació de
Missatge (MAC) derivat d’una contrasenya.

7.5 Formats de representació de dades

L’ASN.1 (per les seves sigles en anglès, Abstract Syntax Notation number One) és un estàndard que descriu
una notació formal utilitzada per descriure dades en protocols de comunicacions. Aquesta notació permet
representar dades de manera independent de les codificacions específiques de cada màquina, del sistema
operatiu o del llenguatge de programació utilitzat. Les normes PKCS fan servir aquest estàndard per descriure
com emmagatzemar i transmetre claus i altres tipus de material criptogràfic.

Organitzacions
darrere l’ASN.1

L’ASN.1 és un estàndard conjunt de la ISO (International Organization for Standardi-
zation), l’IEC (International Electrotechnical Commission) i de l’ITU-T (International
Telecommunication Union Telecommunication Standardization Sector).

L’estàndard permet definir tipus de dades i valors. Un tipus de dades és una categoria d’informació (per
exemple, numèrica o textual). Un valor és una instància d’un tipus concret. La sintaxi ASN.1 defineix tres
categories de tipus de dades: tipus simples, que són atòmics; tipus estructurats, que tenen components; i
tipus etiquetats, que són derivats d’altres. Es pot assignar un nom als tipus i valors ASN.1, de manera que
aquest nom es pot fer servir per definir altres tipus i valors.

Així, per exemple, els enters (INTEGER), les cadenes de bits (BIT STRING) o el valor null (NULL) són tipus
simples. En canvi, la seqüència (SEQUENCE), una col·lecció ordenada d’un o més valors d’altres tipus, i el
conjunt (SET), una col·lecció desordenada d’un o més valors d’altres tipus, són tipus estructurats.
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La notació ASN.1 es complementa per l’especificació d’un conjunt d’algorismes anomenats regles de
codificació (en anglès es coneixen com encoding rules) que determinen la representació exacta de cada
missatge en octets. Tres de les famílies de regles de codificació estandarditzades són: Basic Encoding Rules
(BER), Packed Encoding Rules (PER) i XML Encoding Rules (XER).

Codificacions
canòniques

De la mateixa manera que la codificació DER ens ofereix una codificació única
dins de BER, existeixen representacions canòniques de les regles PER (anomena-
des CANONICAL-PER) i XER (conegudes com a Canonical XML Encoding Rules o
CXER).

En criptografia sovint necessitem una representació única d’una certa dada. Els estàndards de codificació
comentats ofereixen però diverses maneres de codificar un mateix valor, pel que no són adients per fer
servir en criptografia. Les regles de codificació DER (de l’anglès, Distinguished Encoding Rules) són un
subconjunt de les regles BER que ofereixen una codificació única a cada valor ASN.1. En concret, les
regles DER especifiquen, per a cada valor a codificar, quin dels possibles mètodes de codificació BER
s’ha d’utilitzar en aquell cas, assegurant així una codificació única. Així doncs, codificar fent servir les
regles DER ens permet garantir que els processos criptogràfics que realitzem no es veuen alterats per l’ús de
diferents representacions d’una mateix valor.

Exemple 7.16 Exemple del resultat de codificar en BER i DER

Fent servir la codificació BER, el valor booleà Cert pot ser codificat de 255 maneres diferents, que
corresponen als 255 valors diferents de zero que es poden representar amb un byte (28−1 = 255). La
sintaxi DER ens indica quina d’aquestes 255 maneres hem de triar per tal de codificar el booleà Cert.

Així, molts estàndards relacionats amb la criptografia fan servir DER per codificar dades. Per exemple, les
dades que són signades dels certificats X.509 que hem vist a la Secció 7.3.1 o les de les llistes de revocació
de certificats descrites a la Secció 7.3.2 es codifiquen en DER. Això permet que les comprovacions de les
signatures digitals retornin els resultats esperats.

A vegades però, fer servir fitxers binaris per transmetre contingut criptogràfic no és el més adient. PEM és
una codificació printable que fa servir 64 caràcters que són universalment representables: les lletres de la a a
la z en minúscula i majúscula, els dígits del 0 al 9 i els símbols + i /. Així, cada caràcter permet codificar 6
bits d’informació (26 = 64). Addicionalment, el caràcter = es fa servir com a caràcter especial per a indicar
com tractar el padding de cada missatge. El text resultant d’una codificació PEM consisteix en un conjunt de
línies de 64 caràcters, exceptuant l’última línia que pot contenir un nombre de caràcters menor.

L’origen del
format PEM

El protocol Privacy-enhanced Electronic Mail (PEM) va ser el primer estàndard en
proposar l’ús d’una codificació en base 64 amb caràcters printables i línies curtes. Tot
i que el protocol va caure en desús, la codificació encara es fa servir per transferir
material criptogràfic de manera printable. Actualment, es fa servir el nom fitxer PEM
per indicar fitxers amb material criptogràfic codificats en base 64 (inspirats amb la
codificació original de l’RFC PEM), però que van més enllà del que s’especifica a
l’estàndard. Per exemple, l’ús de les etiquetes --BEGIN CERTIFICATE-- i --END
CERTIFICATE-- no es troba especificada a l’estàndard.

Així doncs, el sistema de codificació PEM ens permet representar una cadena d’octets qualsevol en un
conjunt de caràcters printables representats en línies curtes, la majoria de les quals tenen la mateixa mida. La
cadena de caràcters representant el material criptogràfic codificat en base 64 es troba emmarcada dins d’unes
etiquetes que n’indiquen l’inici i el final. Per exemple, un certificat digital representat en PEM es trobaria
emmarcat entre les etiquetes --BEGIN CERTIFICATE-- i --END CERTIFICATE--:

--BEGIN CERTIFICATE--
MIIB0TCCATqgAwIBAgIQUq+2SdEkLr5K6xqjSEvRsDANBgkqhkiG9w0BAQUFADAU
MRIwEAYDVQQDEwlsb2NhbGhvc3QwHhcNMTIwODA0MDA0OTEyWhcNMTcwODA0MDAw
MDAwWjAUMRIwEAYDVQQDEwlsb2NhbGhvc3QwgZ8wDQYJKoZIhvcNAQEBBQADgY0A
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[...]
Y2nd44bYEpmaBy7XJ5UIGEkuD3VIxT2S+2bCwkRR+9/+7vggR2q7l7YEktM2mFBI
yqOMOroAw+5cdc06c/B7UimwKFczsyhi9LUIr3rXI42FdXBHWw==
--END CERTIFICATE--

7.6 Els problemes de la PKI en desplegaments reals

Tot i que la PKI semblava que hauria de resoldre molts dels problemes de seguretat als quals ens enfrontem,
el seu desplegament no ha arribat a complir amb les expectatives que s’hi havien dipositat: avui en dia les
PKIs no són tant populars com es creia que arribarien a ser i les garanties de seguretat que ofereixen les
infraestructures de clau pública no sempre estan a l’alçada del que, a nivell teòric, haurien d’oferir.

Així, per exemple, l’ús del protocol HTTPS es troba molt estès avui en dia. L’HTTPS fa servir una
infraestructura de clau pública per autenticar els servidors web, normalment a través del seu domini. A més,
la clau pública del certificat del servidor es fa servir per establir un canal de comunicació segur entre el
servidor i el client.

Qui controla
les CAs de
confiança dels
navegadors?

Un estudi publicat l’any 2013 sobre l’estat de l’ecosistema HTTPS reporta que només
un 20% dels certificats d’autoritats de certificació de confiança dels principals nave-
gadors corresponen a CAs comercials. La resta d’autoritats es troben controlades per
empreses, institucions financeres, institucions religioses, museus i biblioteques.

Per tal de poder validar els certificats dels servidors, els navegadors tenen una llista d’autoritats de certificació
de confiança en les quals confien. Aquesta llista acostuma a tenir uns pocs centenars de certificats arrel, el
que porta a confiar en uns pocs milers de certificats de CA. Depenent de la configuració del sistema, la llista
pot provenir del sistema operatiu o del navegador, i hi ha diferències notables en les llistes de certificats de
les diferents configuracions.

Els sectors més crítics amb aquest model defensen que un dels principals problemes que hi ha és que qualsevol
CA de confiança té el poder de signar qualsevol domini. Certament, amb el model actual, una CA d’algun
país remot que tingui el seu certificat arrel en el navegador d’un usuari gaudirà de la mateixa confiança que
una CA espanyola a l’hora d’emetre un certificat per a una pàgina web amb un domini del govern espanyol.
Però no només això, les CAs arrel tenen també el poder de crear autoritats de certificació intermèdies que,
excepte en entorns molt específics, també tindran el poder d’emetre certificats per a qualsevol domini. En
aquesta línia, en els últims anys hi ha hagut diversos incidents de seguretat relacionats amb la PKI de la Web.

Al 2012, l’autoritat de certificació Trustwave (en la qual confien els principals navegadors) va emetre un
certificat de CA i va incloure la clau privada corresponent dins d’un dispositiu hardware segur, que va llogar
a una empresa amb l’objectiu que aquesta pogués espiar les connexions xifrades amb TLS dels seus empleats.
La pròpia CA va reconèixer que havia dut a terme aquesta pràctica. Aquest incident va alertar d’una pràctica
que es rumoreja que és habitual entre les autoritats de certificació, i que posa en perill la seguretat d’Internet.

Google ha detectat en nombroses ocasions certificats fraudulents afectant a algun dels seus dominis. Així, al
2014 va denunciar el National Informatics Centre (NIC) de l’Índia (una autoritat subordinada de l’Indian
Controller of Certifying Authorities) estava emetent certificats no autoritzats que afectaven alguns dels seus
dominis, algun domini de Yahoo i altres dominis. Al desembre de 2013, Google ja havia detectat certificats
fraudulents per als seus dominis emesos per l’entitat de certificació francesa ANSSI i, uns mesos abans, al
gener del mateix any, per l’entitat turca Türktrust.

Google és capaç de detectar aquests atacs gràcies a vàries mesures que ha anat desplegant amb el temps.
Així, per exemple, el navegador Chrome porta incorporat pinning de certificats per a alguns dels dominis de
google.

El pinning és un procediment pel qual s’associa un host a una identitat criptogràfica (una o vàries claus
públiques o certificats en una cadena de certificats X.509). La validació d’un pin consisteix a comprovar que
almenys una de les claus públiques especificades es troba en la cadena de certificació del host.
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Exemple 7.17 Pinning de certificats en el navegador Chrome

El navegador Chrome inclou un conjunt de claus públiques per a dominis de Google, fet que permet als
seus usuaris detectar, per exemple, quan es troben davant d’un certificat de gmail que aparenta ser vàlid (es
troba dins d’una cadena de certificació vàlida atenent als certificats de confiança del navegador) però que
no inclou cap de les claus públiques especificades, com es donaria en els casos comentats anteriorment.

Així, per exemple, suposem una instància del navegador Chrome que té quatre certificats a la seva llista de
confiança, com es mostra a la figura següent. Si no hi ha més restriccions, qualsevol certificat signat amb
la clau privada corresponent a algun dels certificats de la llista confiança (o alguna autoritat de certificació
subordinada) serà considerat com a vàlid (si totes les comprovacions esmentades a la Secció 7.2.5 són
satisfactòries).

Ara bé, si s’afegeix un pin que vinculi el certificat de la CA subordinada1,1 amb els dominis google.com i
gmail.com, caldrà que la cadena de certificació dels certificats d’aquests dominis passi pel certificat amb
el pin per donar el certificat per vàlid. Així, els certificats de gmail.com i google.com emesos per la CA
subordinada1,1 són vàlids, mentre que el certificat de gmail.com emès per la CA subordinada4,1 no ho serà.
En canvi, un certificat d’un altre domini que no tingui cap pin (com ara uoc.edu) emès per la mateixa CA
subordinada4,1, serà considerat com a vàlid.

Noteu que l’existència d’un pin no elimina el requeriment de validar la cadena de certificació, és a dir, el
pin afegeix comprovacions a l’hora de validar un certificat, però no n’elimina.

Altres dels problemes que sorgeixen amb els desplegaments pràctics de les infraestructures de clau pública i
que no estan limitats a l’https són fruit dels conflictes d’interès entre els diferents actors que participen de la
PKI, la falta d’incentius per a segons quines accions crítiques per al bon funcionament de la infraestructura,
la confusió que generen certes especificacions o la falta d’usabilitat. Així, per exemple, si analitzem les
alternatives de consulta de l’estat de revocació d’un certificat, trobem que el protocol OCSP comporta
dificultats alhora d’interpretar les seves respostes (com es comentava a la Secció 7.3.3), mentre que l’emissió
de CRLs és un procediment costós per a la CA per al qual no en té un incentiu directe. Pel que fa la usabilitat,
potser un dels exemples més clars de sistemes que no arriben a ser utilitzats en tot el seu potencial és el DNI
electrònic: mentre que gairebé tota la ciutadania espanyola disposa de certificats digitals en el seu document
d’identitat, la necessitat de tenir un dipositiu hardware capaç de llegir el DNI i la dificultat d’instal·lar-lo,
configurar-lo i fer-lo servir en un equip domèstic, fan que en molts casos aquests certificats no es facin servir.
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7.7 Resum

En aquest capítol, s’ha presentat la infraestructura de clau pública, tot repassant les entitats que hi participen
i el seu paper dins de la infraestructura, les fases per les quals passa un certificat digital des de la seva creació
fins a la finalització del seu ús i els estàndards més importants que detallen diferents processos de la PKI.
Finalment, s’han repassat els formats més habituals per codificar informació criptogràfica i s’ha discutit
sobre els problemes que presenten els deplegaments reals de les infraestructures de clau pública, més enllà
dels conceptes teòrics detallats als estàndards.
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7.8 Solucions dels exercicis

Exercici 7.1:

a i d: Per tal de garantir el no-repudi, la clau privada no pot ser coneguda per ningú, a part del subscriptor
del certificat. Per tant, caldrà que les claus s’hagin generat o bé pel propi subscriptor, o bé en un dispositiu
hardware segur.

Exercici 7.2:

c: Les afirmacions a i b són falses, ja que tant l’OCSP com les CRLs ens permeten comprovar l’estat de
revocació d’un certificat digital, però no la seva validesa (que es troba explicitada en el propi certificat). Les
respostes d i e també són falses, ja que podem obtenir també aquestes respostes en altres situacions, per
exemple, preguntant per certificats que no hagin estat mai emesos.

Exercici 7.3:

El resultat de la validació del certificat és:

Resultat de processar l’extensió
TRUE FALSE

L’aplicació reconeix l’extensió TRUE FALSE
L’aplicació no reconeix l’extensió FALSE FALSE

Exercici 7.4:

El resultat de la validació del certificat és:

Resultat de processar l’extensió
TRUE FALSE

L’aplicació reconeix l’extensió TRUE FALSE
L’aplicació no reconeix l’extensió TRUE TRUE

Exercici 7.5:

Cap dels segells de temps proposats ens permetria demostrar que les signatures han estat recollides en el
període de temps indicat. El segell de temps a demostraria que les signatures han estat creades abans de
l’inici del període establert. El segell de temps b no podria garantir que no s’han creat signatures ni abans ni
després del període de temps establert. El segell de temps c no garantiria que les signatures no han estat
creades abans de l’inici del període. Un segell de temps només permet garantir que una dada existeix en un
instant de temps concret.

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


7.9 Bibliografia 225

7.9 Bibliografia

Adams, C., Steve L. (2003). Understanding PKI: concepts, standards, and deployment considerations.
Addison-Wesley Professional.

Choudhury, S. Bhatnagar, K., Haque, W. (2002). Public key infrastructure implementation and design..
John Wiley & Sons, Inc.

Kuhn, D. Richard, et al. (2001). Introduction to public key technology and the federal PKI infrastructure.
National Institute of Standards and Technology.

Obaidat, M., Boudriga, N. (2007). Security of E-Systems and Computer Networks. Cambridge University
Press.

International Telecommunication Union (2000). Recommendation X.509 - The Directory: Public-key and
attribute certificate frameworks.

International Telecommunication Union (2015). Recommendation X.680 - Abstract Syntax Notation One
(ASN. 1): Specification of Basic Notation

Jonsson, J., Kaliski, B. (2003). Public-key cryptography standards (PKCS)# 1: RSA cryptography specifica-
tions version 2.1.

Nystrom, M., et al. (2014). PKCS# 12: Personal information exchange syntax v. 1.1.

Kaliski, B. (2000). PKCS# 5: Password-based cryptography specification version 2.0.

J. Linn (1993). Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures.
https://tools.ietf.org/html/rfc1421

S. Kent (1993). Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key Manage-
ment.
https://tools.ietf.org/html/rfc1422

D. Balenson (1993). Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and
Identifiers.
https://tools.ietf.org/html/rfc1423

B. Kaliski (1993). Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certification and Related
Services.
https://tools.ietf.org/html/rfc1424

S. Kille (1995). A String Representation of Distinguished Names.
https://tools.ietf.org/html/rfc1779

C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, T. Ylonen (1999). SPKI Certificate Theory.
https://tools.ietf.org/html/rfc2693

B. Kaliski (2000). PKCS #5: Password-Based Cryptography Specification Version 2.0.
https://tools.ietf.org/html/rfc2898

C. Adams, P. Cain, D. Pinkas, R. Zuccherato (2001). Internet X.509 Public Key Infrastructure Time-Stamp
Protocol.
https://tools.ietf.org/html/rfc3161

W. Polk, R. Housley, L. Bassham (2002). Algorithms and Identifiers for the Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
https://tools.ietf.org/html/rfc3279

J. Jonsson, B. Kaliski (2003). Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography

https://www.criptografia.cat v0.2.1 04/02/2026

https://tools.ietf.org/html/rfc1421
https://tools.ietf.org/html/rfc1422
https://tools.ietf.org/html/rfc1423
https://tools.ietf.org/html/rfc1424
https://tools.ietf.org/html/rfc1779
https://tools.ietf.org/html/rfc2693
https://tools.ietf.org/html/rfc2898
https://tools.ietf.org/html/rfc3161
https://tools.ietf.org/html/rfc3279
https://criptografia.cat


226 Capítol 7. Infraestructura de clau pública

Specifications Version 2.1.
https://tools.ietf.org/html/rfc3447

M. Cooper, Y. Dzambasow, P. Hesse, S. Joseph, R. Nicholas (2005). Internet X.509 Public Key Infrastruc-
ture: Certification Path Building.
https://tools.ietf.org/html/rfc4158

C. Adams, S. Farrell, T. Kause, T. Mononen (2005). Internet X.509 Public Key Infrastructure Certificate
Management Protocol (CMP).
https://tools.ietf.org/html/rfc4210

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk (2008). Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
https://tools.ietf.org/html/rfc5280

R. Housley (2009). Cryptographic Message Syntax (CMS).
https://tools.ietf.org/html/rfc5652

K. Moriarty, Ed., M. Nystrom, S. Parkinson, A. Rusch, M. Scott (2014). PKCS #12: Personal Information
Exchange Syntax v1.1.
https://tools.ietf.org/html/rfc7292

OpenSSL Software Foundation (Consultat per última vegada: setembre de 2016). OpenSSL Cryptography
and SSL/TLS Toolkit Documentation.
https://www.openssl.org/docs/

S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams (2013). X.509 Internet Public
Key Infrastructure Online Certificate Status Protocol - OCSP.
https://tools.ietf.org/html/rfc6960

https://www.criptografia.cat v0.2.1 04/02/2026

https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc4158
https://tools.ietf.org/html/rfc4210
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5652
https://tools.ietf.org/html/rfc7292
https://www.openssl.org/docs/
https://tools.ietf.org/html/rfc6960
https://criptografia.cat


8. Criptografia de corbes el·líptiques

En capítols anteriors s’ha vist com la criptografia de clau pública permetia solucionar alguns dels problemes
presentats per la criptografia simètrica (com ara la distribució de claus) i alhora oferia propietats addicionals
més enllà del xifratge (com ara el no-repudi a través de signatures digitals). Ara bé, la criptografia de clau
pública requereix de recursos computacionals més elevats que la criptografia simètrica, cosa que en dificulta
la seva execució en dispositius amb poc recursos i en limita el nivell de seguretat com a conseqüència del
compromís amb el temps d’execució. De fet, en el cas del xifratge, sovint es combina l’ús de la criptografia
de clau pública amb criptografia simètrica a través de la tècnica del sobre digital, cosa que permet xifrar
continguts de gran mida amb claus públiques més petites.

En aquest capítol es presenta la criptografia de corbes el·líptiques. Entre els seus principals avantatges hi
trobem que la criptografia de corbes el·líptiques ofereix el mateix nivell de seguretat que la criptografia
de clau pública tradicional però amb claus més petites. D’aquesta manera, s’aconsegueix també que les
operacions criptogràfiques siguin més ràpides d’executar i requereixin de menys recursos computacionals,
fent-les possibles en dispositius amb recursos limitats. A més, la criptografia de corbes el·líptiques permet la
definició de pairings, amb els quals es poden crear construccions criptogràfiques amb propietats addicionals
a les que ens oferia la criptografia de clau pública bàsica.

Així doncs, en primer lloc aquest capítol detalla els beneficis de la criptografia de corbes el·líptiques. A
continuació, es presenten les corbes el·líptiques, la seva aritmètica, i es descriu com es fan servir les corbes
el·líptiques en criptografia. Després s’explica el problema del logaritme discret sobre corbes el·líptiques i es
detallen els algorismes criptogràfics més populars basats en aquest problema.

8.1 L’origen de la criptografia de corbes el·líptiques

Com hem vist, la criptografia de clau pública es va donar a conèixer a la dècada dels 70, amb el protocol
d’intercanvi de claus de Diffie-Hellman, que permet a dues parts establir un secret compartit sense necessitat
d’haver-se intercanviat cap informació prèviament. La seguretat del protocol de Diffie-Hellman es basa en la
dificultat de calcular el logaritme discret en el grup dels enters mòdul un primer. Poc després, Rivest, Shamir,
i Adleman van proposar l’RSA, un sistema de xifratge de clau pública que es basa en un altre problema,
la factorització d’enters. Així doncs, aquests primers algorismes de clau pública es basaven en problemes
computacionalment difícils de resoldre que es definien sobre els enters o sobre grups d’enters mòdul un
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primer.

L’ús de corbes el·líptiques en el disseny de criptosistemes de clau pública va ser proposat per primera vegada
l’any 1985 per Neal Koblitz i Victor Miller, de manera independent. Ambdós van proposar fer servir el
grup de punts d’una corba el·líptica definida sobre un cos finit en criptosistemes basats en el problema del
logaritme discret, donant llum així a la criptografia de corbes el·líptiques (o ECC, de les seves sigles en
anglès, Elliptic Curve Cryptography).

Més d’una dècada després, els primers estàndards que descrivien algorismes de criptografia de corbes
el·líptiques i paràmetres per a les corbes sobre les quals construir-los es van començar a publicar.

Primers
estàndards
d’ECC

El primer estàndard publicat sobre corbes el·líptiques va ser l’ANSI X9.62: The Elliptic
Curve Digital Signature Algorithm (ECDSA) l’any 1999. Un any després, al 2000, el
NIST també incloïa l’ECDSA a l’ara obsolet NIST FIPS PUB 186-2: Digital Signature
Standard (DSS).

L’adopció de la criptografia de corbes el·líptiques no ha estat, però, lliure de polèmica. L’algorisme
Dual_EC_DRBG (Dual Elliptic Curve Deterministic Random Bit Generator) va ser estandarditzat pel
NIST l’any 2006, juntament amb uns altres tres algorismes, per a la generació de números pseudoaleatoris.
L’estàndard explicitava no només l’algorisme de generació de números pseudoaleatoris, sinó també la corba
el·líptica concreta i els punts de la corba a fer servir per l’algorisme. Altres organismes d’estandardització
també van incloure aquests mateixos paràmetres als seus estàndards. Ja durant el procés d’estandardització,
alguns investigadors van començar a mostrar preocupacions per les possibles vulnerabilitats de l’algorisme.
En particular, els investigadors se’n van adonar que el coneixement d’un cert secret podia permetre recuperar
l’estat intern del generador a partir de només 256 bits de la sortida. A més, també van notar que era possible
generar els paràmetres de l’algorisme de manera que qui ho fes conegués aquest secret. Dit d’una altra
manera, els investigadors van advertir que l’algorisme podia incorporar una porta del darrere (o backdoor).
Tot i així, diverses implementacions de llibreries criptogràfiques comercials van incorporar l’algorisme amb
els paràmetres recomanats pel NIST i, en alguns casos, fins i tot van configurar-lo com a algorisme per defecte.
Anys després, les sospites dels investigadors van quedar confirmades quan les revelacions d’Edward Snowden
apuntaven que l’NSA havia introduït intencionadament una porta del darrere a l’algorisme Dual_EC_DRBG.
Aquests fets van precipitar que l’algorisme fos retirat de l’estàndard del NIST l’any 2014.

La història del
Dual EC DRBG

Per a conèixer amb més detalls els fets que van portar a l’estandardització de l’algorisme
Dual_EC_DRBG i el paper que les diferents institucions i investigadors hi van jugar,
us recomanem la lectura de l’article Dual EC: A standardized back door, de Daniel
Bernstein, Tanja Lange i Ruben Niederhagen.

Nombres
nothing-up-
my-sleeve
(NUMS)

En anglès es fa servir l’expressió nothing-up-my-sleeve numbers (literalment, nombres
sense res tret de la màniga) per designar els nombres que es troben lliures de sospita de
tenir propietats ocultes. Aquests nombres s’utilitzen com a constants en els algorismes
criptogràfics, per exemple, per a la inicialització o la definició de paràmetres, amb l’ob-
jectiu d’assegurar que no han estat triats intencionadament per a debilitar l’algorisme o
incorporar-hi portes del darrere. Per aconseguir-ho, els nombres se seleccionen usant
fonts conegudes que deixin poc marge de maniobra per a manipular l’algorisme, com
ara els primers dígits decimals de pi.

Tot i aquests daltabaixos amb les agències d’estandardització, la criptografia de corbes el·líptiques s’ha anat
fent lloc en la societat, oferint esquemes de signatura digital, de xifratge híbrid, d’intercanvi de claus, i de
generació de números pseudoaleatoris, tots ells basats en el problema del logaritme discret sobre corbes
el·líptiques.

Actualment, la criptografia de corbes el·líptiques es fa servir àmpliament en protocols com ara l’IPsec o
el TLS. L’empresa americana F5 (especialitzada en xarxes de lliurament d’aplicacions, gestió del núvol i
seguretat a la xarxa) publica informes anuals sobre l’ús que se n’està fent del protocol TLS a Internet. El seu
informe de 2019 (The 2019 TLS Telemetry report) reporta que del milió de pàgines web millor situades al
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rànquing Alexa, prop d’un 20% estan fent servir claus basades en corbes el·líptiques. En concret, un 18.23%
fan servir una clau de 256 bits sobre una corba el·líptica. Tot i així, encara predomina l’ús de l’RSA (un
73.57% de les pàgines fan servir claus RSA de 2048 bits).

La criptografia de corbes el·líptiques també s’ha popularitzat per ser utilitzada en esquemes de signatura
digital en algunes criptomonedes basades en cadena de blocs (blockchain). Així, per exemple, Bitcoin fa
servir ECDSA (Elliptic Curve Digital Signature Algorithm) com a algorisme de signatura; i Ethereum 2.0 fa
servir signatures BLS (Boneh–Lynn–Shacham).

8.2 Beneficis de la criptografia de corbes el·líptiques

El principal avantatge de la criptografia de corbes el·líptiques és que utilitza claus més petites per arribar
als mateixos nivells de seguretat que els algorismes de criptografia de clau pública tradicionals. Aquesta
disminució en la mida de la clau comporta una millora en la velocitat d’execució d’algunes de les primitives
bàsiques (per exemple, en la generació de la clau) i, alhora, un estalvi de recursos, de manera que es pot
utilitzar en dispositius amb recursos limitats.

El nivell de seguretat d’un algorisme és una mesura creada per comparar la seguretat que ofereixen diferents
algorismes criptogràfics quan es fan servir amb diverses mides de clau.

.

El nivell de seguretat d’un algorisme és n quan el millor atac conegut contra l’algorisme
requereix 2n passos. El nivell de seguretat d’un algorisme també es coneix com a la mida
efectiva de la clau i, en conseqüència, és habitual veure’l expressat en bits.

La Taula 8.1 detalla el nivell de seguretat ofert per diferents algorismes criptogràfics en funció de la mida de
la clau utilitzada. Tant el nivell de seguretat com les mides de les claus estan expressades en bits. La mida de
la clau correspon a la mida del mòdul per als algorismes basats en el problema de la factorització d’enters; a
la mida de la clau pública per als algorismes basats en el logaritme discret; i a l’ordre del punt base per als
algorismes basats en corbes el·líptiques.

Així, per exemple, l’AES amb una mida de clau de 128 bits ofereix un nivell de seguretat de 128 bits (en
general, en els algorismes simètrics la mida de la clau coincideix amb el nivell de seguretat). Per aconseguir
aquest mateix nivell de seguretat fent servir RSA, caldrà utilitzar un mòdul de 3072 bits. En canvi, el mateix
nivell de seguretat requereix només d’una clau de 256 bits per a l’ECDSA.

Taula 8.1: Comparativa del nivell de seguretat proporcionat per diferents mides de clau (en bits)
depenent de l’algorisme criptogràfic.

Algorismes criptogràfics
Clau simètrica Factorització d’enters Logaritme discret Corbes el·líptiques

Nivell de seguretat AES, 3DES RSA DSA, DH, ElGamal ECDSA, ECDH
80 80 1024 1024 160

112 112 2048 2048 224
128 128 3072 3072 256
192 192 7680 7680 384
256 256 15360 15360 512

És interessant destacar no només la diferència en la mida de la clau, sinó també en el creixement d’aquesta
mida en funció del nivell de seguretat. El creixement de la mida de la clau és molt més ràpid per a algorismes
basats en la factorització d’enters i el logaritme discret que en algorismes basats en corbes el·líptiques,
de manera que les diferències en les mides de clau entre aquests grups d’algorismes s’incrementen amb
l’augment del nivell de seguretat.

També cal remarcar que el nivell de seguretat d’un algorisme criptogràfic es calcula en base a la complexitat
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del millor algorisme que es coneix en un moment donat per a trencar-lo. Per tant, els nivells de seguretat
detallats en aquesta taula reflecteixen el coneixement que es té actualment sobre possibles tècniques de
factorització i/o càlcul del logaritme discret. Amb els avenços en la investigació criptogràfica es poden
descobrir noves maneres d’atacar aquests problemes, que facin variar aquests nivells de seguretat.

El cost de bullir
aigua

La definició que acabem de proporcionar del nivell de seguretat d’un algorisme cripto-
gràfic és poc intuïtiva, en tant que és difícil valorar l’esforç necessari per trencar un
criptosistema d’un determinat nivell de seguretat.
Arjen K. Lenstra i altres van proposar fer servir com a mesura més informal de la
seguretat d’un algorisme la quantitat d’aigua que s’aconseguiria fer bullir amb l’energia
necessària per trencar l’algorisme. Així, l’energia necessària per a trencar una clau
RSA de 242 bits és l’equivalent a la necessària per a fer bullir l’aigua que hi cap en una
cullereta de cafè. Trencar l’RSA de 745 bits és l’equivalent a fer bullir l’aigua d’una
piscina, i per trencar l’RSA de 2380 bits caldria tanta energia com la necessària per fer
bullir tota l’aigua del planeta Terra!

Tot i això, l’ús de la criptografia de corbes el·líptiques té també alguns inconvenients en relació als algorismes
de clau pública basats en els problemes tradicionals. D’una banda, certs aspectes legals poden dificultar-ne
la seva adopció. Algunes empreses tenen patentats diferents aspectes de la criptografia de corbes el·líptiques,
cosa que pot dificultar-ne el seu desplegament. D’altra banda, el fet que siguin algorismes més recents fa
que els estàndards estiguin menys desenvolupats, i també genera dubtes sobre possibles vulnerabilitats no
conegudes. Així, per exemple, encara hi ha poca recerca en aspectes com ara els atacs de canal lateral.
Finalment, la complexitat de les matemàtiques rere de les corbes el·líptiques també en dificulta la seva
comprensió i accessibilitat, cosa que pot afectar a la seguretat de les implementacions.

8.3 Corbes el·líptiques

La criptografia de corbes el·líptiques proporciona algorismes de clau pública basats en l’estructura algebraica
de les corbes el·líptiques definides sobre cossos finits.

Definició 8.1 La corba el·líptica E/Zp (amb p > 3) és el conjunt de tots els parells (x,y) ∈ Zp tals
que:

y2 = x3 +ax+b mod p

juntament amb un punt imaginari a l’infinit O , amb a,b ∈ Zp i ∆ =−16(4a3 +27b2) ̸= 0 mod p.

L’expressió que defineix la corba el·líptica tal com l’acabem d’exposar es coneix com la forma curta de
Weierstrass.

El valor ∆ correspon al discriminant de la corba. Geomètricament, la condició que el discriminant sigui
diferent de zero assegura que la corba no té cap vèrtex ni es creua amb sí mateixa, és a dir, no té cap punt que
tingui dues o més rectes tangents. Això faria que la corba no fos adequada per al seu ús en els algorismes
criptogràfics que descriurem a continuació.

Exemple 8.1 Exemple de punts sobre una corba el·líptica

La corba el·líptica E/Z11 : y2 = x3−5x+5 té 17 elements:

[O,(0,4),(0,7),(1,1),(1,10),(2,5),(2,6),(4,4),(4,7),(6,2),(6,9),(7,4),(7,7),
(8,2),(8,9),(10,3),(10,8)]

Podem comprovar que aquests punts efectivament pertanyen a la corba verificant que compleixen l’equació
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que la defineix. Així, per exemple, per al punt (0,4), tenim que:

y2 = x3−5x+5 mod 11

42 = 03−0x+5 mod 11
16 = 5 mod 11

També podem verificar que la corba té discriminant diferent de zero:

−16(4a3 +27b2) mod p =−16(4(−5)3 +27(5)2) mod 11 = 5 ̸= 0 mod 11

Exercici 8.1 Calculeu tots els punts de la corba el·líptica E/Z5 : y2 = x3−4x+1.

En criptografia es fan servir principalment corbes el·líptiques sobre cossos finits, tal com les acabem de
definir. Ara bé, la representació geomètrica de les corbes sobre els reals ens permet obtenir una visualització
més intel·ligible d’aquestes. Així, en els propers paràgrafs presentarem les corbes el·líptiques sobre els reals,
per tal d’apropar-nos a la seva descripció i les seves propietats.

8.3.1 Corbes el·líptiques sobre els reals

Les figures següents mostren tres exemples de corbes el·líptiques definides sobre els nombres reals, és a dir,
corbes de la forma y2 = x3 +ax+b on (x,y) ∈ R:

Figura 8.1: Exemples de corbes el·líptiques sobre R.
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y2 = x3 5x + 4

Com podem observar, les corbes són simètriques respecte a l’eix de les abscisses. Això és així ja que y és el
resultat d’una arrel quadrada, de manera que per cada valor d’x avaluat, obtindrem dos valors per a y, que
correspondran al valor positiu i al negatiu de l’arrel (sempre que aquesta sigui diferent de 0).

D’altra banda, les corbes de la figura anterior no es creuen amb sí mateixes ni tenen cap vèrtex, ja que
el discriminant de totes elles és diferent de zero. En canvi, la corba de la Figura 8.2 té discriminant zero
(a =−3,b = 2 i, per tant, ∆ = 4(−3)3 +27(2)2 = 0) i es creua amb sí mateixa en el punt (1,0):

La criptografia de corbes el·líptiques treballa sobre un grup. Per tant, a més dels punts de la corba, que seran
els elements d’aquest grup, necessitem definir una operació de grup.

Grup Tal com s’ha presentat al capítol de Fonaments matemàtics, un grup és una estructura
algebraica en què l’operació definida compleix la propietat associativa i, a més, el
conjunt sobre el qual està definida l’operació conté l’element neutre i l’element invers
d’aquesta operació.
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Figura 8.2: Exemple de corba el·líptica amb discriminant zero.
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y2 = x3 3x + 2

Siguin P1 = (x1,y1) i P2 = (x2,y2) dos punts sobre una corba el·líptica, definirem una operació suma de la
manera següent.

Si els dos punts són diferents (és a dir, P1 ̸= P2), per calcular el punt resultant de la suma, S = P1 +P2,
traçarem la recta entre P1 i P2; trobarem el tercer punt d’intersecció S′ d’aquesta recta amb la corba el·líptica;
i buscarem el punt simètric d’S′ respecte a l’eix de les x, S. Aquest punt simètric S serà el resultat de la suma.

La Figura 8.3 mostra un exemple d’una suma de dos punts diferents, P1 i P2. La línia blava correspon a la
recta que passa pels dos punts. El tercer punt d’intersecció de la recta amb la corba el·líptica és el punt S′. La
línia taronja és una recta vertical que passa pel punt S′, i que ens permet calcular el punt simètric S respecte a
l’eix de les x. Aquest punt simètric S és el resultat de la suma P1 +P2.

Figura 8.3: Suma de dos punts diferents.
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S= P1 + P2

Si els dos punts són iguals (és a dir, P1 = P2), per calcular el punt suma, S = P1 +P1, caldrà fer una petita
modificació al procediment: la línia a traçar en el primer pas del procediment serà la recta tangent a la corba
el·líptica en el punt P1. Després, es procedeix anàlogament a l’operació de suma de punts diferents: es
troba el punt d’intersecció S′ de la recta tangent amb la corba el·líptica i, de nou, es busca el punt simètric S
respecte a l’eix de les x.

La Figura 8.4 mostra un exemple d’una suma d’un punt P1 amb ell mateix. La línia blava correspon a la
recta tangent a la corba el·líptica en el punt P1. El punt d’intersecció de la recta amb la corba és el punt S′.
De nou, la línia taronja és una recta vertical que passa pel punt S′ i que permet calcular el punt simètric S,
que és el resultat de la suma P1 +P1.

El mètode que acabem de descriure per a sumar punts d’una corba és coneix amb el nom de mètode de la
corda i la tangent.

Ja tenim doncs el conjunt d’elements del grup (els punts de la corba) i una operació de grup (la suma que
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Figura 8.4: Suma d’un punt amb ell mateix.
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acabem de definir). Per tal d’acabar de definir el grup, caldrà disposar d’un element neutre respecte a
l’operació suma, és a dir, un element tal que:

P1 +O = P1

Doncs bé, aquest element neutre és precisament el punt imaginari a l’infinit O que afegíem com a element
de la corba en la definició de l’inici del capítol. Podem imaginar aquest punt com a un punt situat a l’infinit
als finals de l’eix de les y. Aquest element és necessari, ja que no hi ha cap altre punt sobre la corba que
compleixi que sumat a un altre punt P1 obtinguem com a resultat el mateix P1.

Podem fer servir la mateixa estratègia que hem descrit anteriorment per sumar un punt P1 amb l’element O ,
i comprovar com efectivament el resultat és el mateix P1. Així, per calcular S = P1 +O , en primer lloc es
traça una recta entre el punt P1 i O . Aquesta recta serà la recta vertical que passi pel punt P1 (en l’exemple
de la Figura 8.5, correspon a la línia blava). A continuació, es troba el segon punt d’intersecció S′ d’aquesta
recta amb la corba el·líptica. Finalment, es busca el punt simètric d’S′ respecte a l’eix de les x. Aquest punt
simètric S serà el resultat de la suma, i serà precisament el mateix punt P1.

Figura 8.5: Suma d’un punt amb l’element neutre O .
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En un grup cal que els elements tinguin inversos. Una vegada tenim el punt neutre definit, podem definir
l’invers additiu de qualsevol punt P1 de la corba com l’element −P1 tal que:

P1 +(−P1) = O
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Donat un punt P1 = (x1,y1), el seu invers additiu −P1 és simplement (x1,−y1). Efectivament, si sumem P1 i
−P1 fent servir l’operació suma que hem definit anteriorment, obtenim com a resultat el punt a l’infinit O .

Figura 8.6: L’invers d’un punt.
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Això fa que calcular l’invers d’un punt a la corba sigui molt eficient, ja que per a un punt P1 = (x1,y1), el seu
invers additiu −P1 és simplement (x1,−y1).

Semàntica En aquest capítol fem servir els termes suma, neutre i invers additiu (o simplement
invers) per a referir-nos a l’operació que definim sobre els punts de la corba el·líptica,
l’element tal que sumat a un punt dona el mateix punt, i el punt tal que sumat a un altre
punt dona l’element neutre. Aquests termes són, però, una mica arbitraris. Podríem
haver utilitzat algun altre nom per a descriure l’operació (per exemple, multiplicació) i
altres termes com ara element identitat i element negatiu per referir-nos a l’element
neutre i a l’invers d’un punt.

Per últim, per a tenir estructura de grup l’operació suma ha de ser associativa, és a dir, donats tres punts P1,
P2 i P3 ∈ E, aquests han de complir que:

(P1 +P2)+P3 = P1 +(P2 +P3)

La demostració d’aquesta propietat queda fora de l’abast d’aquest document, però en veurem un exemple.

Exemple 8.2 Exemple de propietat associativa de la suma

Donats tres punts P1, P2 i P3 ∈ E/R : y2 = x3− 5x+ 5, calcularem el resultat de la suma P1 +P2 +P3
executant les sumes entre dos punts en ordres diferents, i comprovarem que el resultat és el mateix.

4 2 0 2 4
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2
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P1

P2

P3

y2 = x3 5x+5

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


8.3 Corbes el·líptiques 235

Les dues imatges següents mostren gràficament la suma dels tres punts. A la imatge de l’esquerra s’efectua
la suma (P1 +P2)+P3; a la imatge de la dreta es calcula P1 +(P2 +P3).

4 2 0 2 4

4

2

0

2

4

P1

P2

P3

y2 = x3 5x+5

P1 + P2

(P1 + P2) + P3

4 2 0 2 4

4

2

0

2

4

P1

P2

y2 = x3 5x+5

P2 + P3P3

P1 + (P2 + P3)

Per a calcular (P1 +P2)+P3 (imatge de l’esquerra) se suma primer P1 +P2 (la línia blava mostra la
recta entre els dos punts i la línia taronja el punt simètric al tercer punt d’intersecció amb la corba). A
continuació se suma el resultat amb P3: la línia verda mostra la recta entre els dos punts a sumar i la línia
violeta el punt simètric al tercer punt d’intersecció amb la corba, que és el resultat de la suma dels tres
punts.

Anàlogament, per calcular P1 +(P2 +P3) (imatge de la dreta) se suma P2 +P3 (línies blava i taronja) i al
resultat se li suma P1 (línies verda i violeta).

En efecte, el resultat d’ambdues operacions és el mateix punt.

Així doncs, els punts sobre una corba el·líptica (juntament amb el punt a l’infinit) i l’operació suma que
acabem de definir (amb el punt a l’infinit com a element neutre que permet definir els inversos dels elements)
formen un grup. Ara bé, per tal que aquest grup pugui ser usat en criptografia, caldrà deixar enrere la
representació sobre els reals i tornar als cossos finits.

8.3.2 Corbes el·líptiques sobre cossos finits

Deixant enrere la representació de les corbes el·líptiques sobre els reals, que ajuda a comprendre’n les seves
característiques però que no és gaire útil per a la criptografia, reprenem ara les corbes el·líptiques sobre
cossos finits, tal com s’han definit a l’inici del capítol.

Es poden representar gràficament els punts que conformen una corba el·líptica sobre un cos finit de manera
similar a com es fa sobre els reals. En aquest cas, però, es deixa de visualitzar la forma de la corba, i
simplement es podrà observar el conjunt de punts i algunes propietats de la seva estructura. En particular, se
segueix mantenint la simetria respecte l’eix de les x.

Exemple 8.3 Exemple de representació gràfica d’una corba el·líptica sobre un cos finit

A continuació es representa gràficament la corba el·líptica de l’Exemple 8.1, E/Z11 : y2 = x3−5x+5, que
com s’ha vist té 17 elements. Val a dir que a la figura s’observen només 16 punts, ja que el 17è element
correspon al punt a l’infinit O .
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y2 = x3 5x+ 5 sobre 11

La llei de grup

Podem mantenir la definició de l’operació suma que s’ha presentat a la secció anterior, treballant ara sobre
el cos finit, com a operació de grup. Gràficament, es pot seguir aplicant el mateix procediment per tal de
calcular el resultat d’una suma de dos punts, considerant ara però que les rectes que es tracen són mòdul el
primer.

Exemple 8.4 Exemple de suma de punts d’una corba el·líptica sobre un cos finit

Seguint amb la corba dels exemples anteriors, E/Z11 : y2 = x3− 5x+ 5, calculem la suma entre els
punts P1 = (1,1) i P2 = (4,7) gràficament. Per fer-ho, es traça la recta que els uneix, prolongant-la
si cal considerant el mòdul, fins a trobar el tercer punt d’intersecció de la recta amb els punts de la
corba, S′ = (10,8). Finalment, es calcula el punt simètric d’S′, S, que correspon al resultat de la suma
(S = P1 +P2 = (10,3)).
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y2 = x3 5x+ 5 sobre 11

S= P1 + P2

A la pràctica, però, quan s’opera amb punts sobre corbes el·líptiques, es fan servir expressions analítiques
per tal de calcular els resultats de les operacions. A continuació es detallen les expressions que permeten
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calcular la suma de dos punts sobre una corba el·líptica mòdul un primer.

.

Donats dos punts, P1 = (x1,y1) i P2 = (x2,y2), que pertanyen a una corba el·líptica E/Zp,
el punt P3 resultant de la suma, P3 = P1 +P2 = (x3,y3), es pot calcular com:

Si P1 ̸= P2:

m =
y2− y1

x2− x1
mod p

Si P1 = P2:

m =
3x2

1 +a
2y1

mod p

i en ambdós casos:
x3 = m2− x1− x2 mod p

y3 = m(x1− x3)− y1 mod p

Convé esmentar que el valor m que es calcula en el primer pas de la suma correspon al pendent de la recta
entre els dos punts (quan els punts a sumar són diferents entre ells) o bé de la recta tangent a la corba que
passa pel punt (quan els punts a sumar són iguals).

D’altra banda, pel que fa a la terminologia, a vegades es distingeix entre la suma de punts i el doblat d’un
punt per referir-se, respectivament, a la suma de punts diferents (és a dir, el cas P1 ̸= P2) i de punts iguals (és
a dir, el cas P1 = P2).

Exemple 8.5 Suma de punts

Donats els punts P1 = (x1,y1) = (1,10) i P2 = (x2,y2) = (4,7) de la corba E/Z11 : y2 = x3− 5x+ 5,
podem calcular el punt P3 = P1 +P2 de la manera següent.

Com que P1 ̸= P2, aleshores el pendent m és:

m =
y2− y1

x2− x1
mod p =

7−10
4−1

mod 11 =
8
3

mod 11 = 10

Després, es calculen les coordenades del punt:

x3 = m2− x1− x2 mod p = 102−1−4 mod 11 = 7

y3 = m(x1− x3)− y1 mod p = 10(1−7)−10 mod 11 = 7

Finalment, es pot comprovar com P3 = (x3,y3) = (7,7) es troba efectivament a la corba E:

y2 = x3−5x+5 mod 11

72 = 73−5 ·7+5 mod 11
49 = 313 mod 11

5 = 5 mod 11
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Exercici 8.2 Donats els punts P1 = (x1,y1) = (1,1) i P2 = (x2,y2) = (4,7) de la corba E/Z11 : y2 =
x3−5x+5, calculeu analíticament el punt resultant de la suma P3 = P1 +P2, i comproveu que el resultat
coincideix amb el que hem calculat gràficament a l’Exemple 8.4.

Doncs bé, els punts de la corba sobre un cos finit, amb l’operació suma que acabem de definir, poden formar
un grup cíclic, sobre el qual es poden construir algorismes criptogràfics basats en el problema del logaritme
discret.

Grup cíclic Tal com s’ha presentat al capítol de Fonaments matemàtics, un grup cíclic és un grup
que conté un element g (que s’anomena generador) tal que les seves potències generen
tots els elements del grup, llevat del zero.

Exemple 8.6 Exemple de grup cíclic sobre una corba el·líptica

Com hem vist a l’exemple anterior, la corba el·líptica E/Z11 : y2 = x3−5x+5 té 17 elements:

[O,(0,4),(0,7),(1,1),(1,10),(2,5),(2,6),(4,4),(4,7),(6,2),(6,9),(7,4),(7,7),
(8,2),(8,9),(10,3),(10,8)]

Aquests punts formen un grup cíclic d’ordre 17. Com ja hem vist al capítol de Fonaments Matemàtics,
com que 17 és primer, tots els elements són primitius i, per tant, podem generar tots els punts de la corba
sumant un punt amb sí mateix iterativament. Per exemple, per a P = (0,4):

P = (0,4) 8P = (6,9) 15P = (4,7)
2P = P+P = (4,4) 9P = (6,2) 16P = (0,7)
3P = P+P+P = (7,7) 10P = (10,3) 17P = O

4P = (8,2) 11P = (2,5) 18P = (0,4)
5P = (1,10) 12P = (1,1) 19P = · · ·
6P = (2,6) 13P = (8,9)
7P = (10,8) 14P = (7,4)

Exercici 8.3 Genereu tots els punts de la corba el·líptica E/Z11 : y2 = x3−5x+5 fent servir el punt
P = (8,9) com a generador.

Exercici 8.4 Calculeu quin és l’invers del punt P1 = (4,7) de la corba E/Z11 : y2 = x3−5x+5.

Exercici 8.5 La corba el·líptica E/Z11 : y2 = x3−3x+6 té 9 elements:

[O,(1,2),(1,9),(4,5),(4,6),(7,3),(7,8),(9,2),(9,9)]

Podem generar tots els punts de la corba a partir del punt (4,5)?
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Multiplicació escalar

Cal destacar que a l’exemple anterior implícitament acabem de definir l’operació de multiplicació escalar
en una corba el·líptica com a l’operació de suma reiterada d’un element amb ell mateix (escrivíem 2P per a
representar P+P; 3P per a representar P+P+P, etc.).

Per tal de calcular de manera eficient operacions de multiplicació escalar, es pot utilitzar una generalització
de l’algorisme de multiplicar i elevar. Com que s’ha fet servir notació additiva per a definir l’operació de
grup en corbes el·líptiques però, en canvi, la versió tradicional de l’algorisme de multiplicar i elevar fa
servir notació multiplicativa, caldrà adaptar l’algorisme. En concret, caldrà substituir les operacions de
multiplicació per l’operació suma de punts que s’ha definit. A més, com que en corbes el·líptiques sovint
es fa servir notació additiva (tal com estem fent en aquest capítol), l’algorisme per a corbes el·líptiques es
coneix habitualment amb el nom d’algorisme de doblar i sumar.

Així, per tal de calcular la multiplicació escalar entre un punt (point) d’una corba (ec) i un enter (scalar),
podem fer servir l’algorisme següent:

def doub le_and_add ( p o i n t , s c a l a r , ec ) :
" " "
Donat un pun t ( p o i n t ) que p e r t a n y a una c o r b a ( ec ) i un e n t e r

( s c a l a r ) , r e t o r n a l a m u l t i p l i c a c i ó e s c a l a r d e l pun t p e r
l ’ e n t e r .

" " "

# Obtenim l a r e p r e s e n t a c i ó b i n à r i a de l ’ e n t e r
b i n _ s c a l a r = bin ( s c a l a r ) [ 2 : ]

# I n i c i a l i t z e m e l r e s u l t a t amb l ’ e l e m e n t n e u t r e
r e s u l t = ec . n e u t r e

# Recorrem l a r e p r e s e n t a c i ó b i n à r i a des d e l d í g i t
# menys s i g n i f i c a t i u a l mé s s i g n i f i c a t i u
f o r i , e in enumerate ( b i n _ s c a l a r [ : : − 1 ] ) :

i f e == " 1 " :
r e s u l t = ( r e s u l t + p o i n t ) # sumar

i f i != l e n ( b i n _ s c a l a r ) − 1 : # s i no é s l ’ ú l t i m a i t e r a c i ó
p o i n t = ( p o i n t + p o i n t ) # d o b l a r

re turn r e s u l t

Per a un escalar s, l’algorisme requereix log2 s iteracions del bucle, cadascuna de les quals pot comportar una
o dues sumes de punts, en funció del valor del bit de l’enter que s’està processant a cada iteració. Per tant, en
el pitjor cas l’algorisme requereix de 2log2 s sumes.

A més de permetre calcular la multiplicació de manera més eficient que sumant repetidament el punt amb sí
mateix, l’algorisme de doblar i sumar té un altre avantatge. Quan el punt P a multiplicar és un punt fixat
(per exemple, si es fa servir una corba estandarditzada com les que veurem més endavant), es pot accelerar
el temps de computació precalculant i emmagatzemant alguns valors que es reutilitzen sovint. En concret,
s’emmagatzemen els resultats d’anar doblant el punt P (és a dir, 2P,4P,8P, . . .), de manera que el pitjor cas
només requereixi de log2 s sumes. Aquesta reducció en el temps d’execució ve, però, a canvi d’un increment
en l’espai necessari per córrer l’algorisme, doncs cal desar els resultats precalculats.

Exemple 8.7 Exemple de multiplicació escalar

Procedim a calcular 10P per a P = (0,4) ∈ E/Z11 : y2 = x3−5x+5 fent servir l’algorisme de doblar i
sumar.

La representació binària de l’enter 10 és 1010. Per tant, es faran quatre iteracions del bucle.
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En primer lloc s’inicialitza result a O . A continuació s’executen les iteracions:

Iteració e Còmput
1 e = 0 point = point + point = (0,4)+(0,4) = (4,4)
2 e = 1 result = result + point = O +(4,4) = (4,4)

point = point + point = (4,4)+(4,4) = (8,2)
3 e = 0 point = point + point = (8,2)+(8,2) = (6,9)
4 e = 1 result = result + point = (4,4)+(6,9) = (10,3)

Per tant, 10P=(10,3). Cal remarcar, d’una banda, que el càlcul ha requerit únicament de quatre operacions
de suma entre punts (en comptes de les nou que caldrien si haguéssim anat sumant repetidament P amb sí
mateix). D’altra banda, és interessant notar com s’ha arribat al resultat: la variable point conté, a cada
iteració, el resultat de doblar P (els valors 2P = (4,4), 4P = (8,2) i 8P = (6,9)); i la variable result
acumula els valors que permeten calcular el resultat i que vénen indicats per la representació binària de
l’escalar (en aquest cas, 10P = 8P+2P).

Exercici 8.6 Calculeu 12P per a P = (7,2) ∈ E/Z23 : y2 = x3 +3x+8 fent servir l’algorisme de doblar
i sumar.

El nombre de punts d’una corba el·líptica

Comptar el nombre de punts d’una corba el·líptica sobre un cos finit #E/Zp no és senzill. El teorema de
Hasse, provat l’any 1933, proporciona uns llindars que permeten acotar aquest valor.

Teorema 8.1 Donada una corba el·líptica E/Zp el nombre de punts de la corba #E compleix que:

|#E− (p+1)| ≤ 2
√

p

Exercici 8.7 Proporcioneu una estimació del nombre de punts de la corba el·líptica E/Z11 : y2 =
x3−3x+6 fent servir el teorema de Hasse.

Però el teorema de Hasse no ens permet calcular el nombre exacte de punts i, com hem vist, aquest és
important per caracteritzar el grup que es genera. El mètode més simple per trobar el nombre exacte de punts
d’una corba consisteix a calcular per cadascun dels possibles valors d’x ∈ Zp, el nombre de solucions que
té l’equació de la corba (tal com es proposa a la solució de l’Exercici 8.1). Ara bé, aquest mètode no és
computacionalment viable per a les corbes que són útils en criptografia.

Durant anys no es coneixia cap algorisme eficient per al càlcul exacte del nombre de punts d’una corba
el·líptica (els algorismes existents eren exponencials). Això va canviar l’any 1985 amb la publicació de
l’algorisme de Schoof, el primer algorisme amb temps d’execució polinomial que permetia comptar els punts
d’una corba el·líptica. Aquesta versió de l’algorisme seguia sent ineficient per a corbes amb l’ordre necessari
per a aplicacions criptogràfiques, però una versió millorada d’aquest, l’algorisme de Schoof-Elkies-Atkin
(SEA), sí que es pot fer servir a la pràctica per a aquestes corbes. L’algorisme de SEA és actualment el millor
algorisme genèric conegut per a comptar punts de corbes el·líptiques.

Estructura dels grups generats per corbes el·líptiques

Sabem doncs que els punts d’una corba el·líptica sobre un cos finit amb l’operació suma poden formar un
grup cíclic. Ara bé, ens podem preguntar si això és sempre així. La resposta és negativa. Si l’ordre de la
corba, #E/Zp, es pot factoritzar en el producte de primers diferents, aleshores el grup E/Zp és cíclic. En cas
contrari, el grup és isomorf al producte directe de dos grups cíclics.
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Grups isomorfs
i producte
directe

Informalment, diem que dos grups són isomorfs si tenen la mateixa estructura, és a dir,
si les diferències entre els dos grups són només cosmètiques (per exemple, en el nom
dels elements). D’altra banda, el producte directe de dos grups és un grup que té com a
elements els membres del producte Cartesià entre els dos grups. L’operació de grup
opera component a component, utilitzant l’operació definida en cada grup d’origen.
Per a una introducció més formal i completa a aquests termes, us recomanem la lectura
de Further pure mathematics: Group theory de The Open University (2016).

El cas particular en què el nombre d’elements és primer és el que hem anat veient en la majoria d’exemples
d’aquest capítol. En aquest cas, el grup E/Zp és cíclic i, a més, tots els elements (excepte el punt a l’infinit
O) en són generadors. A continuació estudiarem l’estructura dels grups formats per corbes el·líptiques amb
nombre d’elements no primer i, per fer-ho, veurem algunes definicions i teoremes que descriuen l’estructura
de grups finits (no necessàriament definits per corbes el·líptiques).

Definició 8.2 Donat un grup (G, ·), un subconjunt d’elements H ⊆ G és un subgrup de G si (H, ·) és
un grup. Per denotar que H és un subgrup de G, escrivim H ≤ G.

Aquesta definició segueix el que entendríem intuïtivament com a un subgrup, és a dir, un subgrup no és res
més que un subconjunt d’elements d’un grup que manté les propietats de grup amb la mateixa operació
(associativitat, element neutre i element invers).

Definició 8.3 Donat un grup (G, ·) i un element e ∈ G, el subgrup H format per les potències de
l’element e és un subgrup cíclic de G.

Això es deriva directament de les definicions de subgrup i grup cíclic. L’element e les potències del qual
generen el subgrup cíclic és doncs el generador del subgrup.

Teorema 8.2 L’ordre d’un element e ∈ G és igual a l’ordre del subgrup cíclic que genera.

Donat un grup qualsevol, ens podem preguntar com són els subgrups que conté. El teorema de Lagrange ens
descriu l’ordre d’aquests subgrups.

Teorema 8.3 El teorema de Lagrange estableix que per tot grup finit G, l’ordre de cada subgrup de G és
un divisor de l’ordre de G.

Fixeu-vos que el teorema de Lagrange ens diu que l’ordre dels subgrups de G (i, per tant, l’ordre dels
elements de G) és un divisor de l’ordre de G, però no ens descriu si per a cada divisor de l’ordre de G hi ha
un element que té aquell ordre.

Si el grup G és cíclic, podem determinar exactament quants elements amb cada ordre possible hi ha.

Teorema 8.4 Sigui G un grup cíclic d’ordre n, si d|n aleshores hi ha φ(d) elements g ∈ G d’ordre d.

Exemple 8.8 Exemple de grup cíclic amb ordre no primer amb enters

Sigui G = (Z6,+) el grup format pels enters mòdul 6 amb l’operació suma modular. Veiem alguns
exemples de les propietats de (Z6,+) com a grup:

• L’operació suma és associativa, per exemple, 2+(3−5) mod 6 = (2+3)−5 mod 6.
• Té element neutre respecte a la suma modular, el 0, ja que qualsevol element sumat a 0 dona el

mateix element.
• Per a qualsevol element e del grup, l’element −e mod 6 és l’invers additiu, ja que e− e = 0
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mod 6.

El grup (Z6,+) és un grup cíclic, ja que es pot generar a partir de les potències dels elements 1 i 5. Noteu
que en aquest cas, com que estem fent servir notació additiva, les potències són la suma repetida (i no pas
la multiplicació).

El grup (Z6,+) té dos subgrups (més enllà del subgrup amb l’element neutre i d’ell mateix). L’element
2 genera un subgrup cíclic d’ordre 3, format pels elements {2,4,0}. L’element 4 també genera aquest
mateix subgrup. D’altra banda, l’element 3 genera el subgrup cíclic d’ordre 2: {3,0}. Noteu com tots els
subgrups de (Z6,+) contenen l’element 0.
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Subgrup d’ordre 6
Generadors: 1, 5
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Generadors: 2, 4

Subgrup d’ordre 2
Generadors: 3

Tal com ens diu el teorema de Lagrange, l’ordre dels subgrups és un divisor de l’ordre de G (2|6 i 3|6).

A més, com que G és cíclic, sabem que hi ha φ(2) = 1 element d’ordre 2 (l’element 3) i φ(3) = 2 elements
d’ordre 3 (els elements 2 i 4).

Ordre Núm. d’elements Elements Subgrup
1 φ(1) = 1 0 {0}
2 φ(2) = 1 3 {0,3}
3 φ(3) = 2 2, 4 {0,2,4}
6 φ(6) = 2 1, 5 {0,1,2,3,4,5}

Exemple 8.9 Exemple de grup cíclic amb ordre no primer amb corba el·líptica

La corba el·líptica E/Z11 : y2 = x3 +10x+4 té 15 elements:

[O,(0,2),(0,9),(1,2),(1,9),(4,3),(4,8),(5,5),(5,6),(6,4),(6,7),(9,3),(9,8),(10,2),(10,9)]

El grup format pels punts de la corba el·líptica amb l’operació suma tal com l’hem definida és un grup
cíclic ja que 15 es pot factoritzar en el producte de primers diferents (3 i 5). L’element (0,2) n’és un dels
generadors.

Seguint el teorema de Lagrange, l’ordre dels subgrups són els divisors de 15, és a dir, 3 i 5. Com que G és
cíclic, sabem que hi ha φ(3) = 2 elements d’ordre 3 i φ(5) = 4 elements d’ordre 5.
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Ordre Núm. d’elem. Elements Subgrup
1 φ(1) = 1 O {O}
3 φ(3) = 2 (1, 2), (1, 9) {O,(1,2),(1,9)}
5 φ(5) = 4 (5, 5), (5, 6), (10, 2), (10, 9) {O,(5,5),(5,6),(10,2),(10,9)}

15 φ(15) = 8 (0, 2), (0, 9), (4, 3), (4, 8), (6, 4), (6,
7), (9, 3), (9, 8)

E/Z11 : y2 = x3 +10x+4

És molt habitual que les corbes que es fan servir en criptografia tinguin ordre primer (i, per tant, tots els
elements generin tot el grup cíclic). En algunes construccions, però, es triaran corbes que no tinguin aquesta
propietat. Donat un punt base G d’ordre n, es defineix el cofactor h d’una corba el·líptica, que mesura la
proporció de punts útils de la corba:

Definició 8.4 El cofactor h d’una corba el·líptica E/Zp d’ordre #E per a un punt base G ∈ E d’ordre
n és:

h =
#E
n

A les corbes amb ordre #E primer, tenim que #E = n i, per tant, el cofactor és sempre 1.

Exemple 8.10 Exemple de cofactor diferent d’1

Recuperem la corba el·líptica de l’exemple 8.9 (els subgrups de la corba es troben detallats al propi
exemple). Com hem vist, la corba E/Z11 : y2 = x3 +10x+4 té ordre 15 i l’element (1,2) té ordre 3.

Per tant, el cofactor h de la corba E per al punt base G = (1,2) ∈ E és:

h =
#E
n

=
15
3

= 5

8.4 Corbes el·líptiques per a usos criptogràfics

Com s’ha comentat anteriorment, en criptografia es fan servir corbes el·líptiques sobre cossos finits, i no pas
corbes definides sobre els reals. Ara bé, són totes les corbes el·líptiques sobre cossos finits adequades per
a usos criptogràfics? La resposta és, de nou, negativa. No totes les corbes el·líptiques permeten construir
criptosistemes segurs: algunes d’elles són vulnerables a atacs coneguts. Anomenem corbes criptogràficament
fortes a les corbes que són adequades per a usos criptogràfics.

Abans de descriure les propietats de les corbes criptogràficament fortes, detallarem els paràmetres que
defineixen els criptosistemes basats en corbes el·líptiques:

Definició 8.5 Els paràmetres de domini d’un criptosistema basat en corbes el·líptiques són els paràme-
tres que determinen la corba el·líptica E i el punt base G:

• Un primer p que especifica el cos finit sobre el qual es defineix la corba.
• Els dos coeficients a,b ∈ Zp que defineixen la corba E/Zp : y2 = x3 +ax+b.
• Un punt base G ∈ E/Zp que genera el subgrup cíclic sobre el que es construeix el problema del

logaritme discret.
• L’ordre n primer del punt base G.
• El cofactor h = #E/n.
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Habitualment els paràmetres de domini s’especifiquen com una tupla (p,a,b,G,n,h).

Considerant els atacs que es coneixen actualment, es requereix que els paràmetres de domini de les corbes
el·líptiques per a usos criptogràfics compleixin les condicions següents:

1. És necessari que el nombre de punts de la corba #E sigui divisible per un primer n suficientment gran
(en general, com a mínim major que 2160). Això s’aconsegueix habitualment seleccionant corbes amb
#E primer o bé amb un cofactor petit (normalment, el cofactor h és 1,2,3 o 4).

2. Cal assegurar que l’ordre de la corba no coincideixi amb el del cos finit sobre el qual es defineix, és a
dir, per a una corba E/Zp, cal assegurar que #E ̸= p.

3. Cal assegurar que n no divideix pk−1 per a tots els enters k entre 1 i 20.

Ara bé, a partir d’aquestes condicions, com es poden generar corbes el·líptiques per a usos criptogràfics? Una
de les alternatives que es fan servir és seleccionar corbes aleatòriament, descartant aquelles corbes que no
compleixen els tres requisits especificats al paràgraf anterior. El procediment consisteix doncs en repetir el
procés de seleccionar aleatòriament una corba i verificar que aquesta compleixi els requisits fins a trobar-ne
una que els compleixi. La selecció aleatòria de la corba proporciona un cert nivell de seguretat, ja que la
probabilitat de generar una corba que pertanyi a una classe especial que sigui vulnerable a un atac específic
(potencialment encara per descobrir) és molt baixa.

Tanmateix, com que algunes de les condicions que cal que les corbes compleixin per a ser segures per a usos
criptogràfics no són trivials de verificar (sobretot per part de desenvolupadors sense coneixements específics
en aquest tipus de criptografia) i, a més, el procediment de generar les corbes és computacionalment costós
(implica comptar el nombre de punts de la corba, que com ja hem vist, no és trivial), sovint es fan servir
corbes estandarditzades que han estat validades per experts i per a les quals el nombre de punts és conegut.
Existeixen diferents organismes que han estandarditzat corbes el·líptiques per a usos criptogràfics, com ara
el NIST, el consorci alemany Brainpool o Certicom Research. Aquestes corbes han estat suposadament
generades per a evitar els atacs coneguts i són suposadament segures per a usos criptogràfics. Però fer ús d’una
corba dissenyada per un tercer implica confiar que aquest tercer no l’ha dissenyada malintencionadament i,
com es descriu a l’inici d’aquest capítol (Secció 8.1), això històricament no sempre ha estat així. Per aquest
motiu, alguns estàndards inclouen corbes seleccionades pseudoaleatòriament utilitzant un algorisme que
permet a tercers verificar que realment s’ha seguit aquest algorisme per a generar-les. D’aquesta manera,
hom pot verificar que la corba ha estat generada pseudoaleatòriament (cosa que en dificulta la possible
inclusió de portes del darrere) i alhora confiar que la corba compleix els requisits de seguretat mínims (doncs
ha passat per un escrutini públic extens abans de ser incorporada a l’estàndard).

L’ús de corbes estandarditzades pot simplificar els algorismes de generació de claus (que veurem més
endavant en aquest mateix capítol) i també permet en certes ocasions precalcular valors necessaris per a la
creació de signatures digitals. Així, es poden aprofitar moments en què el processador no està ocupat per
precalcular aquests valors (basats en els paràmetres del domini especificats pels estàndards) i fer-los servir
quan es requereixi generar una signatura, reduint així el temps necessari per calcular-la.

8.4.1 Selecció verificablement pseudoaleatòria de corbes

Alguns estàndards recomanen l’ús de corbes el·líptiques que s’han generat pseudoaleatòriament, seguint
un procediment que permet a terceres parts comprovar que efectivament s’han generat seguint aquest
procediment. En aquesta secció presentarem el procediment de generació de corbes pseudoaleatòries
verificable que es descriu a l’estàndard l’ANSI X9.62 i a l’estàndard NIST.FIPS.186-4.

El procediment consta de dos algorismes: l’algorisme de selecció, que selecciona una corba pseudoaleatòria,
i l’algorisme de verificació, que permet a un tercer verificar que la corba s’ha triat amb l’algorisme de
selecció.

.
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L’algorisme de selecció verificablement aleatòria de corbes el·líptiques rep com a entrada
un primer p que definirà el cos finit i una funció hash H de mida l bits. A partir d’aquests
valors, l’algorisme retorna una corba el·líptica E/Zp : y2 = x3 +ax+b i una llavor S que
s’utilitza en el procés de verificació.
L’algorisme de selecció verificablement aleatòria de corbes el·líptiques segueix els passos
següents:

1. Es calcula t = ⌈log2 p⌉, s = ⌊ t−1
l ⌋ i v = t− sl.

2. Es genera una cadena binària aleatòria S de g bits, amb g≥ l.
3. Es calcula c0 = H(S)[l−v...l], és a dir, c0 correspon als v últims bits del hash de la

llavor S.
4. Es calcula W0 = 0 || c0[1...v], és a dir, W0 és el resultat de fixar el primer bit de c0 a 0.
5. Per i des de 1 fins a s:

• Es calcula si = (S+ i) mod 2g.
• Es calcula Wi = H(si). A l’hora de calcular el hash, el valor si es representa

com una cadena binària de g bits.
6. Es calcula r =W0 ||W1 || . . . ||Ws.
7. Si r = 0 o bé 4r+27 = 0 mod p, es torna al pas 2.
8. Es trien valors a i b ∈ Zp arbitraris, de manera que com a mínim un d’ells sigui

diferent de 0 i tals que r ·b2 = a3 mod p.
9. L’algorisme retorna els coeficients a i b seleccionats i la llavor S generada al pas 2.

Notació La notació X[a...b] indica els bits des de la posició a fins a la posició b del valor X . El
símbol || expressa la concatenació.
Així, per exemple, per al valor X = 101100 tenim que X[0...2] = 10, X[3...6] = 100 i
0 || X[1...6] = 001100.

La sortida de l’algorisme són els coeficients de la corba E/Zp seleccionada (amb el valor p especificat a
l’entrada) i la cadena binària S que s’ha fet servir com a llavor del procés pseudoaleatori. Aquesta llavor S es
farà servir posteriorment en el procés de verificació, i permet assegurar que els coeficients de la corba no
s’han dissenyat manualment.

Els paràmetres que defineixen la corba (els coeficients a i b) queden gairebé determinats pel valor r. En
concret, per a un valor d’r fixat, hi ha essencialment dos possibles valors a triar per al parell a,b. Com que
r es deriva de l’aplicació d’una funció hash, no és computacionalment factible per a un atacant trobar una
llavor S que generi uns paràmetres a,b seleccionats manualment per l’atacant.

L’elecció
d’a i b

El lector interessat a entendre perquè r determina els valors a i b pot consultar la
Guide to Elliptic Curve Cryptography de Darrel Hankerson, Alfred Menezes i Scott
Vanstone.

És interessant notar que les condicions validades al pas 7 (r ̸= 0 i r ̸=− 27
4 mod p) permeten assegurar que

el discriminant de la corba és diferent de zero, ja que r = a3

b2 mod p per construcció (pas 8).

L’algorisme que acabem de descriure selecciona una corba pseudoaleatòria de manera que després es pugui
verificar que s’ha seleccionat així. Ara bé, l’algorisme de selecció no té en compte les condicions necessàries
per a que la corba sigui segura per a usos criptogràfics. Per tal de generar uns paràmetres de domini segurs,
es procedeix a executar l’algorisme anterior i, a continuació, es comprova que la corba generada compleixi
les tres condicions que la fan criptogràficament forta (especificades a la secció anterior). Si no les compleix,
es torna a executar l’algorisme tantes vegades com calgui, fins a aconseguir seleccionar uns paràmetres
adequats.

A més a més de la corba el·líptica E, la generació de paràmetres de domini per a criptografia de corbes
el·líptiques requereix d’un punt base G. Per tal de calcular aquest punt, es tria un punt G′ ∈ E arbitrari i es
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calcula G = hG′, on h = #E/n (recordeu que n és el primer gran que divideix #E). L’única condició que cal
que G satisfaci és que sigui diferent de O (si no ho és, simplement es torna a repetir el procediment fins a
trobar un G ̸= O). L’ordre del punt G és n.

.

Donada una corba E (especificada pels paràmetres a, b i p) i la llavor S generades per
l’algorisme de generació de corbes verificablement aleatòries, juntament amb la funció
hash H utilitzada, l’algorisme de verificació de la selecció aleatòria permet comprovar
que una corba ha estat creada seguint l’algorisme anteriorment.
L’algorisme consta dels passos següents:

1. S’executen els passos 1 i de 3 a 6 de l’algorisme de selecció. El pas 2 no és necessari,
ja que el valor S que s’utilitza és el que es rep a l’entrada.

2. Es comprova que r ·b2 = a3 mod p. Si la comprovació és satisfactòria, l’algorisme
dona per vàlida la corba. En cas contrari, la verificació falla.

Noteu com l’ús de l’algorisme de selecció verificablement aleatòria en la creació de corbes dificulta la
creació de corbes especialment vulnerables, ja que els paràmetres d’aquestes es deriven d’una funció hash
i, per tant, no es poden construir deliberadament vulnerables. Ara bé, ningú no impedeix a un possible
generador de corbes malintencionat d’executar l’algorisme repetidament fins a trobar una corba que compleixi
alguns requisits que li siguin d’interès. És per això que l’ús d’aquest algorisme en la creació de corbes
estandarditzades no està totalment lliure de sospita.

8.4.2 Corbes estandarditzades

Les corbes generades i publicades per organismes d’estandardització es coneixen com a corbes estàndard o
bé com a corbes amb nom.

La Taula 8.2 anomena les corbes amb nom més conegudes així com l’estàndard que les defineix:

Taula 8.2: Estàndards que inclouen la definició de corbes el·líptiques.
Organisme Estàndard Corbes sobre Zp

NIST FIPS PUB 186-4: Digital Signa-
ture Standard (DSS)

P-192, P-224, P-256, P-384, P-521

Certicom
Research

SEC 2: Recommended Elliptic
Curve Domain Parameters

secp192k1, secp192r1, secp224k1,
secp224r1, secp256k1, secp256r1,
secp384r1, secp521r1

Brainpool ECC Brainpool Standard Curves
and Curve Generation

brainpoolP160r1, brainpoolP192r1,
brainpoolP224r1, brainpoolP256r1,
brainpoolP320r1, brainpoolP384r1,
brainpoolP512r1

El NIST, en el seu estàndard per a signatures digitals (FIPS PUB 186-4: Digital Signature Standard (DSS))
publicat al juliol de 2013 defineix cinc corbes el·líptiques sobre Zp, fent servir primers de diferents mides
(192, 224, 256, 384 i 521 bits). Les corbes s’anomenen anteposant el prefix P- a la mida. Aquest prefix
indica que les corbes estan definides sobre cossos finits d’ordre primer. Les corbes han estat generades amb
l’algorisme de generació de corbes verificablement aleatòries descrit a la secció anterior, fent servir SHA-1
com a funció hash.
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Totes elles tenen en comú que fan servir el coeficient a =−3, el que permet optimitzar la suma de punts en
una de les representacions habituals. A més, els primers p seleccionats són primers de quasi-Mersenne, que
permeten optimitzar la reducció modular. Les cinc corbes també tenen en comú el cofactor, h = 1.

Primers de
quasi-
Mersenne

Els nombres primers de quasi-Mersenne són primers de la forma 2n− c, amb c≪ 2n.
Per exemple, 2192−(264+1) és un primer de quasi-Mersenne, ja que (264+1)≪ 2192.

A tall d’exemple, a continuació es detallen els paràmetres de la corba P-256, una de les 5 corbes sobre Zp
definides a l’estàndard del NIST. L’especificació de la corba consta dels paràmetres següents: el mòdul
primer p, l’ordre primer n de la corba, la llavor S que s’ha utilitzat en l’algorisme de generació de corbes
verificablement aleatòries per tal de generar-la, el valor c que correspon al valor r calculat en l’algorisme de
generació, el coeficient b de l’equació de la corba (el coeficient a és −3 per a totes elles), i les coordenades x
i y del punt base G.

La corba P-256 del NIST queda definida pels paràmetres següents:

p = 2256−2224 +2192 +296−1

n = 115792089210356248762697446949407573529996955224135760342422259061068512044369

SEED = (0x) c49d3608 86e70493 6a6678e1 139d26b7 819f7e90

c = (0x) 7efba166 2985be94 03cb055c 75d4f7e0 ce8d84a9 c5114abc af317768

0104fa0d

b = (0x) 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e

27d2604b

Gx = (0x) 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945

d898c296

Gy = (0x) 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb64068

37bf51f5

Exemple 8.11 Exemple de verificació de la generació aleatòria d’una corba el·líptica

A continuació procedirem a verificar que la corba del NIST P-256 ha estat efectivament generada
pseudoaleatòriament amb l’algorisme descrit anteriorment.

Com que la generació ha fet servir SHA-1 com a funció hash, aleshores l = 160.

1. Es calcula t = ⌈log2 p⌉= 256, s = ⌊ t−1
l ⌋= ⌊

256−1
160 ⌋= 1 i v = t− sl = 96.

2. La llavor S és 0xc49d360886e704936a6678e1139d26b7819f7e90, amb g = 160≥ l.
3. Es calcula:

c0 = H(S)[l−v...l] =

= 0x3f07c5eac96ecc0bfefba1662985be9403cb055c[64...160] =

= 0xfefba1662985be9403cb055c

4. Es calcula W0 = 0 || c0[1...v] = 0x7efba1662985be9403cb055c.
5. Per i des de 1 fins a s:

s1 = (S+1) mod 2160 = 0xc49d360886e704936a6678e1139d26b7819f7e91

W1 = H(s1) = H(0xc49d360886e704936a6678e1139d26b7819f7e91) =

= 0x75d4f7e0ce8d84a9c5114abcaf3177680104fa0d
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6. Es calcula:

r =W0||W1 =

= 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0d

7. Es comprova que r ·b2 = a3 mod p:

0x7efb...fa0d · 0x5ac6...604b2 = (−3)3 mod 2256−2224 +2192 +296−1

Com que la igualtat es compleix, podem verificar que la corba ha estat generada pseudoaleatòriament
seguint l’algorisme descrit.

Fixeu-vos que com que s = 1, només s’executa una única iteració del bucle que calcula les Wi. A més, cal
tenir en compte que al calcular els hashos (pas 3 i pas 5), cal representar les entrades de la funció hash (els
valors S i s1) com a cadenes binàries.

Exercici 8.8 Verifiqueu que la corba del NIST P-192 ha estat generada pseudoaleatòriament amb
l’algorisme verificable de generació de corbes.

La corba P-192 del NIST queda definida pels paràmetres següents:

p = 2192−264−1
n = 6277101735386680763835789423176059013767194773182842284081

SEED = (0x) 3045ae6f c8422f64 ed579528 d38120ea e12196d5

c = (0x) 3099d2bb bfcb2538 542dcd5f b078b6ef 5f3d6fe2 c745de65

b = (0x) 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1

Gx = (0x) 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

Gy = (0x) 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

Certicom Research, a l’estàndard SEC 2: Recommended Elliptic Curve Domain Parameters publicat el gener
de 2010 (versió 2.0), descriu vuit corbes el·líptiques sobre Zp, fent servir primers de les mateixes mides que
l’estàndard del NIST (192, 224, 256, 384 i 521 bits). En general, per a cada mida del primer, l’estàndard
descriu dos tipus de corbes: una corba generada pseudoaleatòriament de manera verificable i una corba de
Koblitz. L’excepció són les dues mides superiors (384 i 521 bits), per a les quals només es proporciona la
corba pseudoaleatòria.

Els noms de les corbes del SEC 2 segueixen un patró que permet identificar-ne les característiques fàcilment:
els primers tres caràcters són sec, que denota Standards for Efficient Cryptography; a continuació s’inclou
una p, que descriu corbes sobre cossos finits Zp; després hi ha un número, que descriu la mida del primer
utilitzat; a continuació hi ha una lletra, k o r, especificant si es tracta d’una corba aleatòria o de Koblitz; i
finalment hi ha un número de seqüència.

Les corbes aleatòries (corbes r) especificades al SEC2 són equivalents a les corbes del NIST de la mateixa
mida especificades a la Taula 8.2 (la corba P-192 és equivalent a la secp192r1, la corba P-224 a la secp224r1,
etc.). Per tant, les corbes aleatòries que especifica el SEC 2 han estat generades amb l’algorisme verificable
de generació de corbes fent servir SHA-1 com a funció hash.

Les corbes de Koblitz sobre cossos finits Zp tenen la particularitat d’estar definides per uns paràmetres que
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permeten una implementació especialment eficient (el càlcul del doblat d’un punt en aquest tipus de corbes
és molt eficient). Les corbes de Koblitz especificades al SEC 2 han estat seleccionades repetint el procés de
seleccionar paràmetres eficients fins a aconseguir trobar uns paràmetres que descriguin una corba d’ordre
primer i tenen a = 0, de manera que l’equació que les defineix és de la forma E/Zp : y2 = x3 +b.

Corbes de
Koblitz

És important tenir en compte que el mot corbes de Koblitz és també utilitzat (i, de fet,
més comunament) per a referir-se a corbes sobre F2m . A l’estàndard de Certicom, es
generalitza el terme i es fa servir per referir-se també a les corbes sobre un cos finit
d’ordre primer que tenen una propietat concreta que permet la implementació eficient
del càlcul del doblat d’un punt.

La corba
secp256k1

La corba secp256k1 és actualment una corba molt coneguda, ja que és la que fa servir
la criptomoneda Bitcoin per a les signatures digitals que autoritzen les transaccions.
Anteriorment al seu ús a Bitcoin, la corba era poc utilitzada. Els valors especialment
petits dels coeficients de la corba semblen indicar que és una corba nothing-up-my-
sleeve.

La corba secp256k1 queda definida pels paràmetres següents:

p = 2256−232−29−28−27−26−24−1
n = (0x) FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C

D0364141

a = 0
b = 7

Gx = (0x) 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B

16F81798

Gy = (0x) 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F

FB10D4B8

h = 1

L’estàndard ECC Brainpool Standard Curves and Curve Generation publicat el 2005 inclou set corbes
el·líptiques de set mides diferents, quatre de les quals coincideixen amb les del NIST i Certicom. Les altres
tres mides són 160, 320, i 512 bits (aquesta última substitueix les de 521 del NIST i Certicom). Totes elles
han estat generades de manera verificablement pseudoaleatòria, amb un mètode similar al que s’ha explicat
anteriorment.

A diferència de les corbes del NIST, les de Brainpool no fan servir primers de quasi-Mersenne, de manera
que en general són menys eficients. Aquesta decisió va ser presa per tal d’evitar problemes de patents amb
els algorismes de càlculs aritmètics ràpids.

De manera similar als altres estàndards, els noms de les corbes de Brainpool segueixen un patró que en
descriu les seves propietats: els primers caràcters són brainpool, que denota l’organisme de certificació; a
continuació s’inclou una P, que descriu corbes sobre cossos finits Zp; després hi ha un número, que descriu
la mida del primer utilitzat; a continuació hi ha una lletra, r, que especifica que es tracta d’una corba aleatòria;
i finalment hi ha un número de seqüència.

L’informe de 2017 sobre l’ús del TLS de F5 (The 2017 TLS Telemetry report) resumeix les observacions
sobre més de 20 milions de hosts TLS repartits arreu del món. L’informe reporta que un 74% dels intercanvis
de clau de Diffie-Hellman sobre corbes el·líptiques que es porten a terme fan servir la corba del NIST P-256,
sent clarament per tant la més popular de totes les corbes estandarditzades. Part d’aquesta popularitat ve
donada pel fet de ser la corba per defecte a l’OpenSSL en aquell moment i perquè el TLS 1.3 requereix
que totes les implementacions suportin aquesta corba per a l’intercanvi de claus de Diffie-Hellman. La
segona corba més popular és la Curve25519, una corba proposada pel criptògraf Daniel J. Bernstein sobre
un primer de 256 bits (el primer 2255−19, que li dona nom). Aquesta corba no està coberta per cap patent i
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la implementació de referència és codi lliure. El 2017 el NIST va anunciar que inclouria aquesta corba al seu
estàndard de signatura digital i, de fet, la propera versió d’aquest, encara en format d’esborrany (FIPS PUB
186-5 (Draft)), ja la contempla.

8.4.3 Funcions hash que retornen punts de corbes el·líptiques

Alguns dels esquemes criptogràfics basats en corbes el·líptiques requereixen d’una funció hash que rebi
una entrada arbitrària (per exemple, la cadena de caràcters a signar) i retorni un punt d’una corba el·líptica
concreta. En aquesta secció descriurem com es poden construir aquestes funcions hash.

Donada una corba E/Zp : y2 = x3 +ax+b i un punt G ∈ E/Zp d’ordre n, una construcció ingènua d’una
funció hash H que rebi com a entrada cadenes arbitràries i retorni punts de la corba E/Zp és la següent:

H(m) = H ′(m) ·G = P ∈ E/Zp

on H ′ és una funció hash que rep entrades arbitràries i retorna un valor a Zn.

És a dir, la funció hash H es construeix multiplicant un enter (resultant d’una altra funció hash) per un punt de
la corba, de manera que s’obté un punt de la corba desitjada. Noteu que la funció H ′ és fàcil de construir. Per
exemple, podríem definir H ′ com el resultat de la funció hash SHA-1 mòdul n (és a dir, H ′(m) = SHA-1(m)
mod n).

Tanmateix, aquesta construcció presenta problemes de seguretat a diferents nivells, motiu pel qual no es fa
servir a la pràctica. Més endavant (a l’Exercici 9.4) veurem un exemple concret d’aquests problemes de
seguretat en l’ús d’aquesta construcció en les signatures BLS.

Una construcció més elaborada per a aconseguir funcions hash que retornin punts de corbes el·líptiques
és el mètode d’intentar-i-incrementar (en anglès, es coneix amb el nom de try-and-increment). El mètode
consisteix a interpretar el missatge m com a la coordenada x del punt de la corba i calcular el valor d’y
corresponent, tenint en compte però dos detalls que podrien ser problemàtics. D’una banda, pot ser que un
missatge donat m no correspongui a la coordenada x de cap punt de la corba. D’altra banda, donada una
coordenada x, ja hem vist que existiran dos possibles valors d’y.

.

L’algorisme de intentar-i-incrementar permet convertir un missatge m en un punt d’una
corba el·líptica E/Zp : y2 = x3 +ax+b seguint els passos següents:

1. Inicialitzar el comptador a zero: c = 0.
2. Calcular (x,s) = H ′′(c||m).
3. Calcular t = x3 +ax+b.
4. Si t és un residu quadràtic mòdul p:

(a) Calcular l’arrel quadrada de t: y = (−1)s · t1/2 mod p.
(b) Retornar el punt (x,y).

En cas contrari:
(a) Incrementar c: c = c+1.
(b) Tornar al pas 2.

La funció hash auxiliar H ′′ rep el valor d’un comptador concatenat amb el missatge i retorna dos valors, un
valor a Zp, que correspon a la coordenada x del punt, i un bit s que es farà servir per decidir quin dels dos
possibles valors per a la coordenada y se selecciona (en cas que efectivament existeixin). D’aquesta manera,
si el primer valor x no correspon a cap punt de la corba, es pot incrementar el comptador i tornar-ho a intentar,
esquivant així el primer dels detalls problemàtics que esmentàvem. D’aquest procediment en prové el nom
de l’algorisme. Un cop calculat el valor x, calculem el valor y com l’arrel quadrada d’x, triant sempre el
valor més petit dels dos possibles (es tria una ordenació qualsevol, ja que no és important per l’algorisme).
Després, el bit s es fa servir per decidir si es retorna el valor més petit o es canvia per l’altre valor.
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Exemple 8.12 Exemple d’execució de l’algorisme de intentar-i-incrementar

Calculem un punt de la corba E/Z11 : y2 = x3−5x+5 que representa el missatge CRIPTOGRAFIA. Per
fer-ho, farem servir la següent funció hash auxiliar:

H ′′(m) = (SHA-1(m) mod p, SHA-1(m) mod 2)

i triarem com a resultat de l’arrel quadrada el valor més petit considerat sobre els enters.

1. Inicialitzem el comptador a zero: c = 0.
2. Calculem la funció hash auxiliar:

(x,s) = H ′′(c||m) = H ′′(0 ||CRIPTOGRAFIA) =
= (SHA-1(0CRIPTOGRAFIA) mod 11, SHA-1(0CRIPTOGRAFIA) mod 2)
= (0x2f48 · · ·8086 mod 11, 0x2f48 · · ·8086 mod 2) =
= (8,0)

3. Calculem t = x3 +ax+b = 83−5 ·8+5 = 477 mod 11 = 4.
4. El valor t = 4 és un residu quadràtic a Z11 (ja que 22 = 4 mod 11 i 92 = 4 mod 11).

(a) Les dues arrels de 4 a Z11 són 2 i 9. Com que 2 < 9 ∈ Z, aleshores y = (−1)s · t1/2

mod p = (−1)0 ·2 mod 11 = 2.
(b) Es retorna el punt (8,2).

El punt (8,2) pertany, per tant, a la corba E, i es pot fer servir com a representació del missatge CRIPTO-
GRAFIA en qualsevol algorisme criptogràfic que la faci servir en els seus paràmetres de domini.

8.5 El problema del logaritme discret sobre corbes el·líptiques

Utilitzant la multiplicació escalar sobre corbes el·líptiques i de manera anàloga al problema del logaritme
discret a Zp, podem definir ara el problema del logaritme discret sobre una corba el·líptica (ECDLP, de
l’anglès, Eliptic Curve Discrete Logarithm Problem).

.

Donada una corba el·líptica E/Zp amb ordre #E, un element primitiu G ∈ E i un altre
element T ∈ E, el problema del logaritme discret sobre corbes el·líptiques consisteix a
trobar un enter 1≤ i≤ #E tal que:

i ·G = T

Notació Convé esmentar que la formulació que es fa servir s’allunya una mica de la formulació
tradicional del problema ja que s’ha triat la notació additiva per a expressar l’operació
de grup entre els punts de la corba el·líptica. En canvi, si s’hagués fet servir la notació
multiplicativa, la definició del logaritme discret seria més similar a la definició clàssica.
Tot i això, el problema és equivalent.

Exercici 8.9 Calculeu el logaritme discret del punt T = (0,7) en base G = (8,9) per a la corba
E/Z11 : y2 = x3−5x+5. Podeu fer servir el resultat de l’Exercici 8.3 per a resoldre aquesta activitat.
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Per quantificar el nivell de dificultat del problema és, per tant, necessari conèixer el número de punts de la
corba, #E.

El problema del logaritme discret sobre corbes el·líptiques es pot generalitzar eliminant la restricció que el
punt G hagi de ser primitiu. En aquest cas, donat un punt base G d’ordre n primer, cal trobar l’enter 1≤ i≤ n
tal que i ·G = T . El logaritme discret es calcula doncs sobre el subgrup cíclic de E generat per G, al qual el
punt T també pertany. L’ordre d’aquest punt, n, passa a tenir importància en la seguretat dels protocols que
se’n deriven.

El millor algorisme que es coneix actualment (2025) per solucionar el problema del logaritme discret sobre
corbes el·líptiques (excepte per casos molt específics o assumint l’existència d’ordinadors quàntics) és
l’algorisme ro de Pollard. Aquest algorisme permet calcular el logaritme discret amb un temps d’execució
O(
√

n), on n és l’ordre del punt. D’aquí se’n deriven els nivells de seguretat que ofereixen les corbes
el·líptiques per a diferents mides de la clau que s’han detallat a la comparativa de la Taula 8.1.

Rècord de
còmput

El rècord de còmput de l’ECDLP amb l’algorisme ro de Pollard és sobre una corba
definida sobre un cos primer de 112 bits de l’any 2012.

8.6 Criptografia basada en el problema del logaritme discret sobre corbes

En aquesta secció es descriuen algorismes criptogràfics que es basen en el problema del càlcul del logaritme
discret sobre corbes el·líptiques. En primer lloc, veurem la versió de l’intercanvi de claus de Diffie-
Hellman sobre corbes. A continuació, presentarem l’algorisme de signatura ECDSA. Finalment, descriurem
l’algorisme de xifratge ECIES.

8.6.1 Intercanvi de claus de Diffie-Hellman amb corbes el·líptiques

L’algorisme d’intercanvi de claus de Diffie-Hellman sobre corbes el·líptiques (ECDH, de l’anglès, Elliptic
Curve Diffie-Hellman Key Exchange) és una variant de l’algorisme d’intercanvi de claus de Diffie-Hellman
(que ja hem presentat al Capítol 6) que treballa sobre corbes el·líptiques fent servir les operacions de suma i
multiplicació que hem definit en aquest capítol. De la mateixa manera que la variant clàssica, l’objectiu de
l’ECDH és aconseguir que dos usuaris que es comuniquen per un canal insegur derivin una clau compartida.

El procés d’inicialització de l’algorisme consisteix en la selecció dels paràmetres de domini: els elements
que defineixen la corba el·líptica E (un primer p i els coeficients a i b ∈ Zp) i un element G = (xg,yg) ∈ E
d’ordre n.

Una vegada fixats els paràmetres de domini, l’algorisme d’intercanvi de claus s’executa de manera anàloga a
la variant clàssica:

.

L’algorisme d’intercanvi de claus de Diffie-Hellman sobre corbes el·líptiques entre dos
usuaris, A i B, consta dels passos següents:

1. A tria un valor aleatori kprivA = a ∈ (1, . . . ,n) i calcula kpubA = a ·G = (xa,ya).
2. B tria un valor aleatori kprivB = b ∈ (1, . . . ,n) i calcula kpubB = b ·G = (xb,yb).
3. A i B intercanvien els seus valors kpub, és a dir, A envia a B el valor kpubA i B envia

a A el valor kpubB.
4. A deriva la clau compartida kAB = kpubB · kprivA = (xAB,yAB).
5. B deriva la clau compartida kAB = kpubA · kprivB = (xAB,yAB).

Les claus privades (els valors a i b) són enters, mentre que tant les claus públiques (kpubA i kpubB) com la
clau compartida (kAB) són punts de la corba el·líptica. Per tant, a cada pas (a excepció del pas 3) es calcula
una multiplicació escalar.
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Així doncs, efectivament, el punt kAB derivat per les dues parts participants en el protocol és el mateix, ja
que, d’una banda, l’usuari A calcula:

kAB = kprivA · kpubB = a(bG)

i, d’altra banda, l’usuari B calcula:

kAB = kprivB · kpubA = b(aG)

Com que la suma de punts és associativa, les dues parts calculen el mateix valor.

Pel que fa a la seguretat davant d’un atacant que escolti el canal, l’atacant coneixerà els dos valors intercanviats
pel canal, kpubA i kpubB, a més dels paràmetres públics que defineixen E (a, b i p) i el punt G, però calcular
kAB a partir d’aquests valors és un procés computacionalment difícil.

Exemple 8.13 Exemple d’intercanvi de claus de Diffie-Hellman amb corbes el·líptiques

Els usuaris A i B disposen d’un canal insegur amb el qual comunicar-se, i volen aconseguir crear una clau
compartida kAB:

Se seleccionen els paràmetres de domini a = 3,b = 8, p = 23 (i, per tant, E/Z23 : y2 = x3 + 3x+ 8) i
G = (19,1) ∈ E/Z23 (de manera que #E = n = 29).

1. A tria el valor aleatori kprivA = a = 15 i calcula:
kpubA = a ·G = 15(19,1) = (6,14).

2. B tria un valor aleatori kprivB = b = 18 i calcula:
kpubB = b ·G = 18(19,1) = (13,17).

3. A i B intercanvien els seus valors kpub.
4. A deriva la clau compartida, calculant:

kAB = kpubB · kprivA = 15(13,17) = (17,2).
5. B deriva la clau compartida, calculant:

kAB = kpubA · kprivB = 18(6,14) = (17,2).

El protocol finalitza amb A i B compartint el mateix valor secret kAB = (17,2).

8.6.2 L’esquema de signatura ECDSA

L’ECDSA (per les seves sigles en anglès, Elliptic Curve Digital Signature Algorithm) és una variant de
l’algorisme de signatura DSA (Digital Signature Algorithm) que es basa en el problema del logaritme discret
sobre corbes el·líptiques. L’ECDSA és anàleg al DSA, però operant sobre corbes el·líptiques en comptes de
sobre els enters. L’ECDSA va ser proposat l’any 1992 per Scott Vanstone, i des d’aleshores ha estat inclòs
en diversos estàndards.

L’algorisme de generació de claus de l’ECDSA coincideix amb els primers passos de l’intercanvi de claus de
Diffie-Hellman amb corbes el·líptiques.

En primer lloc, s’executa el procés d’inicialització, en què se seleccionen els paràmetres de domini: la
corba E/Zp (amb mòdul p i coeficients a i b) i un punt G que genera un grup cíclic d’ordre primer n. Els
paràmetres de domini són doncs la tupla (p,a,b,G,n). Si es fan servir corbes estandarditzades, no cal
executar el procés d’inicialització, ja que els paràmetres de domini ja venen definits.

Una vegada generats els paràmetres de domini, es procedeix a la generació de claus:

.
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L’algorisme de generació de claus ECDSA consta dels passos següents:
1. Es tria un enter aleatori kpriv = d ∈R (1,n).
2. Es calcula kpub = B = d ·G.
3. La clau pública kpub és el punt B, mentre que la clau privada kpriv és el valor d.

Les claus generades per l’algorisme anterior es poden fer servir per a generar i validar signatures digitals
fent servir els algorismes següents:

.

A partir d’un missatge en clar m, la clau privada de l’emissor kpriv = d, i els paràmetres de
domini (p,a,b,G,n), es calcula la signatura digital ECDSA del missatge:

1. Es tria una clau efímera ke ∈R (0,n).
2. Es calcula R = ke ·G. Com que R és un punt de la corba el·líptica, tenim que

R = (xR,yR).
3. Es calcula r = xR mod n. Si r = 0, es torna al pas 1.
4. Es calcula e = H(m).
5. Es calcula s = (e+d · r) · k−1

e mod n. Si s = 0, es torna al pas 1.
6. La signatura és la tupla (r,s).

L’algorisme de signatura ECDSA requereix de l’ús d’una funció hash, al pas 4, que s’aplica al missatge
abans de signar-lo, com és habitual en les signatures digitals. Per a l’algorisme ECDSA la funció hash ha
de retornar un enter i, per tant, no és necessari fer servir un esquema que permeti obtenir punts a partir de
funcions hash (a diferència d’altres esquemes criptogràfics que veurem més endavant).

En els passos 3 i 5 es fan comprovacions sobre els valors que formen part de la signatura digital, i que
asseguren que la signatura resultant de l’execució no contingui zeros. Això permet evitar certs atacs.

Com que els tres primers passos de la signatura no requereixen l’ús del missatge m a signar, si es fan
servir corbes estandarditzades (i, per tant, els paràmetres de domini són coneguts anticipadament) es poden
precalcular valors r aprofitant moments en què la càrrega del sistema sigui baixa i el processador estigui
disponible. Aquests valors poden ser utilitzats després, quan es requereixi fer una signatura digital, reduint el
temps de còmput necessari per calcular-la.

La variant de l’algorisme de signatura ECDSA que acabem de descriure és probabilística. Per a un mateix
missatge i una mateixa clau privada, existeixen diverses signatures vàlides. Aquesta variabilitat s’introdueix
en la generació d’una clau efímera (ke), que se selecciona aleatòriament i que serà diferent per a cada
signatura. De fet, és indispensable per a la seguretat de l’esquema que la clau efímera sigui única, doncs
múltiples signatures fetes amb una mateixa clau privada i una mateixa clau efímera rebel·len la clau privada.
Quan no es pot assegurar que es disposa d’una font d’aleatorietat prou bona per a complir aquest requisit,
s’utilitzen versions deterministes de l’ECDSA, que deriven la clau efímera del missatge a signar.

.
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A partir d’un missatge en clar m, la clau pública kpub, els paràmetres de domini
((p,a,b,G,n)) i una signatura del missatge (r,s), els passos següents permeten verifi-
car una signatura ECDSA:

1. Es verifica que r i s es trobin a l’interval (0,n).
2. Es calcula e = H(m).
3. Es calcula w = s−1 mod n.
4. Es calcula u1 = w · e mod n i u2 = w · r mod n.
5. Es calcula P = u1 ·G+u2 ·B. Com que P és un punt de la corba el·líptica, tenim que

P = (xP,yP).
6. Si xP = r mod n, aleshores la signatura és vàlida i la verificació finalitza correcta-

ment. En cas contrari, la signatura es considera invàlida i la verificació fracassa.

Noteu com l’algorisme de verificació de signatures ECDSA és correcte. Si la signatura (r,s) ha estat creada
per un signant legítim, aleshores s = (e+d · r) · k−1

e mod n (pas 5 de l’algorisme de signatura) i, per tant:

ke = s−1(e+d · r) mod n = s−1 · e+ s−1 ·d · r mod n = w · e+w ·d · r mod n =

= u1 +u2 ·d mod n

Aleshores, tenim que:

P = u1 ·G+u2 ·B = u1 ·G+u2 ·d ·G = G(u1 +u2 ·d) = G · ke

i, per tant, xP = r.

Exemple 8.14 Exemple de signatura i verificació amb ECDSA

L’usuari A vol enviar el missatge m = 567 signat amb ECDSA a un altre usuari.

En primer lloc, se seleccionen els valors públics a =−5,b = 5, p = 11 (E/Z11 : x3−5x+5) i G = (2,6)∈
E (de manera que #E = n = 17).

A continuació, cal que A disposi d’un parell de claus ECDSA. L’algorisme de creació de claus és el mateix
que en l’ECDH:

1. A tria el valor aleatori kprivA = d = 5.
2. A calcula kpub = B = a ·G = 5(2,6) = (8,9).
3. La clau pública kpub és el punt B = (8,9), mentre que la clau privada kpriv és el valor d = 5.

Per tal de signar el missatge m = 567, A executa l’algorisme de signatura. Per simplicitat, a l’exemple es
farà sevir la funció identitat (que retorna a la sortida el valor que rep a l’entrada) com a funció hash H.

1. A tria una clau efímera ke = 10 ∈R (0,17).
2. A calcula R = ke ·G = 10(2,6) = (6,2) = (xR,yR).
3. A calcula r = xR mod n = 6. Com que r ̸= 0, segueix l’execució de l’algorisme al pas següent.
4. A calcula e = H(m) = 567.
5. A calcula s = (e+d · r) · k−1

e mod n = (567+5 ·6) ·10−1 mod 17 = 597 ·12 mod 17 = 7. Com
que s ̸= 0, segueix l’execució de l’algorisme al pas següent.

6. La signatura és la tupla (r,s) = (6,7).

A partir del missatge en clar m = 567, la clau pública kpub, els paràmetres de domini, i la signatura del
missatge (r,s) = (6,7), el receptor del missatge pot verificar-ne la signatura:

1. Verifica que 6 ∈ (0,17) i 7 ∈ (0,17).
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2. Calcula e = H(m) = 567.
3. Calcula w = s−1 mod n = 7−1 mod 17 = 5.
4. Calcula u1 = w · e mod n = 5 ·567 mod 17 = 13 i u2 = w · r mod q = 5 ·6 mod 17 = 13.
5. Calcula P = u1 ·G+u2 ·B = 13(2,6)+13(8,9) = (6,2) = (xP,yP).
6. Comprova si xP = r mod q. Com que efectivament 6 = 6 mod 17, la signatura és vàlida.

Exercici 8.10 Donada la corba i claus generades per l’algorisme de generació de claus de l’Exemple 8.14
i la mateixa funció hash que en aquest exemple, verifiqueu la validesa de la signatura ECDSA (10,3) per
al missatge m = 876.

Exercici 8.11 Donada la corba E/Z23 : y2 = x3 +3x+8 i el punt base G = (13,6) d’ordre 29:

1. genereu un parell de claus ECDSA fent servir aquests paràmetres de domini,
2. proporcioneu una signatura amb ECDSA del missatge m = 25504446 considerant com a funció

hash la funció H(x) = x mod 10, i
3. valideu la signatura que acabeu de generar.

8.6.3 L’esquema de xifratge integrat de corbes el·líptiques (ECIES)

L’esquema de xifratge integrat de corbes el·líptiques (ECIES) (de l’anglès, Elliptic Curve Integrated Encryp-
tion Scheme) va ser proposat per Mihir Bellare, Michel Abdalla i Phillip Rogaway a finals dels noranta i és
l’algorisme de xifratge basat en corbes el·líptiques més estès actualment.

Diferents versions de l’ECIES (similars però no totalment compatibles entre elles) es troben estandarditzades
per diversos organismes als estàndards ANSI X9.63, SEC 1, ISO/IEC 15946-3, i IEEE P1363a.

L’ECIES és un algorisme de xifratge híbrid, que fa ús de la criptografia de clau pública per a generar una
clau que s’utilitza en un algorisme de xifratge simètric. D’aquesta manera, s’aprofita l’eficiència del xifratge
simètric i les propietats que ofereix la criptografia de clau pública.

A grans trets, el funcionament de l’ECIES es basa en generar una clau secreta compartida entre emissor
i receptor de manera anàloga a l’algorisme de Diffie-Hellman i a partir d’aquesta clau se’n deriven dues
claus simètriques. La primera d’aquestes claus simètriques es fa servir per a xifrar el missatge fent servir un
criptosistema de clau simètrica, i la segona es fa servir per a autenticar el text xifrat.

L’ECIES fa servir tres primitives criptogràfiques: un algorisme de xifratge de clau simètrica (tal que
m = Dk(Ek(m)), una funció de derivació de clau (KDF) i un codi d’autenticació de missatges (MAC).

.

A partir d’un missatge en clar m, la clau pública kpub = B (generada amb el mateix algoris-
me de generació de claus que per a l’ECDSA) i els paràmetres de domini (p,a,b,G,n,h),
els passos següents permeten xifrar el missatge amb ECIES (l’esquema de xifratge
integrat de corbes el·líptiques):

1. Es tria aleatòriament una clau efímera ke ∈R (0,n).
2. Es calcula R = ke ·G i Z = h · ke ·B. Si Z = O , es torna al pas 1. Com que Z és un

punt de la corba el·líptica, tenim que Z = (xZ ,yZ).
3. Es calcula (k1,k2) = KDF(xZ ,R).
4. Es calcula C = Ek1(m).
5. Es calcula t = MACk2(C).
6. Es retornen els valors (R,C, t).
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Noteu com del secret compartit Z se’n deriva la clau simètrica k1, que es fa servir per a xifrar el missatge, i
la clau simètrica k2, que es fa servir per autenticar-lo.

.

A partir d’un missatge xifrat (R,C, t), la clau privada kpriv = (d), i els paràmetres de
domini (p,a,b,G,n), els passos següents permeten desxifrar el missatge amb ECIES
(l’esquema de xifratge integrat de corbes el·líptiques):

1. Es valida que R sigui un punt vàlid de la corba diferent de O .
2. Es calcula Z = h ·d ·R. Si Z = O , es rebutja el text xifrat. Com que Z és un punt de

la corba el·líptica, tenim que Z = (xZ ,yZ).
3. Es calcula (k1,k2) = KDF(xZ ,R).
4. Es calcula t ′ = MACk2(C). Si t ̸= t ′, es rebutja el text xifrat.
5. Es calcula m = Dk1(C).
6. Es retorna el text en clar m.

És interessant notar com el punt Z es deriva del secret de Diffie-Hellman compartit entre emissor i receptor
(l’emissor calcula ke ·B fent servir la clau pública del receptor B i el receptor calcula d ·R fent servir la seva
clau privada).

Si el text xifrat (R,C, t) és realment el resultat de xifrar m seguint l’algorisme de xifratge, aleshores:

Z = h ·d ·R = h ·d · ke ·G = h · ke ·d ·G = h · ke ·B

i, per tant, el receptor deriva les mateixes dues claus simètriques k1 i k2 que l’emissor ha utilitzat per xifrar, i
pot validar i desxifrar el missatge.

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


258 Capítol 8. Criptografia de corbes el·líptiques

8.7 Resum

En aquest capítol s’ha presentat la criptografia de corbes el·líptiques. En primer lloc, s’ha explicat el seu
origen i els seus avantatges en relació a la criptografia de clau pública tradicional. A continuació, s’ha
descrit com es fan servir les corbes el·líptiques per crear grups d’interès per a la criptografia, s’han presentat
els principals estàndards que cobreixen la criptografia de corbes el·líptiques, i s’ha exposat la variant del
problema del logaritme discret sobre corbes el·líptiques. Per últim, s’han detallat alguns dels esquemes
criptogràfics més populars que fan servir aquest tipus de criptografia: l’intercanvi de claus de Diffie-Hellman
sobre corbes el·líptiques, l’esquema de signatura ECDSA, i l’esquema de xifratge ECIES.
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8.8 Solucions dels exercicis

Exercici 8.1:

A continuació es proposa una aproximació que permet resoldre el problema plantejat amb els coneixements
exposats fins a la secció en què es proposa l’exercici. Més endavant s’expliquen altres alternatives més
eficients per al càlcul dels punts d’una corba.

Els punts de la corba seran tots aquells que compleixin l’equació y2 = x3−4x+1 a Z5. Per tant, en primer
lloc avaluem l’expressió per a tots els possibles valors x ∈ Z5:

x y2

0 1
1 3
2 1
3 1
4 4

Ara, ens cal saber quins dels valors d’y2 són residus quadràtics a Z5. Com que el cos és petit, els podem
calcular per força bruta, provant tots els possibles casos:

y y2

0 0
1 1
2 4
3 4
4 1

Veiem doncs que els valors 1 i 4 són residus quadràtics, mentre que el 3 no ho és.

Per tant, trobem que els punts de la corba són:

[(0,1),(0,4),(2,1),(2,4),(3,1),(3,4),(4,2),(4,3),O]

Exercici 8.2:

Com que P1 ̸= P2, aleshores el pendent m és:

m =
y2− y1

x2− x1
mod p =

7−1
4−1

mod 11 =
6
3

mod 11 = 2

Després, es calculen les coordenades del punt:

x3 = m2− x1− x2 mod p = 22−1−4 mod 11 = 10

y3 = m(x1− x3)− y1 mod p = 2(1−10)−1 mod 11 = 3

Per tant, el resultat de la suma és P3 = (10,3). Efectivament, el resultat coincideix amb el càlcul fet
gràficament a l’Exemple 8.4.

Exercici 8.3:

En primer lloc, calculem P+P. Per fer-ho, es calcula el valor del pendent m:

m =
3x2

1 +a
2y1

mod p
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m =
3 ·82−5

2 ·9
mod 11 =

187
18

mod 11 = 0

i després, es calculen les coordenades del punt:

x3 = m2− x1− x2 mod p = 0−8−8 mod 11 = 6

y3 = m(x1− x3)− y1 mod p = 0(8−6)−9 mod 11 = 2

Per tant, 2P = P+P = (6,2).

Seguint el mateix procediment, podem calcular la resta de punts:

P = (8,9) 8P = (4,4) 15P = (6,9)
2P = P+P = (6,2) 9P = (4,7) 16P = (8,2)
3P = P+P+P = (1,10) 10P = (2,5) 17P = O

4P = (0,4) 11P = (10,8) 18P = (8,9)
5P = (7,4) 12P = (7,7) 19P = · · ·
6P = (10,3) 13P = (0,7)
7P = (2,6) 14P = (1,1)

Exercici 8.4:

L’invers del punt P1 = (x1,y1) serà el punt P2 tal que P1 +P2 = O .

D’una banda, sabem que aquest punt P2 és precisament P2 =−P1 = (x1,−y1) = (4,−7) = (4,4).

Alternativament, si prenem com a referència la solució de l’exercici anterior, veiem que:

P1 = (4,7) = 9P

9P+8P = 17P = O

P2 = 8P = (4,4)

Exercici 8.5:

Com que 9 no és primer, no tots els elements del grup són generadors. En particular, el punt (4,5) no ho és,
ja que no genera tots els 9 elements del grup:

P = (4,5)
2P = P+P = (4,6)
3P = P+P+P = O

Exercici 8.6:

La representació binària de l’enter 12 és 1100. En primer lloc s’inicialitza result a O . A continuació
s’executen les iteracions:
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Taula 8.3: Execució de l’algorisme de sumar i doblar
Iteració e Còmput
1 e = 0 point = point + point = (7,2)+(7,2) = (18,11)
2 e = 0 point = point + point = (18,11)+(18,11) = (22,2)
3 e = 1 result = result + point = O +(22,2) = (22,2)

point = point + point = (22,2)+(22,2) = (10,16)
4 e = 1 result = result + point = (22,2)+(10,16) = (16,14)

Per tant, 12P = (16,14).

Exercici 8.7:

Substituint els valors al teorema de Hasse tenim que:

|#E−12| ≤ 2
√

11

5.36≤ #E ≤ 18.63

Per tant, les corbes el·líptiques definides sobre Z11 tindran entre 6 i 18 punts.

Exercici 8.8:

1. Es calcula t = ⌈log2 p⌉= 192, s = ⌊ t−1
l ⌋= ⌊

192−1
160 ⌋= 1 i v = t− sl = 32.

2. La llavor S és 0x3045ae6fc8422f64ed579528d38120eae12196d5, amb g = 160≥ l.
3. Es calcula:

c0 = H(S)[l−v...l] =

= 0x7f6da10026c7ff92c5ac2e890bd59b44b099d2bb[128...160] =

= 0xb099d2bb

4. Es calcula W0 = 0 || c0[1...v] = 0x3099d2bb.
5. Per i des de 1 fins a s:

s1 = (S+1) mod 2160 = 0x3045ae6fc8422f64ed579528d38120eae12196d6

W1 = H(s1) = H(0x3045ae6fc8422f64ed579528d38120eae12196d6) =

= 0xbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65

6. Es calcula:

r =W0||W1 =

= 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65

7. Es comprova que r ·b2 = a3 mod p:

0x3099...de65 · 0x6421...b9b12 = (−3)3 mod 2192−264−1

Com que la igualtat es compleix, podem verificar que la corba ha estat generada aleatòriament seguint
l’algorisme descrit.

Exercici 8.9:

Com que la corba (E : y2 = x3− 5x+ 5 a Z11) coincideix amb la de l’exercici 8.3 i la base G = (8,9) és
precisament el punt P, aleshores podem observar directament de la solució de l’exercici 8.3 que:

13P = (0,7) = T
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i, per tant, el logaritme és 13.

Exercici 8.10:

1. Es verifica que 10 ∈ (0,17) i 3 ∈ (0,17).
2. e = H(m) = 876.
3. w = s−1 mod q = 3−1 mod 17 = 6.
4. u1 = w · e mod q = 6 ·876 mod 17 = 3 i u2 = w · r mod q = 6 ·10 mod 17 = 9.
5. P = u1 ·G+u2 ·B = 3(2,6)+9(8,9) = (0,7) = (xP,yP).
6. Es comprova si xP = r mod q. Com que 0 ̸= 10 mod 17, la signatura és invàlida.

Exercici 8.11:

1. La generació del parell de claus consta dels passos següents:

1. Es tria el valor aleatori kprivA = d = 6.
2. Es calcula B = aG = 6(13,6) = (18,11).
3. La clau pública kpub és el punt B = (18,11), mentre que la clau privada kpriv és el valor d = 6.

2. La signatura del missatge m = 25504446 consta dels passos següents:

1. Es tria una clau efímera ke = 19 ∈R (0,29).
2. Es calcula R = ke ·G = 19(13,6) = (12,1) = (xR,yR).
3. Es calcula r = xR mod n = 12. Com que r ̸= 0, segueix l’execució de l’algorisme al pas següent.
4. Es calcula e = H(m) = H(25504446) = 6.
5. Es calcula s = (e+d · r)k−1

e mod n = (6+6 ·12)19−1 mod 29 = 20 ·26 mod 29 = 27. Com que
s ̸= 0, segueix l’execució de l’algorisme al pas següent.

6. La signatura és la tupla (r,s) = (12,27).

3. La verificació de la signatura (r,s) = (12,27) per al missatge m = 25504446 consta dels passos següents:

1. Es verifica que 12 ∈ (0,29) i 27 ∈ (0,29).
2. Es calcula e = H(25504446) = 6.
3. Es calcula w = s−1 mod q = 27−1 mod 29 = 14.
4. Es calcula u1 = w · e mod q = 14 ·6 mod 29 = 26 i u2 = w · r mod q = 14 ·12 mod 29 = 23.
5. Es calcula P = u1 ·G+u2 ·B = 26(13,6)+23(18,11) = (12,1) = (xP,yP).
6. Es comprova si xP = r mod q. Com que efectivament 12 = 12 mod 29, la signatura és vàlida.
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9. Criptografia basada en pairings

En el capítol anterior s’han presentat les corbes el·líptiques i alguns dels seus usos en criptografia. Tot i això,
no ens hem endinsat en una de les construccions més populars en els últims anys en criptografia basada en
corbes el·líptiques: els pairings.

Algunes corbes el·líptiques tenen una estructura addicional anomenada aparellament (en anglès, es coneix
com a pairing), que obre la porta a tot un nou conjunt d’eines criptogràfiques. En particular, els pairings es
fan servir en criptografia per a atacar criptosistemes basats en el logaritme discret i també en la construcció
de noves primitives criptogràfiques.

En aquest capítol descriurem les propietats dels pairings i la seva definició (tot explicant les eines matemàti-
ques necessàries per a construir-los), i veurem alguns algorismes criptogràfics basats en aquests.

9.1 Propietats dels pairings

Existeixen diferents tipus de pairings, però no tots són adequats per a usos criptogràfics. Els únics pairings
coneguts que són útils en criptografia i, a més, eficientment computables, són els pairings de Weil i de Tate
sobre corbes el·líptiques.

Més enllà de la seva definició explícita, que veurem més endavant, a continuació en descrivim les propietats
que els caracteritzen.

Definició 9.1 Siguin G0,G1 i GT grups cíclics d’ordre primer q amb G0 ∈G0 i G1 ∈G1 elements
generadors dels grups. Diem que G0 i G1 són els grups d’origen i GT el grup objectiu.

Un aparellament (conegut en anglès com a pairing) és una aplicació e : G0×G1→GT que satisfà dues
propietats:

1. És bilineal, és a dir, per a tot P0,Q0 ∈G0 i P1,Q1 ∈G1:

e(P0,P1 +Q1) = e(P0,P1)∗ e(P0,Q1)
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e(P0 +Q0,P1) = e(P0,P1)∗ e(Q0,P1)

2. És no degenerat, és a dir, gT = e(G0,G1) és un generador de GT .

És a dir, l’aplicació e és lineal per a les dues entrades. La bilinealitat dels pairings implica la següent
propietat, en la qual es basen les construccions criptogràfiques que els fan servir:

e(αP0,βP1) = e(P0,P1)
αβ = e(βP0,αP1)

La propietat es deriva directament de la definició de bilinealitat:

e(αP0,βP1) = e(P0,βP1)
α = e(αP0,P1)

β = e(P0,P1)
αβ

Notació Noteu que s’ha fet servir notació additiva a G0 i G1 i multiplicativa a GT . Això és així
ja que com veurem a continuació, els grups G0 i G1 estan definits per punts de corbes
el·líptiques (i en aquest capítol anomenem suma a l’operació de grup) i, en canvi, el
grup GT serà un grup multiplicatiu.

Diem que un aparellament és simètric si G0 =G1 i asimètric en cas contrari.

La definició explícita dels pairings de Weil i de Tate és complexa i, per això, sovint s’obvia aquesta definició
i es descriuen únicament les propietats que els caracteritzen. Entendre les propietats dels pairings és suficient
per poder comprendre els esquemes criptogràfics que se’n deriven però, d’altra banda, entendre com es
calculen ens permet aproximar-nos més detalladament a la seva estructura. Les dues seccions següents estan
centrades en la definició explícita dels pairings: en primer lloc, es detallen un conjunt d’eines matemàtiques
que permeten definir els pairings; a continuació, es presenta la definició explícita dels pairings de Weil i
de Tate, tot exemplificant el càlcul amb una corba petita. El lector interessat pot doncs aprofundir en la
construcció dels pairings seguint la lectura de la propera secció. D’altra banda, el lector que no desitgi
aprofundir en la construcció dels pairings, pot passar directament a la Secció 9.4 per focalitzar-se directament
en els algorismes criptogràfics que es basen en les propietats que proporcionen els pairings.

9.2 Eines matemàtiques per a la construcció dels pairings

En aquesta secció es presenten les eines matemàtiques que permeten definir explícitament els pairings de
Weil i de Tate. En primer lloc, s’estén la definició de corbes el·líptiques que hem vist fins ara sobre Zp a
cossos finits amb un nombre d’elements no primer. A continuació, es defineix la r-torsió dels punts d’una
corba el·líptica i s’observa l’estructura dels subgrups que conforma. Finalment, es descriu el concepte de
divisor d’una funció i es presenta el seu ús en el context de la criptografia de corbes el·líptiques.

9.2.1 Corbes el·líptiques sobre cossos estesos

Fins ara hem fet servir corbes el·líptiques definides sobre cossos finits amb un nombre primer d’elements
(Zp). Ara bé, també es poden construir corbes el·líptiques sobre altres cossos finits, com ara cossos amb un
nombre d’elements potència d’un primer Fpd . Al capítol de Fonaments matemàtics ja hem vist com construir
aquests cossos finits fent servir polinomis irreductibles. L’ús d’aquests cossos per a la creació de corbes
el·líptiques és anàleg al cas de cossos finits amb nombre primer d’elements.
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Exemple 9.1 Exemple de corba el·líptica sobre cos estès

Com ja hem vist a l’Exemple 8.6, la corba el·líptica E/Z11 : y2 = x3−5x+5 té 17 elements:

[O,(0,4),(0,7),(1,1),(1,10),(2,5),(2,6),(4,4),(4,7),(6,2),(6,9),(7,4),(7,7),
(8,2),(8,9),(10,3),(10,8)]

La corba està definida sobre Z11, un cos finit amb un nombre primer d’elements (11).

La corba el·líptica E/(Z11/z2 + 1) : y2 = x3− 5x+ 5 té en canvi 119 elements. La corba està definida
sobre el cos finit d’112 elements fent servir el polinomi z2 +1, irreductible a Z11 i de grau 2.

Alguns dels 119 elements d’aquesta corba el·líptica són:

[O,(0,4),(0,7),(1,1),(1,10),(2,5),(2,6),(4,4),(4,7),(6,2),(6,9),(7,4),(7,7),
(8,2),(8,9),(10,3),(10,8),(5,4z),(5,7z),(9,2z),(9,9z),(z+2,z+3),(z+2,10z),

(z+4,4z+8),(z+4,7z+3), . . .]

Podem comprovar que aquests punts efectivament pertanyen a la corba verificant que compleixen l’equació
que la defineix. Així, per exemple, per al punt (5,4z), tenim que:

y2 = x3−5x+5 mod 11

(4z)2 = 53−5 ·5+5 mod 11

16z2 = 105 mod 11

5z2 = 6 mod 11

5z2−6 = 0 mod 11

Efectivament, el residu de dividir 5z2− 6 entre z2 + 1 a Z11 és 0 (ja que 5(z2 + 1) = 5z2 + 5 = 5z2− 6
mod 11).

9.2.2 Els punts de la r-torsió

En gran part d’aquest capítol hem treballat amb corbes el·líptiques definides sobre cossos finits amb un
nombre primer d’elements. A la secció anterior hem vist que també podem definir corbes sobre cossos
estesos amb ordre la potència d’un primer. A continuació veurem una de les construccions que es poden
definir quan treballem amb grups sobre cossos estesos, els grups formats per r-torsions.

Definició 9.2 Sigui E una corba el·líptica definida sobre un cos finit Zp i n un primer divisor de #E/Zp.
El grau d’immersió (en anglès, parlem d’embedding degree) d’E respecte a n és el menor enter k tal que
n divideix pk−1.

Per al cas n = #E/Zp, direm simplement que k és el grau d’immersió d’E.

Una vegada definit el grau d’immersió, passem a definir la r-torsió:

Definició 9.3 Sigui r un primer diferent de p. Es defineixen els punts de la r-torsió, E[r], com el conjunt
de punts P que pertanyen a E/Fpk tals que rP = O . És a dir,

E[r] = {P ∈ E/Fpk tals que rP = O}
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amb k el grau d’immersió d’E respecte a r.

Exemple 9.2 Exemple de 3-torsió

La corba E/Z11 : y2 = x3 +10x+4 té 15 elements (#E/Z11 = 15):

[O,(0,2),(0,9),(1,2),(1,9),(4,3),(4,8),(5,5),(5,6),(6,4),(6,7),(9,3),(9,8),(10,2),(10,9)]

El grau d’immersió d’E respecte a n = 3 (amb 3 |15) és k = 2, ja que 2 és el menor enter tal que n | pk−1.
Noteu que per a k = 1 la condició no es compleix, ja que 3 ∤ 111−1. En canvi, per a k = 2 tenim que
3 | 112−1.

Hi ha 9 punts a la 3-torsió:

E[3] ={P ∈ E/(Z11/z2 +1) tals que 3P = O}=
=[O,(1,2),(1,9),(8,3z),(8,8z),(2z+1,z+9),(2z+1,10z+2),(9z+1,z+2),
(9z+1,10z+9)]

Dels 9 punts de la 3-torsió, 3 es troben al cos base (O,(1,2),(1,9) ∈ E/Z11) i la resta al cos estès
E/(Z11/z2 +1).

A continuació comprovem que els punts compleixen la condició per pertànyer a la 3-torsió. Com a
exemple, mostrem els càlculs per als punts (1,2) i (8,3z):

P = (1,2)
2P = (1,9)
3P = O

P = (8,3z)

2P = (8,8z)

3P = O

És interessant notar l’estructura dels subgrups de la 3-torsió: la 3-torsió té 4 subgrups cíclics, tots ells
d’ordre 3:

Ordre Subgrup
3 {O, (1,2), (1,9)}
3 {O, (8,3z), (8,8z)}
3 {O, (2z+1,z+9), (2z+1,10z+2)}
3 {O, (9z+1,z+2), (9z+1,10z+9)}

Exercici 9.1 Donada la corba de l’exemple anterior (Exemple 9.2), calculeu el grau d’immersió d’E
respecte a n = 5,7 i 15.

9.2.3 El divisor d’una funció

Per acabar la presentació de les eines matemàtiques que ens permetran definir els pairings, exposarem el
concepte de divisor d’una funció.
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Abans, però, definirem els conceptes de funció racional, i els zeros i pols d’aquestes.

Definició 9.4 Una funció racional f (x) és una funció que pot ser expressada com a una divisió de
polinomis en la qual el denominador no és 0 (és a dir, f (x) = q(x)/p(x) amb p(x) ̸= 0). Quan el numerador
q(x) i el denominador p(x) no tenen arrels en comú, diem que la funció està en forma reduïda.

Definició 9.5 Els zeros d’una funció racional són els punts en què f (x) = 0 mentre que els pols són els
punts en què f (x) =±∞.

Donada una funció racional en forma reduïda expressada amb els polinomis factoritzats:

f (x) =
a(x−α1)

µ1(x−α2)
µ2 · · ·(x−αn)

µn

b(x−β1)ν1(x−β2)ν2 · · ·(x−βn)νn
(9.1)

els zeros corresponen als valors αi mentre que els pols són els β j. Noteu que αi ̸= β j per a qualsevol i i j, ja
que la funció es troba en forma reduïda. Direm que els µi i els νi són la multiplicitat de cada zero i de cada
pol, respectivament.

A més, si el grau del polinomi del numerador difereix del grau del polinomi del denominador (deg(q(x)) ̸=
deg(p(x))), hi haurà un zero o un pol a l’infinit. En concret, si deg(q(x)) > deg(p(x)) hi haurà un zero a
l’infinit i si deg(q(x)) < deg(p(x)) hi haurà un pol a l’infinit. La multiplicitat del zero o del pol serà la
diferència entre els graus dels polinomis (|deg(q(x))−deg(p(x))|), de manera que l’ordre total de zeros i
pols és igual.

Els divisors són una eina que es fa servir per descriure els zeros i els pols d’una funció. Donada una funció
racional:

f (x) = c∏
i
(x−αi)

µi (9.2)

escriurem:

div( f ) = ∑
i

µi ⟨αi⟩

En primer lloc, noteu com l’equació 9.2 és equivalent a l’equació 9.1. Només cal expressar els factors que
es trobaven al denominador amb valors negatius als exponents. En segon lloc, és important interpretar el
divisor com a tal, i evitar operar com si estiguéssim treballant amb números (o, més endavant, amb punts de
la corba). Per aquest motiu, es fan servir les claus ⟨ i ⟩ per denotar que no estem parlant d’un enter (o un
punt) αi sinó d’un zero o un pol en aquell punt (més endavant tornarem a fer incís en aquest detall, quan
definim els divisors sobre corbes el·líptiques). Per últim, cal destacar que efectivament el divisor ens permet
anotar els pols i zeros de la funció, ja que ens descriu a on són i quina multiplicitat tenen.

Exemple 9.3 Zeros i pols d’una funció

La funció:

f (x) =
(x−1)2

(x+2)3 = (x−1)2(x+2)−3

té un zero de multiplicitat 2 a x = 1 i un pol de multiplicitat 3 a x = −2. Addicionalment, la funció té
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un zero de multiplicitat 1 a l’infinit, ja que el grau del denominador és superior al del numerador en una
unitat.

Observant la representació gràfica de la funció, podem veure que efectivament és zero en x = 1 i tendeix a
infinit en x =−2:

6 4 2 0 2 4

600

400

200

0

200

400

f(x) = (x 1)2

(x + 2)3

Per tant, podem descriure els pols i zeros de la funció f amb el divisor:

div( f ) = 2⟨1⟩−3⟨−2⟩+ ⟨∞⟩

Exercici 9.2 Indiqueu el divisor de la funció racional:

f (x) =
(x−1)3(x+5)2

(x−12)4

És interessant notar com es reflecteixen les operacions entre funcions en els divisors:

div( f ·g) = div( f )+div(g) (9.3)

div( f/g) = div( f )−div(g) (9.4)

Exemple 9.4 Operacions entre funcions

Donades les funcions:
f (x) = (x−1)2

g(x) =
1

(x+2)3

amb divisors:
div( f ) = 2⟨1⟩−2⟨∞⟩
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div(g) =−3⟨−2⟩+3⟨∞⟩

podem comprovar com el divisor del seu producte és la suma del divisor de cadascuna d’elles:

f (x)g(x) = (x−1)2 · 1
(x+2)3 =

(x−1)2

(x+2)3 = (x−1)2(x+2)−3

div( f ·g) = 2⟨1⟩−3⟨−2⟩+ ⟨∞⟩= div( f )+div(g)

i que el divisor del seu quocient és la resta del divisor de cadascuna d’elles:

f (x)
g(x)

=
(x−1)2

1
(x+2)3

= (x−1)2(x+2)3

div( f/g) = 2⟨1⟩+3⟨−2⟩−5⟨∞⟩= div( f )−div(g)

A més, dues funcions que tenen el mateix divisor són iguals excepte per una constant i el divisor d’una funció
és zero si i només si la funció és constant.

En la criptografia basada en corbes el·líptiques, es fan servir divisors per descriure els punts d’intersecció
d’una corba E amb una funció f (x), de manera que s’utilitzen per descriure els zeros i els pols de la funció
E− f (x).

Definició 9.6 Sigui E una corba el·líptica. Un divisor sobre E és una suma formal:

D = ∑
P∈E

np⟨P⟩

on els np són enters i on tots els np excepte un nombre finit són zero.

És a dir, ara els zeros i pols seran punts de la corba el·líptica (P ∈ E), i n’expressarem la seva multiplicitat
amb els enters np, de la mateixa manera que ho fèiem anteriorment amb funcions racionals definides sobre
els reals.

De nou, és important diferenciar la suma de punts d’una corba (que denotàvem amb el símbol +, per exemple,
P1 +P2) i la multiplicació escalar d’un enter per un punt (que denotàvem per sP o bé s ·P) de la suma formal
que conforma un divisor (que denotem fent servir també el símbol + i de manera similar a la multiplicació
escalar, però indicant els punts dins de les claus, s1⟨P1⟩+ s2⟨P2⟩).

Exemple 9.5 Divisors de les rectes que defineixen la suma

Ja hem fet servir funcions sobre corbes el·líptiques a l’inici d’aquest capítol, quan descrivíem com sumar
dos punts d’una corba el·líptica. Recapitulant, el procediment per calcular la suma entre dos punts requeria
del càlcul de la recta que passava per aquests dos punts (o bé de la recta tangent a la corba en aquell punt,
en l’operació de doblat) i de la recta vertical que passava pel tercer (o segon, en el cas del doblat) punt
d’intersecció de la corba. A continuació descriurem els divisors d’aquestes funcions.

Anomenem lP1,P2 a la funció que representa la recta que passa pels punts P1 i P2 (recta que tracem per a
calcular la suma P1 +P2, representada en blau a la figura següent) per a P1 ̸= P2. Aleshores podem escriure
els divisors de la funció lP1,P2 :

div(lP1,P2) = ⟨P1⟩+ ⟨P2⟩+ ⟨−(P1 +P2)⟩−3⟨O⟩
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ja que efectivament la funció lP1,P2 interseca la corba E en els punts P1, P2 i −(P1 +P2) (el punt simètric al
resultat de la suma).

4 2 0 2 4

4

2

0

2

4

P1

P2

S= P1 + P2

S 0= (P1 + P2)

Per al cas en què els dos punts a sumar són iguals (línia blava a la figura següent), aleshores tenim que:

div(lP1,P1) = 2⟨P1⟩+ ⟨−2P1⟩−3⟨O⟩

4 2 0 2 4

4

2

0

2

4

P1

S 0= 2P1

S=2P1

Anomenem vS a la funció que representa la recta vertical que passa pels punts S i −S (línia taronja de les
dues figures anteriors). Aleshores, podem dir que:

div(vS) = ⟨S⟩+ ⟨−S⟩−2⟨O⟩

ja que la funció vS interseca la corba E en els punts S i S′.

Tot i que ja es pot intuir de la descripció que s’ha fet dels divisors de funcions racionals, en els propers
paràgrafs acabarem d’aprofundir en la multiplicitat del punt O de les funcions anteriors.

A continuació es defineixen algunes característiques dels divisors.

El suport d’un divisor D és el conjunt de tots els punts P que tenen el coeficient np diferent de zero. Dos
divisors D1 i D2 tenen un suport disjunt si la intersecció entre el suport de tots dos és un conjunt buit (és a
dir, no tenen punts en comú al suport).
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El grau d’un divisor D és la suma dels coeficients np:

deg(D) = ∑
P∈E

np

Un divisor D és un divisor principal si existeix una funció racional f tal que D = div( f ), és a dir, si
representa els zeros i els pols d’una funció racional. Equivalentment podem afirmar que un divisor és
principal si i només si té grau zero i ∑P∈E npP = O . Noteu que en aquesta última expressió no hi ha les claus
⟨ i ⟩, de manera que aquí s’està calculant el sumatori de multiplicacions escalars (a diferència de l’expressió
del divisor).

Exemple 9.6 Divisors de les rectes que defineixen la suma

A l’Exemple 9.5 hem vist els divisors de les rectes que es fan servir per a sumar punts (lP1,P2 , lP1,P1 i vS),
deduint-los a partir de la definició de les pròpies rectes:

div(lP1,P2) = ⟨P1⟩+ ⟨P2⟩+ ⟨−(P1 +P2)⟩−3⟨O⟩

div(lP1,P1) = 2⟨P1⟩+ ⟨−2P1⟩−3⟨O⟩

div(vS) = ⟨S⟩+ ⟨−S⟩−2⟨O⟩

No hem descrit amb detall, però, per què aquests divisors inclouen el punt a l’infinit O ni la seva
multiplicitat. Doncs bé, com que les funcions que defineixen aquestes rectes són funcions racionals, els
seus divisors són principals i, per tant, han de tenir grau zero. Per això la multiplicitat de O a div(l) i
div(v) és −3 i −2, respectivament.

Exemple 9.7 Divisors principals

Sigui P ∈ E un punt de la corba el·líptica E, tal que l’ordre de P és n. Aleshores, el divisor:

D = n⟨P⟩−n⟨O⟩

és un divisor principal.

En efecte, el divisor compleix les dues propietats necessàries per ser principal:

deg(D) = ∑
P∈E

np = n−n = 0

∑
P∈E

npP = nP−nO = O

Noteu que com que l’ordre del punt P és n, nP = O .

Cal destacar també que en aquest cas sabem que existeix una funció racional que té com a divisor D (ja
que el divisor és principal) però, a diferència de l’exemple anterior (Exemple 9.6), ara no la coneixem.
Més endavant, a la propera subsecció, veurem com construir funcions que tinguin un divisor concret.

Dos divisors D1 i D2 són equivalents si difereixen en un divisor principal, és a dir, si D = D1−D2 és un
divisor principal. Com que un divisor principal té grau zero, dos divisors equivalents tenen el mateix grau.
Per denotar que dos divisors són equivalents, escrivim D1 ∼ D2.

Ja per acabar, només ens queda descriure l’avaluació d’una funció en un divisor, cosa que ens permetrà
il·lustrar el teorema de la reciprocitat de Weil. L’avaluació d’una funció racional f en un divisor
D = ∑P∈E np⟨P⟩ amb el suport de D i de div( f ) disjunts es defineix com:
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f (D) = ∏
P∈E

f (P)nP

Per tal de poder avaluar la funció f en un divisor D, els suports de D i de div( f ) han de ser disjunts, ja que si
P ∈ div( f ) aleshores f (P) seria zero o infinit i, per tant, f (D) també ho seria.

Això ens permet descriure el teorema de la reciprocitat de Weil, que és la base de moltes de les propietats
que es fan servir en criptografia basada en pairings:

Teorema 9.1 Siguin f i g dues funcions diferents de zero en una corba el·líptica tals que div( f ) i div(g)
tenen suports disjunts. Aleshores, f (div(g)) = g(div( f )).

Exemple 9.8 Reciprocitat de Weil

A continuació comprovarem la reciprocitat de Weil per a una corba i funcions concretes, tot aprofitant per
exemplificar els diferents conceptes presentats en aquesta secció. Aquest exemple està basat en l’exemple
3.3.1 del manual Pairings for beginners de Craig Costello.

Donada una corba E/Z503 : y2 = x3 + 1 i les funcions f (x,y) = 20y+9x+179
199y+187x+359 i g(x,y) = y+ 251x2 +

129x+201 sobre E, els divisors d’ f i g són:

div( f ) = 2⟨433,98⟩+ ⟨232,113⟩−⟨432,27⟩−2⟨127,258⟩

div(g) = ⟨413,369⟩+ ⟨339,199⟩+ ⟨147,443⟩+ ⟨124,42⟩−4⟨O⟩

Pel que fa als divisors d’ f , noteu com efectivament els punts (433,98) i (232,113) són punts on el
numerador d’ f és 0; i els punts (432,27) i (127,258) són punts on el denominador és 0.

(433,98) : 20y+9x+179 = 20 ·98+9 ·433+179 mod 503 = 0
(232,113) : 20y+9x+179 = 20 ·113+9 ·232+179 mod 503 = 0
(432,27) : 199y+187x+359 = 199 ·27+187 ·432+359 mod 503 = 0
(127,258) : 199y+187x+359 = 199 ·258+187 ·127+359 mod 503 = 0

A més, tots ells pertanyen a la corba E:

982 = 4333 +1 mod 503

1132 = 2323 +1 mod 503

272 = 4323 +1 mod 503

2562 = 1273 +1 mod 503

De manera similar, pel que fa als divisors de g, els punts (413,369), (339,199), (147,443), (124,42) són
punts on el numerador és 0 i, a més, pertanyen a la corba E (els càlculs són anàlegs i es deixen com a
exercici per al lector).

Pel que fa al grau i el suport dels divisors d’ f i g, podem dir que:

deg(div( f )) = 2+1−1−2 = 0

deg(div(g)) = 1+1+1+1−4 = 0
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sup(div( f )) = {(433,98),(232,113),(432,27),(127,258)}

sup(div(g)) = {(413,369),(339,199),(147,443),(124,42),O}

sup(div( f ))∩ sup(div(g)) = /0

Els dos divisors són principals, ja que el seu grau és 0 i, a més:

div( f ) = 2(433,98)+(232,113)− (432,27)−2(127,258) = O

div(g) = (413,369)+(339,199)+(147,443)+(124,42)−4 ·O = O

Com que el suport dels dos divisors és disjunt, podem calcular l’avaluació de la funció f en el divisor
div(g):

f (div(g)) = f (413,369) · f (339,199) · f (147,443) · f (124,42) · f (O)−4 =

=
20 ·369+9 ·413+179

199 ·369+187 ·413+359
· 20 ·199+9 ·339+179

199 ·199+187 ·339+359
· 20 ·443+9 ·147+179

199 ·443+187 ·147+359
·

· 20 ·42+9 ·124+179
199 ·42+187 ·124+359

·
(

20 ·1+9 ·0+179
199 ·1+187 ·0+359

)−4

= 321

Cal remarcar que per a la resta de punts de la corba, els enters np són 0 i, per tant, el resultat del seu factor
és sempre 1.

Coordenades
projectives

Noteu que per a calcular l’avaluació d’ f en el punt O hem considerat que x = 0 i y = 1.
Això és així ja que s’ha utilitzat la representació en coordenades projectives, de manera
que O = (0 : 1 : 0). El lector interessat en aprendre aquesta representació pot consultar
The arithmetics of Elliptic Curves de Joseph H. Silverman.

També podem calcular l’avaluació de la funció g en el divisor div( f ):

g(div( f )) =g(433,98)2 ·g(232,113) ·g(432,27)−1 ·g(127,258)−2 =

=(98+251 ·4332 +129 ·433+201)2 · (113+251 ·2322 +129 ·232+201)·
· (27+251 ·4322 +129 ·432+201)−1 · (258+251 ·1272 +129 ·127+201)−2 =

=321

Així doncs, efectivament, f (div(g)) = g(div( f )) = 321.

9.2.4 Construcció de funcions a partir del divisor

Com a últim apunt abans de presentar la construcció explícita dels pairings de Weil i de Tate, veurem com
podem construir funcions amb un divisor donat.

Un divisor d’especial importància en la definició dels pairings és el divisor:

div( fm,P) = m⟨P⟩−⟨mP⟩− (m−1)⟨O⟩

per a qualsevol enter m i qualsevol P ∈ E. El divisor és un divisor principal, ja que el grau és zero (en efecte,
m−1− (m−1) = 0) i ∑P∈E npP = mP−mP− (m−1)O =O . Per tant, sempre existeix una funció racional
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fm,P per a qualsevol m i P.

A més, si el punt P pertany a la r-torsió, aleshores:

div( fr,P) = r⟨P⟩−⟨rP⟩− (r−1)⟨O⟩=
= r⟨P⟩−⟨O⟩− (r−1)⟨O⟩=
= r⟨P⟩− r⟨O⟩

Sabem que existeix una funció racional fm,P per a qualsevol m i P ja que el divisor és principal, però
necessitem saber com trobar aquesta funció. Doncs bé, podem construir fm,P iterativament, a partir d’una
funció constant de divisor zero, de la manera següent:

fm+1,P = fm,P ·
lmP,P

v(m+1)P
(9.5)

on lmP,P és la recta que passa pels punts mP i P, i v(m+1)P és la recta vertical que passa pel punt (m+1)P
(recordeu que hem descrit aquestes funcions a l’Exemple 9.5).

Noteu com, efectivament, div( fm+1,P) = div( fm,P ·
lmP,P

v(m+1)P
):

div( fm+1,P) = (m+1)⟨P⟩−⟨(m+1)P⟩−m⟨O⟩

div( fm,P) = m⟨P⟩−⟨mP⟩− (m−1)⟨O⟩

div(lmP,P) = ⟨mP⟩+ ⟨P⟩+ ⟨−(m+1)P⟩−3⟨O⟩

div(v(m+1)P) = ⟨(m+1)P⟩+ ⟨−(m+1)P⟩−2⟨O⟩

i, fent servir les Equacions 9.3 i 9.4, veiem que:

div( fm,P ·
lmP,P

v(m+1)P
) =

= div( fm,P)+div(lmP,P)−div(v(m+1)P) =

=
(

m⟨P⟩−⟨mP⟩− (m−1)⟨O⟩
)
+
(
⟨mP⟩+ ⟨P⟩+ ⟨−(m+1)P⟩−3⟨O⟩

)
−

−
(
⟨(m+1)P⟩+ ⟨−(m+1)P⟩−2⟨O⟩

)
=

= m⟨P⟩+ ⟨P⟩+ ⟨mP⟩−⟨mP⟩+ ⟨−(m+1)P⟩−⟨−(m+1)P⟩−⟨(m+1)P⟩−
− (m−1)⟨O⟩−3⟨O⟩+2⟨O⟩=

= (m+1)⟨P⟩−⟨(m+1)P⟩−m⟨O⟩=
= div( fm+1,P)

El divisor d’una funció la determina excepte múltiples escalars diferents de zero, de manera que podrem
construir funcions amb uns divisors concrets fent servir l’Equació 9.5.

Exemple 9.9 Construcció de la funció fr,P

Procedim a construir la funció f3,P per a P = (2,11) ∈ E/Z23 : y2 = x3− x.

La funció f3,P es construeix iterativament a partir d’ f1,P, la funció constant amb divisor zero:

f1,P = 1

Per a construir f2,P cal calcular la funció lP,P i la funció v2P.
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La funció lP,P és la recta tangent a la corba que passa pel punt P:

m =
3x2

1 +a
2y1

mod p =
3 ·22−1

2 ·11
mod 23 = 12

y = mx+b; 11 = 12 ·2+b; b = 10

lP,P : y = 12x+10

La funció v2P és la recta vertical que passa pel punt 2P:

2P = 2(2,11) = (2,12)

v2P : x = 2

Aleshores:

f2,P = f1,P ·
(

lP,P
v2P

)
=

y−12x−10
x−2

=
y+11x+13

x+21

Per últim, es calcula f3,P a partir d’ f2,P:

f3,P = f2,P · vP =
y+11x+13

x+21
(x−2) = y+11x+13

9.3 Construcció explícita dels pairings de Weil i Tate

Arribats a aquest punt, ja estem en disposició de poder descriure els pairings de Weil i de Tate.

9.3.1 El pairing de Weil

.

Siguin P,Q ∈ E/Fpk [r] dos punts de la r-torsió d’una corba el·líptica i DP,DQ dos divisors
de grau zero amb suports disjunts tals que:

DP ∼ ⟨P⟩−⟨O⟩

DQ ∼ ⟨Q⟩−⟨O⟩

Existeixen funcions f i g tals que:

div( f ) = rDP

div(g) = rDQ

El pairing de Weil és una aplicació que rep un parell de punts de la r-torsió i retorna una
arrel r-èsima de la unitat, definida com:

wr(P,Q) =
f (DQ)

g(DP)
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Arrels de la
unitat

Una arrel de la unitat és un número que elevat a un enter positiu dona 1. Quan l’enter
positiu és 2, parlem d’arrels quadrades; i quan és 3, d’arrels cúbiques.

Exemple 9.10 Càlcul del pairing de Weil

A continuació calcularem el pairing de Weil per a dos punts concrets d’una corba el·líptica. Aquest
exemple està basat en l’exemple 5.1.1 del manual Pairings for beginners de Craig Costello.

La corba E/Z23 : y2 = x3− x té #E/Z23 = 24 elements.

El punt P = (2,11) té ordre r = 3.

El grau d’immersió de la corba respecte a r = 3 és k = 2, ja que 3 ∤ 23−1 però en canvi 3 | 232−1.

Hi ha 9 punts a la 3-torsió:

E/(Z23/(z2 +1))[3] =[O,(2,11),(2,12),(21,11z),(21,12z),(5z,2z+2),(5z,21z+21),
(18z,2z+21),(18z,21z+2)]

Calcularem el pairing de Weil w3(P,Q) per a P = (2,11) i Q = (21,12z), dos punts que pertanyen a la
3-torsió.

En primer lloc, hem de trobar els divisors de grau zero DP i DQ amb suports disjunts, i equivalents a
⟨P⟩−⟨O⟩ i ⟨Q⟩−⟨O⟩, respectivament. Per fer-ho, seleccionem dos punts addicionals aleatoris de la corba
sobre el cos estès, R = (17z,2z+21) i S = (10z+18,13z+13), i fixem els divisors DP i DQ com:

DP = ⟨P+R⟩−⟨R⟩

DQ = ⟨Q+S⟩−⟨S⟩

Noteu com efectivament els divisors tenen grau zero i suports disjunts:

deg(DP) = deg(DQ) = 1−1 = 0

sup(DP) = {P+R,R}= {(z+16,18z+20),(17z,2z+21)}

sup(DQ) = {Q+S,S}= {(19z+22,12z+10),(10z+18,13z+13)}

sup(DP)∩ sup(DQ) = /0

A més, els divisors són efectivament equivalents a ⟨P⟩−⟨O⟩ i ⟨Q⟩−⟨O⟩. En efecte, el divisor D′P resultant
de restar ⟨P⟩−⟨O⟩ a DP és un divisor principal:

D′P = DP− (⟨P⟩−⟨O⟩) = ⟨P+R⟩−⟨R⟩−⟨P⟩+ ⟨O⟩

deg(D′P) = 1−1−1+1 = 0

(P+R)−R−P+O = O

Els càlculs per a DQ són anàlegs.
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En segon lloc, necessitem trobar les funcions f i g que tenen com a divisors 3DP i 3DQ, respectivament.
Podem trobar f i g com:

f = f3,P

(
vP+R

lP,R

)3

g = f3,Q

(
vQ+S

lQ,S

)3

on l i v són les funcions que descriuen la recta que passa per dos punts i la recta vertical que passa per un
punt, respectivament.

Efectivament, el divisor de f és 3DP (els càlculs per a g són equivalents i s’ometen per brevetat):

div( f ) = div( f3,P)+3(div(vP+R)−div(lP,R)) =

=
(

3⟨P⟩−3⟨O⟩
)
+3
(
⟨−(P+R)⟩+ ⟨P+R⟩−2⟨O⟩−⟨P⟩−⟨R⟩−⟨−(P+R)⟩+3⟨O⟩

)
=

= 3⟨P+R⟩−3⟨R⟩

Procedim doncs a construir les funcions f i g. Per a construir f , cal trobar les funcions vP+R, lP,R i f3,P:

La funció vP+R és la recta vertical que passa pel punt P+R:

P+R = (2,11)+(17z,2z+21) = (z+16,18z+20)

vP+R : x = z+16

La funció lP,R és la recta que passa pels punts P i R:

m =
y2− y1

x2− x1
mod p =

2z+21−11
17z−2

= 6z+13

y = mx+ c;c = y−mx = 11−2(6z+13) = 11z+8

lP,R : y = (6z+13)x+(11z+8)

La funció f3,P es construeix iterativament a partir d’ f1,P, tal com hem vist a l’Exemple 9.9.

f3,P = y+11x+13

Així doncs, la funció f és:

f (x,y) = f3,P

(
vP+R

lP,R

)3

= (y+11x+13) ·
(

x− z−16
y− (6z+13)x− (11z+8)

)3

De la mateixa manera, per a construir g cal trobar les funcions vQ+S, lQ,S i f3,Q. A continuació es
proporcionen aquestes funcions, i es deixa com a exercici per al lector els càlculs individuals per a
trobar-les:

Exercici 9.3 Trobeu les funcions vQ+S, lQ,S i f3,Q.

vQ+S : x = 19z+22

lQ,S : y = (3z+1)x+(18z+2)
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f3,Q : y =−11zx−10z

De manera que la funció g és:

g(x,y) = f3,Q

(
vQ+S

lQ,S

)3

= (y+11zx+10z) ·
(

x−19z−22
y− (3z+1)x− (18z+2)

)3

En tercer lloc i ja per acabar, procedim a calcular el pairing de Weil:

w3(P,Q) =
f (DQ)

g(DP)
=

f (Q+S)g(R)
f (S)g(P+R)

=
(7z+22)(21z+22)
(5z+4)(15z+1)

= 15z+11

Noteu com, efectivament, 15z+11 és una arrel 3-èsima de la unitat, ja que (15z+11)3 = 1.

A partir de l’exemple anterior, podem veure ara alguns dels efectes de la bilinealitat del pairing de Weil:

Exemple 9.11 Bilinealitat en el pairing de Weil

A l’exemple anterior hem calculat el pairing de Weil per a P = (2,11) i Q = (21,12z). A continuació
veurem exemples de bilinealitat en el pairing de Weil per a aquests punts concrets.

Els punts resultants de doblar P i Q són 2P = (2,12) i 2Q = (21,11z).

Si calculem el pairing de Weil de 2P i Q o bé el de P i 2Q, veurem que són iguals, i també que coincideixen
amb el quadrat del de P i Q:

w3(2P,Q) = w3(P,2Q) = 8z+11 = (15z+11)2 = w3(P,Q)2

9.3.2 El pairing de Tate

En la definició bàsica del pairing de Tate, el resultat del pairing per un parell de punts concret no és únic.
Com que en aplicacions criptogràfiques aquesta característica és problemàtica, habitualment s’utilitza el
pairing de Tate reduït, que no és res més que el pairing de Tate elevat a (qk−1)/r. Així, s’aconsegueix que
el resultat sigui una arrel r-èsima de la unitat, i que per cada parell de punts el valor del pairing sigui únic.
En aquest text descrivim doncs directament el pairing de Tate reduït.

.

Siguin P,Q ∈ E/Fqk [r] dos punts de la r-torsió d’una corba el·líptica. Existeix una funció
f tal que:

div( f ) = r⟨P⟩− r⟨O⟩

Sigui DQ un divisor de grau zero amb suport disjunt de div( f ) i tal que:

DQ ∼ ⟨Q⟩−⟨O⟩

El pairing de Tate reduït és una aplicació que rep un parell de punts de la r-torsió i retorna
una arrel r-èsima de la unitat, definida com:

tr(P,Q) = f (DQ)
(qk−1)/r
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A diferència del pairing de Weil, en el pairing de Tate només cal que un dels punts pertanyi a la r-torsió (el
punt P que descriu el divisor d’ f ), i el segon punt pot no ser-hi (però ha de complir unes propietats concretes
que no són trivials de definir). Com que els punts de la r-torsió les compleixen, per simplicitat en aquest
document seleccionem sempre punts que hi pertanyin.

Exemple 9.12 Càlcul del pairing de Tate

A continuació calcularem el pairing de Tate reduït per als mateixos dos punts que en l’exemple anterior
(Exemple 9.10).

Sigui E/Z23 : y2 = x3− x la corba el·líptica, amb P = (2,11),Q = (21,12z) ∈ E/(Z23/(z2 + 1))[3]. El
grau d’immersió de la corba respecte a r = 3 és k = 2.

En primer lloc, trobem una funció f amb divisor 3⟨P⟩−3⟨O⟩. Tal com hem calculat a l’exemple anterior,
la funció f3,P : y+11x+13 té aquest divisor.

En segon lloc, trobem un divisor DQ de grau zero amb suport disjunt al divisor d’ f i equivalent a ⟨Q⟩−⟨O⟩.
Per fer-ho, podem fer servir la mateixa estratègia que a l’exemple del pairing de Weil: seleccionem un
punt S aleatori i fixem:

DQ = ⟨Q+S⟩−⟨S⟩

Per al punt S = (10z+18,13z+13), tenim doncs que:

DQ = ⟨(19z+22,12z+10)⟩−⟨(10z+18,13z+13)⟩

Noteu que en aquest cas no ens cal calcular la funció que té per divisor DQ.

Finalment, calculem el pairing de Tate reduït:

tr(P,Q) = f (DQ)
(pk−1)/r =

(
f (Q+S)

f (S)

)(qk−1)/r

=

(
f (19z+22,12z+10)
f (10z+18,13z+13)

)(232−1)/3

=

=

(
14z+12
8z+17

)176

= 15z+11

De nou, podem comprovar com el resultat del pairing és una arrel 3-èsima de la unitat: (15z+11)3 = 1.

Exemple 9.13 Bilinealitat en el pairing de Tate

De la mateixa manera que amb el pairing de Weil, podem veure també un exemple concret de les propietats
de bilinealitat del pairing de Tate a partir dels valors de l’exemple anterior.

Recordem que P = (2,11), Q = (21,12z), 2P = (2,12) i 2Q = (21,11z).

Si calculem el pairing de Tate de 2P i Q o bé el de P i 2Q, veurem que són iguals, i també que coincideixen
amb el quadrat del de P i Q:

tr(2P,Q) = tr(P,2Q) = 8z+11 = (15z+11)2 = tr(P,Q)2

9.4 Algorismes criptogràfics basats en pairings

En aquesta secció es descriuen algorismes criptogràfics que fan servir pairings. En primer lloc, veurem
l’esquema de signatura BLS, que permet fer signatures curtes i, a més, permet agregar-les. A continuació,
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descriurem la criptografia basada en la identitat i explicarem un dels algorismes d’aquesta família, l’algorisme
de xifratge de Boneh-Franklin.

9.4.1 L’esquema de signatura BLS

L’esquema de signatura digital BLS (anomenat així per les inicials dels cognoms dels seus creadors, Dan
Boneh, Ben Lynn i Hovav Shacham) va ser proposat l’any 2001. L’esquema fa servir un pairing bilineal per
a la verificació de signatures.

La característica principal d’aquest esquema de signatura digital és que produeix signatures curtes: la mida
de la signatura digital és la meitat de la tindria una signatura DSA amb el mateix nivell de seguretat. Això
fa que l’esquema sigui idoni per a situacions amb poc ample de banda o quan és necessari que un humà
transcrigui la signatura digital manualment.

L’esquema de signatura BLS fa servir un pairing i una funció hash. Sigui e : G0×G1→ GT un pairing
on G0,G1 i GT són grups cíclics d’ordre primer q amb G0 ∈G0 i G1 ∈G1 elements generadors dels grups.
Sigui H una funció hash que relaciona els missatges de l’espai de missatges a elements de G0.

.

L’algorisme de generació de claus BLS consta dels passos següents:
1. Es tria un enter aleatori α ∈R Zq.
2. Es calcula u = α ·G1 ∈G1.
3. La clau pública és kpub = u, mentre que la clau privada és kpriv = α .

L’algorisme de generació de claus és doncs anàleg al de l’ECDSA: es tria un enter aleatori que serà la clau
privada i es multiplica aquest enter pel generador d’un grup cíclic, que és un paràmetre públic del sistema.
La clau pública és un element de G1, és a dir, un punt d’una corba el·líptica.

Les claus generades per l’algorisme anterior es poden fer servir per a generar i validar signatures digitals
fent servir els algorismes següents:

.

A partir d’un missatge en clar m, la clau privada de l’emissor kpriv = α , i els paràmetres
de domini, es calcula la signatura digital BLS del missatge:

1. Es calcula σ = α ·H(m) ∈G0
2. La signatura és el valor σ .

L’algorisme de signatura requereix de l’ús d’una funció hash que s’aplica al missatge abans de signar-lo, i
que el converteix en un element del grup G0, és a dir, en un punt de la corba el·líptica. Una vegada es té la
representació del missatge m en el grup G0, només cal calcular una multiplicació escalar entre el punt de la
corba que representa el missatge i la clau privada. Convé destacar que la signatura és doncs un punt d’una
corba el·líptica (un element de G0), de manera que si la representació dels punts és curta, la signatura també
ho serà.

Fins aquí només s’ha fet ús de corbes el·líptiques però encara no s’ha introduït l’ús del pairing. L’algorisme
de verificació de la signatura és precisament el punt de l’esquema que requereix de l’ús de pairings:

.
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A partir d’un missatge en clar m, la clau pública kpub, els paràmetres de domini i una
signatura del missatge σ , els passos següents permeten verificar una signatura BLS:

1. Es verifica que e(H(m),u) = e(σ ,G1).
2. Si la igualtat es compleix, aleshores la signatura és vàlida i la verificació finalitza

correctament. En cas contrari, la signatura es considera invàlida i la verificació
fracassa.

Convé notar com una signatura digital correcta serà donada per vàlida per l’algorisme de verificació, ja que
per les propietats de bilinealitat del pairing:

e(H(m),u) = e(H(m),αG1) = e(H(m),G1)
α = e(αH(m),G1) = e(σ ,G1)

L’esquema de signatura BLS és determinista, ja que donats uns paràmetres de domini, una clau privada
i un missatge en clar, la signatura que es produeix és única. Això el diferencia de la variant clàssica de
l’algorisme de signatura ECDSA, que és probabilístic.

Exemple 9.14 Exemple de signatura i validació amb BLS

Sigui E/Z43 : y2 = x3 +7x una corba el·líptica d’ordre 44. Farem servir com a grups cíclics G0 i G1 dos
subgrups cíclics de la 11-torsió. El grau d’immersió de la corba respecte a r = 11 és k = 2. L’exemple
utilitzarà com a pairing e el pairing de Weil (w11).

Sigui G0 = (4,7) el generador del subgrup cíclic G0 i G1 = (2,8z) el generador del subgrup cíclic G1
(tots dos d’ordre 11). G0 es troba en el cos base (G0 < E/Z43), mentre que G1 es troba al cos estès
E/(F432/z2 +1).

Abans de signar, l’usuari ha de disposar d’un parell de claus. Per aconseguir-les, l’usuari executa
l’algorisme de generació de claus:

1. Tria un enter aleatori α = 5 ∈R Z43.
2. Calcula u = α ·G1 = 5(2,8z) = (39,7z) ∈G1.
3. La clau pública és kpub = (39,7z), mentre que la clau privada és kpriv = 5.

Ara, l’usuari pot signar executant l’algorisme de generació de la signatura. Suposem que la representació
del missatge m al subgrup G0 és H(m) = (41,35). Efectivament, H(m) ∈ G0 ja que H(m) = 2G0.
Recordeu que ja hem vist a la secció 8.4.3 com crear funcions hash que retornin punts d’una corba
concreta.

1. Es calcula σ = α ·H(m) = 5(41,35) = (4,36) ∈G0
2. La signatura és el valor σ = (4,36).

Un receptor pot verificar la signatura a partir del missatge m, la signatura σ , i la clau pública kpub (i
coneixent els paràmetres de domini que són públics):

1. El receptor verifica que e(H(m),u) = e(σ ,G1).
(a) e(H(m),u) = w11((41,35),(39,7z)) = 34z+7.
(b) e(σ ,G1) = w11((4,36),(2,8z)) = 34z+7.

2. Com que la igualtat es compleix, la signatura és vàlida.

Exercici 9.4 Suposeu que es fa servir l’esquema de signatura BLS amb la construcció ingènua de la
funció hash H següent:

H(m) = H ′(m) ·G1
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on H ′(m) = SHA-1(m) mod q. Expliqueu perquè aquesta construcció no és segura.

Més enllà de produir signatures curtes, l’esquema de signatura BLS té algunes propietats addicionals que
el fan especialment interessant. El BLS permet agregació de signatures i esquemes de signatures llindar.
A continuació descriurem com construir un esquema de signatures agregables en base a l’algorisme de
signatura BLS.

Agregació de signatures

.

Els esquemes de signatura digital que permeten agregació de signatures es caracteritzen
per permetre comprimir diverses signatures (sobre diferents missatges i amb diferents
claus) en una sola signatura agregada, que es pot fer servir per verificar totes les signatures
de cop. Aquesta signatura agregada té una longitud similar a la d’una signatura individual,
independentment del nombre de signatures que comprimeixi.

De la mateixa manera que un esquema de signatura queda definit per tres algorismes (generació de claus,
signatura i verificació), els esquemes que permeten agregació de signatures incorporen dos algorismes
addicionals: l’agregació de signatures i la verificació d’una signatura agregada. L’agregació de signatures
rep un conjunt de signatures (i, en alguns esquemes, les claus públiques associades) i genera una única
signatura agregada. Com que l’agregació de signatures no requereix de claus privades ni de la interacció
dels signants, qualsevol persona (amb coneixement de les signatures i les claus públiques) pot executar
l’algorisme i generar una signatura agregada. Això implica que l’agregació de signatures es pot fer amb
posterioritat a la creació de les signatures. La verificació de signatures rep una signatura agregada i el conjunt
de missatges que s’han signat (i, en alguns esquemes, les claus públiques associades), i valida que totes les
signatures que resumeix la signatura agregada siguin correctes.

Els esquemes de signatura digital que permeten agregació de signatures són útils en diversos escenaris. Per
exemple, en la verificació d’una cadena de certificats digitals, és habitual haver de validar diverses signatures,
des del certificat a comprovar fins al certificat arrel de la CA en el qual es confia. Un altre escenari on
l’agregació de signatures és especialment interessant és en criptomonedes basades en cadena de blocs, on
té diverses aplicacions. D’una banda, en les transaccions amb múltiples entrades, permetria agregar les
signatures de cada entrada en una sola signatura, cosa que redueix la mida d’aquestes transaccions. La mida
de les transaccions és crítica en sistemes blockchain, ja que és un dels grans limitadors de l’escalabilitat
del sistema. D’altra banda, l’agregació de signatures també permetria implementar sortides multisignatura
de manera eficient. Les sortides multisignatura són sortides de transaccions que requereixen més d’una
signatura per a ser gastades. Aquestes sortides especifiquen un conjunt de claus públiques i un llindar
de signatures mínim necessàries per a autoritzar el pagament. Així, per tal de gastar aquestes sortides es
requereix habitualment d’un conjunt de signatures. Si es disposa d’un esquema amb agregació de signatures,
aquest conjunt de signatures a proporcionar es pot resumir en una única signatura, oferint de nou millores en
la longitud de les transaccions. Addicionalment, alguns esquemes d’agregació de signatures també permeten
agregar les claus públiques, cosa que redueix encara més la mida de les transaccions i ofereix privadesa
afegida.

BLS i Ethereum Les primeres versions de les criptomonedes Bitcoin i Ethereum feien servir ECDSA.
La nova versió d’Ethereum (Eth2) que es troba actualment en desplegament (2021)
incorpora signatures BLS, amb l’objectiu d’accelerar la verificació de signatures.
Bitcoin incorpora des de novembre de 2021 l’ús de signatures Schnorr, que també
permeten agregació.

A continuació es descriu l’algorisme d’agregació de signatures BLS ingenu, que permet agregar signatures
però no és segur. Més endavant es descriu el problema de seguretat d’aquesta versió de l’algorisme i una
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modificació que permet solucionar-lo.

.

A partir d’un conjunt d’n claus públiques K pub = {kpub
1 , · · · ,kpub

n } i d’un conjunt d’n
signatures Σ = {σ1, · · · ,σn} es calcula la signatura agregada σag:

1. Es calcula la signatura agregada σag = σ1 + · · ·+σn
2. La signatura agregada és el valor σag ∈G0.

L’agregació de signatures consisteix doncs en la suma de punts de la corba G0, que conformen les signatures
individuals, i la signatura agregada és també un punt de la mateixa corba. Noteu com el procés d’agregació
de signatures no requereix ni dels missatges signats ni de les claus privades que han generat les signatures.

.

A partir d’un conjunt d’n claus públiques K pub = {kpub
1 , · · · ,kpub

n }, d’un conjunt d’n
missatges M = {m1, · · · ,mn} i d’una signatura agregada σag, els passos següents permeten
verificar la signatura agregada:

1. Es comprova si e(σag,G1)
?
= e(H(m1),k

pub
1 ) · · · · · e(H(mn),k

pub
n )

2. La signatura agregada és vàlida (i, per tant, totes les signatures individuals que
resumeix es consideren vàlides) si la comprovació del pas anterior es fa amb èxit.
En cas contrari, es rebutja la signatura agregada.

L’algorisme de verificació dona per vàlida una signatura agregada que comprimeix un conjunt de signatures
individuals vàlides per les propietats del pairing:

e(σag,G1) = e(σ1 + · · ·+σn,G1) =

= e(σ1,G1) · · · · · e(σn,G1) =

= e(α1H(m1),G1) · · · · · e(αnH(mn),G1) =

= e(H(m1),α1G1) · · · · · e(H(mn),αnG1) =

= e(H(m1),k
pub
1 ) · · · · · e(H(mn),kpub

n )

La verificació de signatures agregades es pot calcular de manera especialment eficient quan el missatge
signat és el mateix per a totes les signatures, és a dir, quan m = m1 = m2 = · · · = mn. En aquests casos,
l’equació de verificació es pot simplificar:

e(σag,G1)
?
= e(H(m1),k

pub
1 ) · · · · · e(H(mn),kpub

n )

e(σag,G1)
?
= e(H(m),kpub

1 ) · · · · · e(H(m),kpub
n )

e(σag,G1)
?
= e(H(m),kpub

1 + · · ·+ kpub
n )

de manera que es passa de necessitar calcular n+1 pairings a calcular-ne només 2.

Exercici 9.5 Aquest exercici fa servir els mateixos paràmetres de domini que l’Exemple 9.14. Sigui
E/Z43 : y2 = x3+7x una corba el·líptica d’ordre 44; G0 i G1 dos subgrups cíclics de la 11-torsió generats
per G0 = (4,7) i G1 = (2,8z), respectivament; i e el pairing de Weil (wr).

També aprofitem el parell de claus i la signatura generades a l’Exemple 9.14:

kpriv
1 = 5, kpub

1 = (39,7z)

m = (41,35), σ1 = (4,36)
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1. Sigui kpriv
2 = 7 la clau privada d’un segon usuari. Genereu la seva clau pública.

2. Genereu una signatura σ2 de l’usuari 2 per al missatge m = (41,35).
3. Agregueu les dues signatures (σ1 i σ2) en una sola signatura agregada σag.
4. Verifiqueu la signatura agregada σag fent servir l’algorisme de verificació de signatura agregada.
5. Verifiqueu de nou la signatura agregada σag, aprofitant que els dos missatges signats són idèntics.

Per a facilitar la resolució de l’exercici, a continuació es proporcionen alguns valors precalculats:

G0 = (4,7)
2G0 = (41,35)
3G0 = (15,30)
4G0 = (17,1)
5G0 = (10,9)
6G0 = (10,34)
7G0 = (17,42)
8G0 = (15,13)
9G0 = (41,8)

10G0 = (4,36)
11G0 = O

G1 = (2,8z)

2G1 = (26,42z)

3G1 = (33,9z)

4G1 = (28,30z)

5G1 = (39,7z)

6G1 = (39,36z)

7G1 = (28,13z)

8G1 = (33,34z)

9G1 = (26,a)
10G1 = (2,35z)

11G1 = O

wr((41,35),(2,8z)) = 40z+11
wr((41,35),(39,7z)) = 34z+7

wr((41,35),(28,13z)) = 35z+18

L’algorisme que acabem de presentar és, però, vulnerable a atacs de clau pública múrria (en anglès, es
coneixen amb el nom de rogue public key attacks). En aquests atacs un atacant és capaç de generar una
signatura agregada vàlida que inclou una signatura d’un missatge m per part d’una víctima V sense que la
víctima hagi proporcionat tal signatura.

L’atac de clau pública múrria fa servir la clau pública d’una víctima kpubV = uV i genera una signatura
agregada σag vàlida que inclou una signatura de la víctima del missatge m. L’atac consta dels passos següents:

1. L’atacant selecciona un enter aleatori α ∈R Zq.
2. L’atacant calcula la clau pública auxiliar kpubA = uA = α ·G1 ∈G1.
3. L’atacant calcula la clau pública múrria kpubM = uA−uV ∈G1.
4. L’atacant calcula la signatura agregada σag = α ·H(m).
5. L’atacant presenta la signatura agregada σag per al conjunt de missatges M = {m,m} amb claus

públiques K pub = {kpubV ,kpubM}

Noteu que l’adversari fa servir la clau pública kpubM per a l’atac, però que en desconeix la clau privada
corresponent (l’adversari ha creat aquesta clau pública combinant la clau pública de la víctima i la clau
pública auxiliar que ha generat i per a la qual sí que en coneix la clau privada).

Exercici 9.6 Demostreu que l’atac de clau pública múrria aconsegueix generar una signatura agregada
vàlida en la versió bàsica del BLS fent servir les propietats de bilinealitat del pairing.

Aquest atac trenca la seguretat de l’esquema de signatura agregada ingènua que hem descrit i motiva la creació
de variants que en siguin resistents. Es coneixen diferents variants de l’esquema segures i, a continuació, en
descriurem una d’elles.

L’algorisme d’agregació de signatures BLS segur parteix d’una variant modificada de l’algorisme de
signatures BLS:

.
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A partir d’un missatge en clar m, el parell de claus de l’emissor (kpriv = α i kpub = u =
α ·G1 ∈G1), i els paràmetres de domini, es calcula la signatura digital BLS modificada
del missatge:

1. Es calcula σ = α ·H(kpub,m)
2. La signatura és el valor σ .

És a dir, la signatura es fa no només sobre el missatge m sinó també sobre la clau pública del signant kpub,
impedint així l’atac de clau pública múrria que hem vist anteriorment. Això requereix de la utilització d’una
funció hash H que rebi dos valors (el primer de G1 i el segon de l’espai de missatges) i retorni un valor de
G0.

L’algorisme d’agregació de signatures es manté tal com l’hem definit anteriorment. L’algorisme de verificació
de signatures agregades es modifica lleugerament de manera anàloga al procés de signatura:

.

A partir d’un conjunt d’n claus públiques K pub = {kpub
1 , · · · ,kpub

n }, d’un conjunt d’n
missatges M = {m1, · · · ,mn} i d’una signatura agregada σag, els passos següents permeten
verificar la signatura agregada:

1. Es comprova si e(σag,G1)
?
= e(H(kpub

1 ,m1),k
pub
1 ) · · ·e(H(kpub

n ,mn),k
pub
n )

2. La signatura agregada és vàlida si la comprovació del pas anterior es fa amb èxit. En
cas contrari, es rebutja la signatura agregada.

Demostració La demostració de perquè aquesta variant és segura queda fora de l’abast d’aquest
text. El lector interessat pot consultar l’article original Compact Multi-Signatures for
Smaller Blockchains de Dan Boneh, Manu Drijvers i Gregory Neven per a llegir-ne els
detalls.

9.4.2 Criptografia basada en la identitat

Els pairings permeten també construir esquemes de xifratge amb propietats addicionals als sistemes de
xifratge tradicionals.

En els esquemes de xifratge de clau pública tradicionals, per tal d’enviar un missatge xifrat a una persona
caldrà que en coneguem la seva clau pública. Ja hem vist com aquesta associació entre una clau pública i la
identitat d’un usuari es fa habitualment amb un certificat digital. Per tant, per aconseguir la clau pública del
receptor del missatge, l’emissor pot demanar-li el seu certificat digital o bé pot descarregar-lo d’un repositori
públic de certificats. En qualsevol dels dos casos, l’emissor necessita aconseguir i validar la clau pública del
receptor abans de poder iniciar el procés de xifratge del missatge. El xifratge basat en la identitat, proposat
per Adi Shamir el 1984, permet evitar aquest procés previ i fer servir la identitat del receptor directament
com a la seva clau pública.

Tot i que la idea del xifratge basat en la identitat va ser proposada el 1984, en aquell moment només es
coneixia un esquema de signatura basat en la identitat (proposat pel mateix Shamir). No va ser fins al 2001
quan Dan Boneh i Matthew K. Franklin van proposar el primer esquema de xifratge basat en la identitat, que
utilitzava el pairing de Weil sobre corbes el·líptiques.

.

El xifratge basat en la identitat (IBE, de l’anglès, Identity Based Encryption) és un tipus
de xifratge de clau pública en què la clau pública d’un usuari es deriva directament d’una
informació única sobre la identitat d’aquest usuari.
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En els esquemes de xifratge basat en la identitat, qualsevol cadena de caràcters que identifiqui a l’usuari
pot ser utilitzada per a calcular la clau pública. Cal, però, que aquest identificador sigui únic entre tots els
usuaris de l’esquema. Alguns exemples d’identificadors habituals són el correu electrònic, el número de
telèfon o el nom de domini.

Els esquemes de xifratge basats en la identitat requereixen d’una entitat de confiança, que és l’encarregada
de generar les claus dels usuaris. L’entitat de confiança disposa d’un parell de claus mestra. La clau pública
mestra és coneguda per totes les entitats del sistema i es fa servir en el procés de xifratge, mentre que la clau
privada mestra és secreta (només coneguda per l’entitat de confiança). Aquesta clau privada mestra es fa
servir per a derivar les claus privades dels usuaris.

Per tant, els usuaris necessiten interactuar amb l’entitat de confiança per tal d’obtenir les claus privades
associades als seus identificadors, de manera que cal que l’entitat de confiança pugui autenticar els usuaris
(per assegurar que obtenen la clau privada d’un identificador propi) i disposi d’un canal confidencial amb els
usuaris (per transmetre’ls la clau privada).

Així, els usuaris d’un esquema IBE es poden intercanviar missatges xifrats sense necessitat d’haver tingut
cap contacte previ entre ells per tal d’intercanviar-se les claus públiques però, en canvi, sí que caldrà que els
usuaris puguin comunicar-se amb l’entitat de confiança.

El flux d’informació a l’hora de xifrar no és l’única diferència entre els esquemes IBE i els esquemes de clau
pública tradicionals. Una altra diferència és la necessitat d’existència de les claus prèvia al procés de xifratge.
En un esquema tradicional, l’usuari ha de generar un parell de claus abans de poder rebre un missatge xifrat.
En canvi, amb IBE, l’usuari pot rebre un missatge xifrat per al qual encara no se n’ha generat la clau privada.

En una infraestructura de clau pública tradicional existeixen mecanismes de revocació dels certificats digitals,
que permeten gestionar situacions com ara el compromís de les claus privades dels usuaris. En els esquemes
basats en IBE, les claus públiques no es poden revocar, ja que no hi ha cap manera de comunicar a l’emissor
que una clau ha estat revocada: l’emissor fa servir la identitat de l’usuari i la clau pública mestra per a xifrar
un missatge, sense comunicar-se amb cap entitat que pugui informar-lo de la possible revocació d’una clau.
Per a solucionar aquesta limitació, els esquemes IBE acostumen a combinar l’identificador de l’usuari amb
una cadena que representi el període de temps en què es considera vàlida la clau. D’aquesta manera, una
mateixa clau només és vàlida durant un període de temps concret, cosa que limita les possibles conseqüències
d’una pèrdua o compromís.

Exemple 9.15 Identificadors per a IBE

Us sistema IBE per a correu electrònic pot fer servir com a identificador d’usuari el correu de l’usuari
concatenat amb la data, de manera que les claus tindrien una vigència d’un dia.

Així, per exemple, l’identificador 2021-09-30:info@uoc.edu seria la clau pública associada a l’adreça
info@uoc.edu vàlida durant el dia 30 de setembre de 2021.

Fent servir aquest mateix format, es poden enviar correus que només es poden desxifrar en el futur, per
exemple, xifrant un correu per a l’identificador 2221-09-30:info@uoc.edu.

Una altra diferència notable dels esquemes IBE és que incorporen implícitament un sistema de recuperació
de claus. Com que l’entitat de confiança pot calcular totes les claus privades de tots els usuaris, l’entitat
de confiança pot recuperar qualsevol clau del sistema. A més, pot fer-ho sense necessitat de guardar claus
individuals, ja que les claus privades dels usuaris es deriven directament de la clau privada mestra.

Els esquemes IBE consten dels tres algorismes habituals en els esquemes de xifratge (generació de claus,
xifratge i desxifratge) més un algorisme addicional d’inicialització, que consisteix en la generació del parell
de claus de l’entitat de confiança. Els dos algorismes de generació de claus (el de l’entitat de confiança i el
dels usuaris del sistema) són executats per l’entitat de confiança. Els algorismes de xifratge i desxifratge són
executats pels usuaris de l’esquema (emissors i receptors de missatges), com en els esquemes de xifratge
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tradicionals.

L’esquema bàsic de Boneh-Franklin

A continuació es presenta una de les construccions de xifratge basat en la identitat proposades per Dan Boneh
i Matthew K. Franklin. La construcció fa servir pairings sobre corbes el·líptiques.

Sigui e : G0×G1 → GT un pairing on G0,G1 i GT són grups cíclics d’ordre primer q amb G0 ∈ G0 i
G1 ∈G1 elements generadors dels grups.

L’esquema d’IBE fa ús d’un criptosistema de clau simètrica (tal que m = Dk(Ek(m))) i de dues funcions
hash. Sigui H0 una funció hash que relaciona els missatges de l’espai d’identificadors a elements de G0 i H1
una funció hash que relaciona parells de G1×GT amb les claus del criptosistema simètric.

L’algorisme d’inicialització és executat per l’entitat de confiança per tal de generar el parell de claus mestre:

.

L’algorisme d’inicialització consisteix en la generació del parell de claus mestre de
l’entitat de confiança C i consta dels passos següents:

1. Es tria un enter aleatori α ∈R Zq.
2. Es calcula u1 = α ·G1 ∈G1.
3. La clau pública mestra és kCpub = u1, mentre que la clau privada mestra és kCpriv = α .

L’algorisme de generació de claus d’un usuari és executat també per l’entitat de confiança, en el moment en
què l’usuari li sol·licita la clau privada associada al seu identificador:

.

L’algorisme de generació de claus d’un usuari rep la identitat id de l’usuari i la clau
privada mestra kCpriv = α i executa els passos següents:

1. L’entitat de confiança C calcula skid = α ·H0(id) ∈G0.
2. La clau pública de l’usuari és kpub = id, mentre que la clau privada és kpriv = skid .

L’algorisme de xifratge consisteix en la derivació d’una clau simètrica k a partir de l’identificador del receptor
i la clau pública mestra. Aquesta clau simètrica es fa servir per a xifrar el missatge amb un algorisme de
xifratge simètric.

.

A partir d’un missatge en clar m, la identitat del receptor id, i la clau pública mestra
kCpub = u1, es calcula el missatge xifrat:

1. Es tria un enter aleatori β ∈R Zq.
2. Es calcula w1 = β ·G1 ∈G1.
3. Es calcula el pairing z = e(H0(id),βu1) ∈GT .
4. Es calcula la clau simètrica k = H1(w1,z).
5. Es calcula el missatge xifrat c = Ek(m).
6. La sortida és la tupla (w1,c).

Noteu com l’usuari pot xifrar sense obtenir la clau pública de l’usuari, ja que aquesta és directament
l’identificador.

L’algorisme de desxifratge procedeix a derivar la clau simètrica k amb què s’ha xifrat el missatge, a partir de
la informació que rep de l’emissor i la clau privada de l’usuari (que ha obtingut de l’entitat de confiança).
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.

A partir d’un missatge xifrat (w1,c) i la clau secreta d’un usuari kpriv = skid , es calcula el
missatge desxifrat:

1. Es calcula el pairing z = e(skid ,w1) ∈GT .
2. Es calcula la clau simètrica k = H1(w1,z).
3. Es calcula el missatge en clar m = Dk(c).
4. La sortida és el missatge en clar m.

L’algorisme serà correcte si la clau simètrica que es fa servir al desxifrar és exactament la mateixa que
s’utilitza al xifrar. La clau simètrica k es deriva dels valors w1 i z, i el valor w1 es transmet com a part del
text xifrat. Per tant, cal comprovar que les z que es calculen en els algorismes de xifratge i desxifratge són
les mateixes. En efecte, per les propietats del pairing, podem veure com els valors z fets servir pels dos
algorismes coincideixen:

e(skid ,w1) = e(α ·H0(id),β ·G1) =

= e(H0(id),G1)
αβ =

= e(H0(id),α ·G1)
β =

= e(H0(id),u1)
β =

= e(H0(id),β ·u1)
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9.5 Resum

En aquest capítol s’han presentat els pairings sobre corbes el·líptiques, tot descrivint-ne les seves propietats.
Després, d’una banda, s’han descrit les eines matemàtiques necessàries per entendre la seva formulació
explícita i s’ha explicat com construir-los. D’altra banda, s’han presentat els algorismes criptogràfics més
populars que els fan servir: un esquema de signatures que permet agregació (l’esquema BLS) i un esquema
de criptografia basada en la identitat (l’esquema de Boneh-Franklin).
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9.6 Solucions dels exercicis

Exercici 9.1:

El grau d’immersió d’E respecte a n = 5 és k = 1 ja que 5 | 112−1.

El grau d’immersió d’E respecte a n = 7 no està definit, ja que 7 ∤ 15.

El grau d’immersió d’E respecte a n = 15 no està definit, ja que 15 no és primer.

Exercici 9.2:

La funció pot expressar-se com:

f (x) =
(x−1)3(x+5)2

(x−12)4 = (x−1)3(x+5)2(x−12)−4

i, per tant:

div( f ) = 3⟨1⟩+2⟨−5⟩−4⟨12⟩−⟨∞⟩

Exercici 9.3:

La funció vQ+S és la recta vertical que passa pel punt Q+S:

Q+S = (21,12z)+(10z+18,13z+13) = (19z+22,12z+10)

vQ+S : x = 19z+22

La funció lQ,S és la recta que passa pels punts Q i S:

m =
y2− y1

x2− x1
=

13z+13−12z
10z+18−21

= 3z+1

y = mx+ c;c = y−mx = 12z−21(3z+1) = 18z+2

lQ,S : y = (3z+1)x+(18z+2)

La funció fr,Q es construeix iterativament a partir d’ f1,Q:

f1,Q = 1

f2,Q = f1,Q

(
lQ,Q

v2Q

)
=

y+11zx+10z
x−21

f3,Q = f2,Q vQ =
y+11zx+10z

x−21
(x−21) = y+11zx+10z

Exercici 9.4:

La signatura d’un missatge m seria:

σ = α ·H(m) =

= α ·H ′(m) ·G1 =

= H ′(m) ·α ·G1 =

= H ′(m) ·u

i, per tant, la signatura dependria únicament del missatge m i la clau pública u. Així doncs, un atacant podria
crear signatures vàlides només amb informació pública.
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Exercici 9.5:

1. Calculem la clau pública:

kpub
2 = α ·G1 = 7(2,8z) = (28,13z) ∈G1

2. Calculem la signatura:

σ2 = α2 ·H(m) = 7(41,35) = (15,30) ∈G0

3. Calculem la signatura agregada:

σag = σ1 + · · ·+σn = σ1 +σ2 = (4,36)+(15,30) = (41,35)

4. Per validar la signatura agregada es comprova si e(σag,G1)
?
= e(H(m1),k

pub
1 ) · e(H(m2),k

pub
2 ):

e(σag,G1) = e((41,35),(2,8z)) = 40z+11

e(H(m1),k
pub
1 ) · e(H(m2),k

pub
2 ) = e((41,35),(39,7z)) · e((41,35),(28,13z)) = 40z+11

La igualtat es compleix, de manera que la signatura agregada és vàlida.

5. Per validar la signatura agregada aprofitant que les dues signatures corresponen al mateix missatge
comprovem si e(σag,G1)

?
= e(H(m),kpub

1 + · · ·+ kpub
n ):

e(σag,G1) = e((41,35),(2,8z)) = 40z+11

e(H(m),kpub
1 + · · ·+ kpub

n ) = e((41,35),(39,7z)+(28,13z)) = 40z+11

De nou, la igualtat es compleix de manera que la signatura agregada és vàlida.

Exercici 9.6:

Per validar la signatura agregada, el verificador comprovarà si

e(σag,G1)
?
= e(H(m),kpubV ) · e(H(m),kpubM)

Com que:

e(σag,G1) = e(αH(m),G1) =

= e(H(m),αG1) =

= e(H(m),kpubA) =

= e(H(m),kpubV + kpubM) =

= e(H(m),kpubV ) · e(H(m),kpubV )

la verificació serà correcta i la signatura agregada serà donada per vàlida.
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9.7 Bibliografia

Boneh, Dan; Lynn, Ben; i Shacham, Hovav (2001). Short signatures from the Weil pairing. International
conference on the theory and application of cryptology and information security. Springer, Berlin, Heidelberg.

Boneh, Dan; Drijvers, Manu; i Neven, Gregory (2018). Compact Multi-Signatures for Smaller Blockchains.
International Conference on the Theory and Application of Cryptology and Information Security.

Boneh, Dan; i Victor Shoup (2020). A graduate course in applied cryptography.

Costello, Craig (2012). Pairings for beginners.

Martin, Luther (2008). Introduction to identity-based encryption. Artech house.

Kerry, Cameron F.; i Charles Romine (2013). NIST FIPS PUB 186-4: Digital Signature Standard (DSS).

Open University, The (2016). Further pure mathematics: Group theory.

Paar, Christof, and Jan Pelzl (2009). Understanding cryptography: a textbook for students and practitioners.
Springer Science & Business Media.

Perlroth, Nicole (2013). Government announces steps to restore confidence on encryption standards. The
New York Times.

Schwennesen, Ben; i Hubert Bray (2016). Elliptic curve cryptography and government backdoors.

Warburton, David (2019). The 2019 TLS Telemetry Report. F5.

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


IV

10 Protocols criptogràfics . . . . . . . . . . . . . . 297
10.1 El protocol de tres passos de Shamir
10.2 Esquemes de compartició de secrets
10.3 Esquemes de compromís de bit
10.4 Signatures cegues
10.5 Signatures d’anell
10.6 Proves de coneixement nul
10.7 Protocol de transferència inconscient
10.8 Protocols de recuperació privada d’informació
10.9 Protocol multipart segur
10.10 Resum
10.11 Solucions dels exercicis
10.12 Bibliografia

Protocols criptogràfics





10. Protocols criptogràfics

Més enllà dels mecanismes per xifrar i desxifrar missatges el cert és que la criptografia permet construccions
més elaborades que continuen tenint el mateix objectiu que els criptosistemes: protegir la informació. Així,
ens podem trobar diferents situacions on calguin protocols que ens garanteixin un seguit de propietats de
seguretat que els criptosistemes per si sols no poden proporcionar. És en aquest punt on intervenen els
protocols criptogràfics, protocols entre dos o més usuaris que utilitzen mecanismes criptogràfics per protegir
la informació.

En aquest capítol estudiarem diversos protocols criptogràfics cada un d’ells amb un propòsit diferent. Llevat
de l’esquema de compartició de secrets, els protocols descrits en aquest capítol són protocols en els que hi
intervenen dos usuaris i no es contempla l’existència de cap tercera part de confiança. Així, les operacions es
realitzen, sovint de forma conjunta, entre els dos usuaris per aconseguir l’objectiu del protocol. La suposició
que es fa en tot moment és que els usuaris poden actuar de forma deshonesta de manera que és important que
els propis protocols incorporin els mecanismes de seguretat necessaris per tal que, en cas que una part actuï
de forma maliciosa, l’altra part no se’n vegi afectada o, com a mínim, pugui detectar l’engany.

10.1 El protocol de tres passos de Shamir

El protocol de tres passos de Shamir, va ser proposat per A. Shamir tot i que no el va publicar mai. El
protocol permet establir una comunicació secreta entre dues parts sense cap intercanvi previ de claus. La
base del protocol és una funció de xifratge commutativa respecte a les claus. És a dir, serà el mateix xifrar un
missatge m amb una clau k1 i el resultat tornar-lo a xifrar amb una clau k2, que xifrar-lo primer amb la clau
k2 i el resultat xifrar-lo amb la k1, és a dir:

Ek1(Ek2(m)) = Ek2(Ek1(m))

Passem a descriure el protocol de tres passos de Shamir en el qual l’Alice vol fer arribar el missatge m al
Bob. Per fer-ho, l’Alice disposarà d’una clau per xifrar, ke

A i una clau per desxifar kd
A i el Bob també tindrà

una clau per xifrar ke
B i una per desxifrar kd

B. Denotarem per Eke
A
(m) l’acció de xifrar el missatge m amb

la clau de xifrat ke
A de l’Alice. Igualment, denotarem per Dkd

A
(c) el desxifrat del missatge c amb la clau de

desxifrat kd
A de l’Alice.
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En l’esquema de la Taula 10.1 es poden veure els diferents passos del protocol i la informació que s’intercan-
vien els usuaris que hi participen.

Taula 10.1: Esquema de 3 passos de Shamir
Pas Alice Bob
1. Calcula c1 = Eke

A
(m)

c1−→
2. c2←− Calcula c2 = Eke

B
(c1) = Eke

B
(Eke

A
(m))

3. Calcula c3 = Dkd
A
(Eke

B
(Eke

A
(m))) =

= Dkd
A
(Eke

A
(Eke

B
(m))) = Eke

B
(m)

c3−→
4. Calcula m = Dkd

B
(c3) = Dkd

B
(Eke

B
(m))

Com podem veure, al final del protocol l’Alice ha fet arribar a Bob el missatge m de forma segura ja que
en cap dels missatges que s’han intercanviat en cada un dels tres passos el missatge m no ha viatjat en clar.
Així, un atacant que estigui analitzant les comunicacions entre A i B no podrà extreure cap informació de m.
Noteu, a més, que en cap moment s’ha produït un intercanvi de claus. L’Alice només coneix ke

A i kd
A i en Bob

només ke
B i kd

B.

En els següents apartats veurem alguns criptosistemes que tenen la propietat de commutativitat de claus i
quins resultats presenten quan s’utilitzen com a esquema de xifrat en el protocol de tres passos de Shamir.

10.1.1 El xifrat de Vernam i el protocol de tres passos de Shamir

Un dels criptosistemes que hem presentat en aquest llibre és el criptosistema de Vernam, que seria el
criptosistema més segur que existeix ja que, utilitzant una bona clau, ens aporta seguretat incondicional. Si
recordem, el mecanisme tant de xifrat com de desxifrat d’aquest criptosistema és molt simple. Donat un
missatge m expressat en bits, i una clau k de la mateixa mida que el missatge també expressada en bits, la
funció de xifrat consisteix en fer una XOR entre el missatge i la clau, és a dir Ek(m) = m⊕ k = c. D’altra
banda, per desxifrar el missatge c simplement haurem de fer de nou una XOR amb la mateixa clau k amb la
que hem xifrat Dk(c) = c⊕ k = m.

Si ens hi fixem, aquest criptosistema presenta commutativitat de claus, ja que si tenim dues claus k1 i k2 es
compleix que:

Ek1(Ek2(m)) = (m⊕ k2)⊕ k1 = (m⊕ k1)⊕ k2 = Ek2(Ek1(m))

ja que l’operació XOR és commutativa.

Així, si utilitzem el criptosistema de Vernam per al protocol de tres passos de Shamir entre A i B tenim que
les claus de xifrar i desxifrar per a cada usuari són la mateixa, és a dir, ke

A = kd
A = kA i ke

B = kd
B = kB i en els

tres intercanvis d’informació del protocol es generaran els missatges mostrats en l’esquema de la Taula 10.2.

Taula 10.2: Esquema de tres passos de Shamir amb el xifrat de Vernam
Pas Alice Bob
1. Calcula c1 = m⊕ kA

c1−→
2. c2←− Calcula c2 = c1⊕ kB

3. Calcula c3 = c2⊕ kA = m⊕ kB
c3−→

4. Calcula m = c3⊕ kB

Tot i que aparentment hem aconseguit desenvolupar el protocol correctament utilitzant un dels criptosistemes
més segurs que hi ha, el problema està en que un atacant que pugui veure la comunicació en té prou en
prendre nota dels tres missatges xifrats que s’intercanvien l’Alice i en Bob, ja que un cop intercepta c1,c2 i
c3 per obtenir el missatge xifrat m només cal que faci una suma XOR dels tres:

c1⊕ c2⊕ c3 = (m⊕ kA)⊕ (m⊕ kA⊕ kB)⊕ (m⊕ kB) = m
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Per tant, podem concloure que a l’hora d’utilitzar un criptosistema per al protocol de tres passos de Shamir
no en tindrem prou en assegurar-nos que compleixi la commutativitat de les claus sinó que caldrà anar en
compte sobre la relació que tenen els missatges una vegada han estat xifrats.

Aquest fet ens fa veure que, més enllà d’aquest exemple concret, en la creació de protocols criptogràfics és
important no només que cada una de les eines criptogràfiques que s’utilitza sigui segura sinó que a més, la
seva combinació ho continuï essent, fet que com hem vist, no sempre succeeix.

10.1.2 El criptosistema d’exponenciació

Un altre esquema amb commutativitat de claus el va proposar el mateix A. Shamir. Aquest sistema es
basa amb l’exponenciació i la seva seguretat recau en la dificultat del càlcul del logaritme discret. És un
criptosistema semblant amb l’RSA però no s’ha de confondre amb l’RSA ja que en aquest cas les dues claus
que s’utilitzen, una per xifrar i l’altra per dexifrar, són dues claus secretes que únicament estan en possessió
d’un sol usuari.

En primer lloc es tria un paràmetre per a l’intercanvi, un primer p gran. Totes les operacions es realitzaran al
cos Zp. L’Alice genera les seves claus de la següent manera. Tria com a clau de xifrat ke

A un valor aleatori
i com a clau de desxifrat calcula el valor kd

A tal que ke
A · kd

A = 1 (mod p−1). La funció de xifrat per a un
missatge m serà Eke

A
(m) = mke

A (mod p). La funció de desxifrat d’un missatge c serà Dkd
A
(c) = ckd

A (mod p).

De la mateixa manera, en Bob generarà les seves claus ke
B i kd

B i utilitzarà les mateixes funcions de xifrat i
desxifrat. Amb aquestes condicions el protocol queda descrit en l’esquema de la Taula 10.3.

Taula 10.3: Esquema de tres passos de Shamir amb el xifrat d’exponenciació
Pas Alice Bob
1. Calcula c1 = mke

A (mod p) c1−→
2. c2←− Calcula c2 = (c1)

ke
B mod p

3. Calcula c3 = (c2)
kd

A mod p = mke
B mod p

c3−→
4. Calcula m = (c3)

kd
B mod p

Fixeu-vos que, en aquest cas, un atacant que intercepti els tres missatges de la comunicació, c1,c2 i c3 no
podrà obtenir cap informació sobre el missatge transmès ja que les claus per xifrar només les coneixen A i B.

Exemple 10.1 Exemple de protocol de tres passos de Shamir amb el criptosistema d’exponenciació.
En aquest exemple suposarem que els dos usuaris treballen amb el paràmetre p = 131. A més, l’usuari
A disposarà de la clau de xifrat ke

A = 21 i de la clau de desxifrat kd
A = (ke

A)
−1 (mod p−1) = 31. D’altra

banda, l’usuari B també tindrà el seu parell de claus. La de xifrat serà ke
B = 27 i la de desxifrat kd

B = (ke
B)
−1

(mod p−1) = 53.

Amb aquests paràmetres, l’usuari A vol enviar de forma secreta el missatge m = 15 a B i per fer-ho els
passos del protocol seran els següents:

Pas Alice Bob

1. c1 = 1521 (mod 131) = 125 125−−→
2. 27←− c2 = (125)27 mod 131 = 27

3. c3 = (27)31 mod 131 = 129 129−−→
4. m = (129)53 mod 131 = 15
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Exercici 10.1 Reproduïu el protocol de tres passos de Shamir per tal que A enviï el missatge m = 20 a
B utilitzant el criptosistema d’exponenciació on la clau de xifrat d’A val ke

A = 19 la clau de desxifrat d’A
val kd

A = 79 i les corresponents claus de xifrat i desxifrat de B valen ke
B = 13 i kd

B = 77 respectivament.
Suposarem, també, que p = 101.

10.2 Esquemes de compartició de secrets

Quan volem emmagatzemar un secret cal tenir en compte que hi ha situacions en les que el secret no pot ser
guardat de forma centralitzada perquè hi ha el perill que aquesta centralització esdevingui un punt feble en
la seguretat. En aquestes situacions el concepte de centralització pot tenir diferents vessants. Per exemple,
imaginem-nos que tenim el codi d’obertura d’una caixa forta però no volem que estigui custodiat per una sola
persona perquè té el perill que aquesta persona pugui marxar amb tots els diners. Voldríem poder distribuir
aquest codi de manera que més d’una persona fos necessària per a l’obertura de la caixa forta.

Una altra situació, potser més quotidiana, és l’emmagatzemament de contrasenyes. Si emmagatzemem
la contrasenya en un únic lloc, si aquest lloc sofrís algun incident perdríem la clau. Podríem solucionar
aquest problema guardant la mateixa clau en diferents llocs, però això implicaria una reducció de la seguretat
ja que les probabilitats que algú la trobi són més grans. Al igual que el que hem fet amb la caixa forta,
podríem repartir el valor de la clau en diferents fragments. Fixeu-vos que en aquest cas, la possibilitat de
poder recuperar la clau només amb alguns fragments (i no necessàriament amb tots) és important ja que si
els necessitem tots per recuperar-la, tornem a estar en el punt de partida: si un dels llocs on hi ha un dels
fragments de la clau sofrís algun incident no podríem recuperar la clau i també l’hauríem perduda.

Per resoldre aquests tipus de situacions tenim els esquemes de compartició de secrets. Aquests esquemes
van ser proposats de forma independent l’any 1979 per Adi Shamir i George Blakley.

.

Un esquema de compartició de secrets llindar (m,n) (en anglès (m,n)-threshold secret
sharing scheme), és un esquema que permet distribuir un secret en n fragments diferents de
manera que si s’ajunten m o més fragments es pot recuperar el secret, però no és possible
obtenir cap informació del secret si es disposen de menys d’m fragments.

Si assumim l’escenari en el qual volem repartir un secret S entre diferents usuaris, un esquema de compartició
de secrets llindar (m,n) està format per n usuaris, u1, · · · ,un. Cada usuari té el seu corresponent fragment si
del secret S. A més cal que es compleixin les següents propietats:

1. Per a tot i = 1, · · · ,n, l’usuari ui només coneix el seu fragment si.
2. El secret S es pot obtenir a partir d’m valors diferents si per a qualsevol i ∈ {1, · · · ,n}.
3. Donats m−1 valors diferents, si, no es pot obtenir cap informació d’S.

10.2.1 Esquema de compartició de secrets polinòmic

Un esquema per compartir secrets llindar (m,n) força utilitzat és el proposat per A. Shamir basat en la
interpolació polinòmica.

Suposem que volem compartir el secret S utilitzant un esquema de llindar (m,n). Això vol dir que hem de
crear n fragments i que en tenim prou en tenir-ne m per reconstruir-lo, però que menys d’aquesta quantitat
no ens serà suficient. En aquest tipus d’esquema hi haurà un superusuari, el gestor, que serà l’encarregat de,
partint del secret S, generar els n fragments. Com a paràmetres públics tindrem un nombre primer p tal que
p > n i p > S.

Per construir els fragments, el gestor construeix un polinomi a(x) de grau m−1 amb coeficients ai a Zp, és a
dir a(x) ∈ Zp[x]. Aquest polinomi tindrà com a coeficients valors aleatoris, llevat del terme independent que
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serà exactament el valor secret S, és a dir, podem expressar el polinomi de la següent manera:

a(x) = S+a1x+a2x2 + · · ·+am−1xm−1 (mod p)

La generació dels fragments es realitzarà de la següent manera. El gestor tria n valors aleatoris de Zp,
{x1, · · · ,xn}, i per a cada valor en calcula la seva avaluació pel polinomi, és a dir, a(xi) = S+a1xi +a2x2

i +
· · ·+am−1xm−1

i (mod p).

El polinomi a(x) es manté en secret i només el coneix el gestor, però es pot eliminar una vegada s’han
generats els fragments.

Cada participant rep com a fragment del secret el parell {xi,a(xi)}, és a dir, un valor xi i la seva avaluació en
el polinomi, a(xi).

Podrem recuperar el secret si tenim m fragments plantejant el següent sistema d’equacions:

a(x1) = S+a1x1 +a2x2
1 + · · ·+am−1xm−1

1 (mod p)

a(x2) = S+a1x2 +a2x2
2 + · · ·+am−1xm−1

2 (mod p)
...

...
a(xm) = S+a1xm +a2x2

m + · · ·+am−1xm−1
m (mod p)

Si ens fixem, en aquest sistema hi tenim m incògnites corresponents als m coeficients dels polinomis
S,a1,a2, · · · ,am−1 i també hi ha m equacions, per la qual cosa al resoldre’l obtindrem el valors de les
incògnites i en particular la que ens interessa, que és el valor secret S. A més, aquest sistema sempre tindrà
solució i serà única perquè hi intervé el determinant de Vandermonde.

Exemple 10.2 Exemple de protocol de compartició de secrets llindar (3,5)

Suposem que tenim cinc usuaris u1,u2,u3,u4,u5 que volen repartir-se el valor secret S = 673. Per fer-ho
utilitzaran l’esquema de compartició de secrets polinòmic de Shamir i treballaran amb el primer p = 1931.

Passem a descriure els dos processos d’un esquema de compartició de secrets: la generació dels fragments
i la recuperació del secret.

Generació dels fragments:

Donat que amb 3 usuaris n’hi haurà prou per recuperar el secret, el gestor construirà un polinomi de grau
2 amb coeficients a Z1931 on el terme independent sigui el secret S = 673. Així, el gestor triarà dos valors
aleatoris per crear el polinomi, per exemple 436 i 806 i construirà el polinomi a(x) = 673+806x+436x2.
Amb aquest polinomi, procedirà a construir els fragments de cada usuari avaluant el polinomi en una
component x per a cada participant. Si suposem que u1 té la component x = 1, u2 la component x2 = 2 i
així per a cada usuari, tindrem les següents avaluacions:

a(1) = 673+806 ·1+436 ·12 = 1915 (mod 1931)
a(2) = 673+806 ·2+436 ·22 = 167 (mod 1931)
a(3) = 673+806 ·3+436 ·32 = 1222 (mod 1931)
a(4) = 673+806 ·4+436 ·42 = 1218 (mod 1931)
a(5) = 673+806 ·5+436 ·52 = 155 (mod 1931)

Per tant l’usuari u1 rebrà el fragment [1,1915], l’usuari u2 el fragment [2,167], l’usuari u3 el fragment
[3,1222], l’usuari u4 el fragment [4,1218] i l’usuari u5 el fragment [5,155].

Recuperació del secret:

Suposem ara que tres dels cinc usuaris es reuneixen per recuperar el secret. Suposem que són els usuaris
u1, u4 i u5 (però haguéssim pogut triar qualssevol tres altres). Els fragments d’aquests usuaris són [1,1915],
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[4,1218] i [5,155] respectivament. Com que aquests valors són punts del polinomi utilitzat per generar els
fragments, podem plantejar el següent sistema d’equacions:

S+a1 ·1+a2 ·12 = 1915 (mod 1931)
S+a1 ·4+a2 ·42 = 1218 (mod 1931)
S+a1 ·5+a2 ·52 = 155 (mod 1931)

Com que només ens interessa resoldre el sistema per la variable S, que és el secret, podem aplicar el
mètode de Cramer i obtenim:∣∣∣∣∣∣

1915 1 1
1218 4 16
155 5 25

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1
1 4 16
1 5 25

∣∣∣∣∣∣
=

352
12

= 352 ·161 = 673 (mod 1931)

Exercici 10.2 Utilitzeu un esquema de compartició de secrets de Shamir per generar els fragments d’un
sistema (3,5)-llindar per compartir el nombre secret 11. Preneu com a primer p = 13.

Exercici 10.3 En un esquema de compartició de secrets polinòmic de Shamir amb llindar (3,6)
els participants reben els següents fragments (58,137),(11,48),(50,99),(80,50),(104,33), (39,114).
Tenint en compte que treballen a Z149 recupereu el secret.

Exercici 10.4 En un esquema de compartició de secrets polinòmic de Shamir amb llindar m = 3,
construït sobre Z13, l’usuari A té l’avaluació del polinomi per a x = 1, l’usuari B, x = 2 i l’usuari C, x = 3.
Els tres usuaris es reuneixen per poder trobar la clau del sistema. Tots tres usuaris fan trampa; els usuaris
A i C li sumen 2 a l’avaluació del polinomi en el seu punt però la clau que recuperen és la correcta. Quina
és la trampa que ha fet l’usuari B?

10.2.2 Problemàtiques dels esquemes de compartició de secrets

A la pràctica, els esquemes de compartició de secrets tenen un seguit de restriccions que fan que el seu ús
requereixi construccions molt més complexes que les que hem presentat aquí.

El primer punt a tenir en compte en un esquema de compartició de secrets és la confiança que es diposita en
el gestor del sistema. Fixeu-vos que el gestor és el que s’encarrega de generar el polinomi que permetrà crear
els fragments de cada participant i, per fer-ho, necessita el valor del secret. Per tant, cal que el gestor sigui
una tercera part de confiança o bé que aquest procés es realitzi amb les garanties de seguretat necessàries.

D’altra banda, també ens podríem preguntar què passaria si un dels participants donés un valor aleatori en
comptes del seu fragment. El cert és que el secret no es recuperaria i encara més, no sabríem qui ha estat el
culpable. I encara pitjor, l’atacant podria utilitzar el secret recuperat erròniament, el seu fragment fals i el
seu fragment correcte per recuperar el secret real sense l’ajut de la resta de participants mentre que la resta
de participants continuarien sense poder recuperar el secret.

Per tal de resoldre aquests problemes hi ha els esquemes de compartició de secrets verificables, esquemes
més elaborats que utilitzen mecanismes de compromís de bit que veurem més endavant.
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Fixeu-vos, però, que totes aquestes problemàtiques no ens afecten quan només volem utilitzar l’esquema de
compartició de secrets per emmagatzemar una contrasenya de forma distribuïda i segura ja que en aquest cas,
tant el gestor com els usuaris que proporcionaran els fragments són tots el mateix.

10.3 Esquemes de compromís de bit

Hi ha situacions quotidianes en les que estem acostumats a fer servir alguns mecanismes molt simples que
funcionen sense cap dificultat d’execució. Un d’aquests casos és el de ’tirar una moneda a l’aire’ per, per
exemple, decidir quin dels dos jugadors d’una partida d’escacs tindrà les fitxes blanques. Ara bé, quan les
dues parts que duen a terme aquest petit protocol no es troben físicament al mateix lloc, la simplicitat de tirar
una moneda a l’aire no ens serveix si hi ha certa desconfiança entre els dos participants.

Si analitzem el procés de tirar una moneda a l’aire veiem que, normalment, un dels dos usuaris tria cara o
creu i l’altre, una vegada s’ha decidit qui guanyarà segons el revers de la moneda, tira la moneda a l’aire. En
aquest simple esquema, l’usuari que tria cara o creu ho fa de forma pública, de manera que després (quan cau
la moneda) no pot dir que ha triat una altra cosa. I l’usuari que tira la moneda no pot fer trampa (assumint
que la moneda no està trucada!) perquè tira la moneda davant de l’altre usuari i els dos veuen el resultat que
en surt, de manera que qui tira la moneda no pot canviar-ne el resultat.

Per emular aquest protocol de forma remota (o digital) es fa servir un esquema de compromís de bit.

.

Un esquema de compromís de bit (en anglès, bit commitment) és una tècnica per la qual
un usuari A es compromet, davant d’un usuari B, a un valor m per mitjà d’un valor C(m),
que serà el compromís. Aquest compromís ha de tenir les següents propietats:

1. Donat el compromís C(m), B no pot obtenir informació del valor compromès m.
2. A ha de poder obrir el compromís C(m) mostrant el valor compromès m.
3. A no pot obrir el compromís C(m) mostrant un valor diferent al valor m compromès

inicialment.

Amb un esquema de compromís de bit com el que acabem de descriure, el protocol de tirar una moneda a
l’aire es pot definir amb els següents passos.

1. L’usuari A tria cara o creu i codifica la seva tria en el missatge m. Posteriorment, calcula el compromís
d’m, C(m), i l’envia a B.

2. B genera aleatòriament un bit, on 1 correspondrà al valor cara i 0 correspondrà a creu. B enviarà a A
el valor aleatori generat.

3. A obrirà el compromís C(m) mostrant a B quin valor (cara o creu) havia triat, de manera que es veurà
qui ha guanyat en el protocol de tirar una moneda a l’aire.

Fixeu-vos que en el pas 2 del protocol, l’usuari A ja ha triat cara o creu però l’usuari B, tot i tenir el compromís
C(m), no pot saber quin valor ha triat (gràcies a la primera propietat de l’esquema de compromís de bit). En
el pas 2, tot i que l’usuari B no generés el bit de forma aleatòria (per intentar alterar el protocol) el fet que no
coneix si A ha triat cara o creu fa que la tria d’aquest valor aleatori sigui intrascendent. D’altra banda, en el
pas 3, A ja sap quin valor ha obtingut B i per tant B no pot desdir-se’n. A més, A obre el seu compromís i, tot
i conèixer el valor obtingut per B, no pot obrir-lo mostrant un altre valor diferent al que s’ha compromès,
gràcies a la tercera propietat de l’esquema de compromís de bit.

Els protocols de compromís de bit es descriuen per mitjà de dues fases: fase de generació del compromís i
fase d’obertura del compromís i en els següents apartats veurem dues tècniques diferents que implementen
un esquema de compromís de bit.
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10.3.1 Compromís de bit utilitzant funcions hash

Una de les tècniques més utilitzades per implementar un esquema de compromís de bit és mitjançant una
funció hash, funcions que hem definit en el Capítol 5. Una funció hash h és una funció que parteix d’una
informació de mida qualsevol x i en retorna un resum de mida fixa h(x), un valor petit d’alguns centenars de
bits. Perquè aquesta funció hash sigui considerada criptogràficament segura cal que compleixi tres propietats
essencials. En primer lloc, donat un valor y tal que h(x) = y, no és possible trobar la seva antiimatge, x, és a
dir, la funció hash no es pot invertir. D’altra banda, donats els valors x i y tals que h(x) = y no és possible
trobar un valor x′ ̸= x tal que h(x) = h(x′) = y. Finalment, tampoc és possible trobar dos valors x1 i x2 tals
que x1 ̸= x2 i que h(x1) = h(x2). Amb una funció amb aquestes propietats podem definir un compromís de
bit de la següent manera.

Sigui m el missatge al qual l’usuari es vol comprometre, en la fase de generació del compromís l’usuari A
selecciona un valor aleatori r i calcula C(m) = h(r ∥ m) on h és una funció hash criptogràfica.

En la fase d’obertura del compromís C(m), l’usuari A revela els valors r i m. A partir d’aquests valors,
l’usuari B pot calcular h(r ∥m) i comprovar que efectivament coincideix amb el valor C(m) al qual A s’havia
compromès.

Comprovem que aquest esquema compleix amb les tres propietats d’un esquema de compromís de bit.

1. B no pot obtenir el valor compromès m a partir el compromís C(m) ja que h(·) és una funció hash
criptogràfica i per tant no es pot invertir. Fixeu-vos que el valor aleatori r s’utilitza en cas que el
missatge m se seleccioni d’un conjunt petit de missatges, per tal d’evitar que B pugui calcular totes
les imatges de la funció hash per a tots els possibles valors diferents d’m i descobrir-ne el valor
compromès.

2. A pot obrir el compromís C(m) fent públics els valors r i m.
3. A no pot obrir el compromís, C(m), obtenint un valor m′ ̸= m perquè això voldria dir que A pot trobar

(r ∥ m) ̸= (r′ ∥ m′) tal que h(r ∥ m) = h(r′ ∥ m′) i això no és possible per les propietats que hem
enumerat de la funció hash criptogràfica que s’utilitza.

10.3.2 Compromís de Pedersen

Un altre algorisme de compromís de bit és el Compromís de Pedersen, presentat per Torben Pryds Pedersen
l’any 1991 com a part d’un esquema de compartició de secrets verificable. Les dues fases d’aquest tipus de
compromís de bit es descriuen a continuació.

Sigui m el missatge al qual l’usuari es vol comprometre, en la fase de generació del compromís l’usuari A
selecciona un grup multiplicatiu G d’ordre q i tria aleatòriament dos generadors d’aquest grup, g i h, tal que
no es conegui el logaritme discret d’h en base g. Aquests valors seran valors públics de l’esquema. Aleshores
A calcula el valor del compromís com C(m) = gm ·hr (mod q), on r és un valor aleatori.

En la fase d’obertura del compromís C(m), l’usuari A revela els valors r i m. A partir d’aquests valors,
l’usuari B pot calcular gm ·hr (mod q) i comprovar que efectivament coincideix amb el valor C(m) al qual A
s’havia compromès.

En aquest cas també es pot verificar que aquest esquema compleix amb les tres propietats d’un esquema de
compromís de bit.

1. B no pot obtenir cap informació del valor compromès m a partir del compromís C(m) ja que donat
el missatge m, com que r és triat de forma uniformement aleatoria en el conjunt G, el resultat del
compromís C(m) = gm ·hr (mod q) també és un valor uniformement distribuït en G i per tant B no
en pot obtenir cap informació.

2. A pot obrir el compromís C(m) fent públics els valors r i m.
3. A no pot obrir el compromís, C(m), obtenint un valor m′ ̸= m perquè això voldria dir que A pot

trobar (r,m) ̸= (r′,m′) tal que gm ·hr = gm′ ·hr′ (mod q). Però això no és possible perquè aleshores
es podria calcular el logaritme discret d’h en base g com m−m′

r′−r i això no pot succeir perquè el càlcul
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del logaritme discret és un problema amb una complexitat massa elevada.

Exemple 10.3 Exemple d’esquema de compromís de bit de Pedersen

Suposem que l’usuari A vol comprometre’s al valor m = 11. Per fer-ho, treballarà en el grup multiplicatiu
G = Z103 i triarà els valors g = 6 i h = 88 que són generadors de Z103. Aleshores, per a la generació
del compromís, A tria com a valor aleatori r = 17 ∈ Z103 i calcula el compromís com C(m) = 611 ·8817

(mod 103) = 34.

En la fase d’obertura, A envia a B els valors (m,r) = (11,17) i B comprova que efectivament 611 = 53
(mod 103), que 8817 = 57 (mod 103) i que per tant el seu producte és efectivament el valor 34 = 53 ·57
(mod 103).

Una de les característiques interessants que presenta el compromís de Pedersen és la seva propietat homo-
mòrfica. Aquesta propietat ens permet generar el compromís de la suma de dos valors sense conèixer els
valors i només a partir dels compromisos de cada un d’ells. Així, si tenim dos missatges m1 i m2 i els seus
respectius compromisos de Pedersen, C(m1) i C(m2), tenim que el compromís del valor suma m = m1 +m2
serà igual al producte dels seus compromisos C(m) =C(m1) ·C(m2).

En efecte, si escrivim la formulació per a cada un dels compromisos:

C(m1) = gm1 ·hr1 (mod q) i C(m2) = gm2 ·hr2 (mod q)

i en fem el producte, tenim

C(m1) ·C(m2) = (gm1 ·hr1) · (gm2 ·hr2) (mod q) = gm1+m2 ·hr1+r2 (mod q) =C(m1 +m2)

Exercici 10.5 En un esquema de compromís de Pedersen s’utilitzen com a valors de l’esquema
G = Z113 i els generadors g = 27 i h = 94. L’usuari A s’ha compromès al valor m1 = 29 amb el
compromís C(m1) = 24 i a més del missatge, el valor necessari per a obrir el compromís és r1 = 90.
Comproveu que efectivament, amb els valors m1 = 29 i r1 = 90 es pot obrir el compromís C(m1) = 24.
L’usuari A també s’ha compromès al valor m2 = 20 per mitjà del compromís C(m2) = 91. Calculeu
el compromís per al valor m1 +m2, és a dir C(m1 +m2). Podeu obrir el valor d’aquest compromís
C(m1 +m2)?

10.3.3 Aplicacions dels esquemes de compromís de bit

Els esquemes de compromís de bit tenen múltiples aplicacions en protocols criptogràfics on hi ha una
desconfiança mútua entre els usuaris que hi participen. Una de les aplicacions és en l’esquema de llançament
d’una moneda, que ja hem detallat a l’inici d’aquest apartat.

Una altra aplicació d’aquests esquemes és en l’àmbit dels esquemes de compartició de secrets. Com ja hem
comentat en l’apartat corresponent, quan en un esquema de compartició de secrets els usuaris mostren els
seus fragments, en cas que alguns usuaris no proporcionin el fragment correcte, la resta d’usuaris no sap si el
fragment proporcionat és correcte o no i poden recuperar un secret incorrecte. A més, en els esquemes de
compartició de secrets, el gestor que reparteix el secret cal que sigui honest. Els esquemes de compartició de
secrets verificables solucionen aquests problemes fent que el gestor que reparteix els secrets també reparteixi
un compromís per a cada coeficient del polinomi que fragmenta el secret. D’aquesta manera, tot i no conèixer
el polinomi, gràcies a les propietats homomòrfiques del compromís es pot comprovar si un fragment és o no
correcte.

Els esquemes de compromís de bit també s’utilitzen en proves de coneixement nul. Com veurem més
endavant, les proves de coneixement nul es basen en processos iteratius. Per tal de paral·lelitzar aquests
processos sense que en la primera ronda es mostrin tots els valors, es pot utilitzar un esquema de compromís
de bit per tal que una de les parts del protocol pugui seleccionar certs valors per endavant però sense
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necessitat de revelar-los, de manera que a posteriori, quan s’hagin d’utilitzar en el protocol, es puguin obrir
els compromisos per revelar-ne el valor.

10.4 Signatures cegues

Un altre dels protocols interessants en criptografia són les signatures cegues, un protocol que s’utilitza per
signar digitalment missatges de forma especial.

.

En un protocol de signatura cega (en anglès blind signature) l’usuari A aconsegueix
la signatura d’un missatge m per part de l’usuari B sense que B sàpiga quin missatge ha
signat.

El concepte de signatura cega el va proposar David Chaum l’any 1982 per al seu ús en esquemes de pagament
anònim.

Per imaginar-se com funciona un protocol de signatura cega és interessant utilitzar una analogia en termes de
papers i signatures manuscrites. La idea és que l’usuari A té el document que ha de signar B i en comptes de
proporcionar-li directament (fet que faria que B en pogués veure el contingut), A el posa dins d’un sobre. La
peculiaritat d’aquest sobre és que està fet de paper carbó, és a dir, si escrivim alguna cosa fora del sobre
es calcarà a l’interior. En particular, si B fa una signatura manuscrita fora del sobre, quan posteriorment
traiem el document de dins del sobre tindrem el document signat per les propietats de calca del sobre de
paper carbó. A més, B no haurà pogut veure el contingut del document que ha signat.

Com amb altres protocols criptogràfics, no és òbvia quina utilitat pot tenir que un usuari pugui signar un
document sense saber el que signa. Tot i això, al llarg d’aquest apartat veurem en quines situacions tenen
aplicabilitat les signatures cegues.

10.4.1 Signatura cega amb RSA

Donat que un protocol de signatura cega pretén obtenir la signatura digital d’un missatge, aquest protocol
sempre inclourà un esquema de signatura digital en concret. A continuació veurem un protocol de signatura
cega basat en RSA. Aquest mateix protocol és el que va idear D. Chaum quan va proposar el concepte de
signatura cega.

Denotarem per m el missatge que A vol tenir signat per B. B signarà digitalment els seus missatges amb
un esquema RSA. Per fer-ho utilitzarà la seva clau privada d. La clau pública corresponent a aquesta clau
privada la denotarem per (e,n). El protocol es desenvoluparà en els següents passos:

1. A tria un valor aleatori r a Zn tal que gcd(r,n) = 1 i el xifra amb la clau pública de B, és a dir, calcula
t = re (mod n). El valor t és el valor que utilitzarà per tapar el missatge m que B ha de signar. Per
fer-ho, A calcularà m′ = m · t (mod n) i enviarà el valor m′ a B.

2. En rebre m′, B simplement realitzarà la signatura sobre aquest valor de forma estàndard, utilitzant la
seva clau privada d. Així obtindrà s′ = (m′)d (mod n) i enviarà el valor s′ a A.

3. A destaparà la signatura feta per B simplement dividint la signatura que ha rebut de B, s′, pel valor
aleatori r generat en el primer pas, s = s′

r .

En la Taula 10.4 es mostra el protocol de forma esquemàtica.

Fixeu-vos que el valor s destapat per A en el pas 3 efectivament correspon a la signatura del missatge original
m. Això és així perquè:

s =
s′

r
=

(m′)d

r
=

(m · t)d

r
=

md · td

r
=

md · (re)d

r
=

md · r
r

= md (mod n)
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Taula 10.4: Protocol de signatura cega
Pas Alice Bob
1. Tria r ∈R Zn t.q gcd(r,n) = 1

Calcula t = re mod n
Tapat :

calcula m′ = m · t mod n m′−→
2. Signa el valor m′ calculant:

s′←− s′ = (m′)d mod n
3. Obté la signatura de m calculant

s = s′
r (destapat)

Exemple 10.4 Exemple de protocol de signatura cega amb RSA

Suposem que l’usuari A vol que l’usuari B li signi el missatge m = 15. L’usuari B utilitza per a realitzar
signatures digitals el criptosistema RSA. La clau pública de B és (e,n) = (19,551) i la corresponent clau
privada d = 451. Amb aquests paràmetres, el protocol de signatura cega entre A i B serà el següent:

Pas Alice Bob
1. Tria 25 ∈R Z551 t.q. gcd(15,551) = 1

Calcula t = 2519 = 310 mod 551
Tapat :

calcula m′ = 15 ·310 = 242 mod 551 m′=242−−−−→
2. Signa el valor m′ = 242 calculant:

s′=14←−−− s′ = 242451 = 14 mod 551
3. Obté la signatura de m calculant

s = 14
25 = 14 ·529 = 243 (mod 551)

Fixeu-vos que el valor s = 243 és efectivament la signatura del missatge original m = 15 ja que s =
15451 = 243 mod 551

Exercici 10.6 En un sistema d’autentificació anònima, l’usuari A té accés a un recurs S. Per poder-hi
accedir, l’autoritat de certificació CA li generarà una credencial que consistirà en la signatura d’un
missatge m que contindrà una clau pública generada per l’usuari A i l’identificador del recurs S. Per tal
que la credencial sigui anònima, la CA realitzarà una signatura cega de manera que no tindrà manera de
saber quina és la clau pública que certifica i per tant quan A accedeixi al recurs la CA no podrà saber-ho.
Ara bé, per assegurar-se que A no accedeix a un recurs diferent, la signatura cega la realitzaran amb un
protocol de triar i remenar. Així, A prepararà 5 missatges diferents mi tals que mi = (PKi||S), on PKi serà
una clau pública de la qual A en coneix la corresponent clau privada i el símbol || denota la concatenació.
Expliciteu tots els missatges que s’intercanviaran A i la CA en aquest protocol. Suposeu que treballen a
Z899 i que els criptosistemes de clau pública que fem servir són l’RSA. Suposeu que el valor S = 5 i que
el parell de claus (pública i privada) de la CA són PKCA = 19, SKCA = 619. Per simplificar, no cal indicar
les corresponents claus privades de les 5 clau públiques triades.

10.4.2 Aplicacions de les signatures cegues

Hi ha múltiples escenaris on les signatures cegues són interessants d’utilitzar i la majoria d’ells tenen a veure
amb la protecció de l’anonimat. Vegem com es poden fer servir en el següent escenari per tenir identificadors
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anònims.

Suposeu un sistema amb una autoritat central que té identificats als seus usuaris. Per tal de permetre utilitzar
els recursos del sistema de forma anònima, els usuaris poden obtenir uns pseudònims per part de l’autoritat
central. Aquests pseudònims estan signats digitalment per l’autoritat central una vegada ha comprovat
que l’usuari té suficients privilegis per a utilitzar els corresponents recursos. La signatura de l’autoritat
central sobre el pseudònim ha de permetre la seva validació per una tercera part quan l’usuari vol utilitzar el
pseudònim davant d’algun dels recursos del sistema on es vol autenticar.

Amb aquest escenari, si l’autoritat central signa els pseudònims dels usuaris de forma estàndard, els
usuaris obtindran anonimat davant dels tercers amb qui s’autentifiquin utilitzant el pseudònim. Ara bé, no
aconseguiran anonimat davant de l’autoritat central ja que l’autoritat central, quan signa el pseudònim, sap la
identitat real de l’usuari i, per tant, la correspondència entre la identitat real i el pseudònim, trencant així
l’anonimat.

Una opció per resoldre aquest problema és que l’autoritat central signi el pseudònim però utilitzant un
protocol de signatura cega. D’aquesta manera, l’autoritat central donaria validesa al pseudònim però no
sabria a qui correspon el pseudònim.

10.4.3 Protecció contra abusos en les signatures cegues

Malgrat que les signatures cegues són interessants d’utilitzar en alguns escenaris, el cert és que la possibilitat
que un usuari signi un valor sense saber exactament el que signa pot comportar també alguns problemes de
seguretat. Per exemple, com ja hem estudiat anteriorment, la realització d’una signatura digital és equivalent
al desxifrat d’un missatge. Per tant, un usuari A que hagués interceptat un missatge xifrat c dirigit a B, podria
utilitzar un protocol de signatura cega per tapar c, fer-lo signar per B i d’aquesta manera obtenir el missatge
desxifrat. D’altra banda, en escenaris més complexos, el contingut del que signa B pot ser rellevant i A pot
voler-lo modificar per treure’n profit. Per exemple, imaginem-nos el cas descrit en l’apartat anterior en el
que l’usuari A vol obtenir un pseudònim per autenticar-se. B només li proporcionarà el pseudònim en funció
dels privilegis que tingui A en el sistema. A més, el pseudònim ha d’incloure aquesta informació per tal que
A el pugui fer servir. Un possible atac d’A seria presentar un pseudònim amb unes atribucions diferents de
les que el sistema li permet. Si B ha de realitzar una signatura cega, no podrà verificar aquestes condicions i
podria arribar a signar condicions no desitjades.

Per evitar aquest tipus d’accions hi ha diferents estratègiques. La primera és utilitzar una clau específica
per a les signatures cegues. És a dir, una clau pública que incorporés la pròpia semàntica de l’autorització.
Per exemple, qualsevol pseudònim signat amb la clau pública que tingués el valor concret PKS1,S2

CA només
serviria per autenticar-se davant dels recursos S1 i S2. Per a autentica-se davant del recurs S3, per exemple,
caldria tenir el pseudònim signat amb la clau pública PKS3

CA. A més, aquestes claus públiques de signatures
cegues només es farien servir en aquest context i mai s’utilitzarien per xifrar missatges, de manera que l’atac
per al desxifrat no seria possible.

Tot i que aquesta protecció que associa una semàntica a una clau és factible, a la pràctica pot comportar la
gestió d’un volum de claus molt gran. Per evitar-ho una altra opció és utilitzar el procediment de “remenar i
triar” per assegurar que B no signa res fraudulent. El procés funciona tal i com es mostra en la Figura 10.1.

L’usuari A, en comptes d’enviar un únic valor tapat m′ a B, calcula múltiples valors tapats m′1,m
′
2, · · · ,m′n. És

important que cada valor s’hagi tapat amb un element diferent, és a dir, per a cada m′i tindrem un valor ti
diferent, seguint la nomenclatura que hem utilitzat en l’esquema de signatura cega. Cada un d’aquests valors
tapats m′1,m

′
2, · · · ,m′n conté certa informació que B ha de poder validar abans de signar i una altra informació

diferent per a cada un dels valors m′i. Per exemple, en el cas dels pseudònims per a l’autenticació, la part
que ha de poder validar B és la part que indica a quins recursos permet accedir el pseudònim. Aquesta part
ha de ser la mateixa per a tots els valors. La part que és diferent per a cada valor m′i és la que indicarà el
pseudònim que A farà servir.

Una vegada A ha enviat els n valors tapats m′1,m
′
2, · · · ,m′n a B, B demana a A que destapi n−1 valors, és

a dir, A proporcionarà els corresponents ti per a n−1 valors que B haurà triat aleatòriament. Una vegada
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Figura 10.1: Esquema del mecanisme de remenar i triar

destapats, B podrà comprovar que la part que ha de validar coincideix en tots i cada un dels n−1 valors que
ha destapat. Si és així, assumirà que el valor que li resta per destapar (el qual no pot destapar perquè A manté
el corresponent ti per fer-ho) també compleix les condicions estipulades. Per tant pot procedir a signar de
forma cega aquest valor.

Fixeu-vos que cada un dels valors que ha destapat A pot contenir un pseudònim diferent, de manera que B no
sap quin pseudònim hi haurà en el valor que ha signat. D’altra banda, la probabilitat que A pugui enganyar a
B aconseguint que signi algun contingut que no vulgui es pot fer tant petita com es vulgui ja que el seu valor
és de 1

n .

10.5 Signatures d’anell

Un altre dels protocols relacionats amb les signatures digitals són les signatures d’anell, que van ser
formalitzades per Ron Rivest, Adi Shamir i Yael Tauman al 2001.

.

En un protocol de signatura d’anell (en anglès ring signature) un usuari us que pertany a
un grup d’usuaris R = {u1, · · · ,ur} (amb s ∈ [1,r]) signa un missatge m, de manera que
un validador pot comprovar que la signatura ha estat realitzada per algun membre del grup
R però, alhora, és computacionalment impossible saber quin usuari individual del grup ha
realitzat la signatura.

La particularitat dels protocols de signatura en anell és que no necessiten cap mena de coordinador entre els
membres del grup, ni tampoc cap procediment d’inicialització dels grups. A partir d’un conjunt d’usuaris
cadascun dels quals té un parell de claus pública-privada, qualsevol usuari pot seleccionar un conjunt de
possibles signants R (entre els quals hi és el propi usuari) i crear una signatura, sense necessitar l’ajuda o
aprovació dels altres signants, ni la col·laboració de cap tercera part de confiança.
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Aquest tipus d’esquemes poden ser útils, per exemple, per a permetre filtrar informació sense revel·lar la
identitat de qui ha fet la filtració, però oferint garanties sobre la font. Així, un metge d’un hospital pot
voler donar la seva opinió sobre la gestió d’una crisi sanitària a un periodista sense revel·lar la seva identitat
(per por a represàlies), però assegurant al periodista que és un metge col·legiat. Així, el metge podria crear
una signatura d’anell sobre el missatge on dona la seva opinió, seleccionant com a possibles signants un
conjunt de metges col·legiats a la seva elecció. D’aquesta manera, el periodista podria verificar la signatura,
comprovant que és vàlida per al grup de signants i que tots ells són metges col·legiats, i per tant podria estar
segur que qui ha signat el missatge és efectivament un metge col·legiat. Alhora, la identitat individual del
metge que ha signat el missatge quedaria oculta, i el periodista només sabria qui és amb probabilitat 1/r,
amb r el número de possibles signants.

10.5.1 Les signatures d’anell basades en RSA

En aquesta secció presentarem un dels esquemes de signatures d’anell fent servir claus RSA. Els usuaris del
sistema disposaran doncs d’un parell de claus pública-privada del criptosistema RSA. Per tal de realitzar
una signatura d’anell, un usuari seleccionarà un conjunt de claus públiques (que formaran l’anell, el grup de
possibles signants del missatge entre els quals hi serà el propi usuari) i generarà una signatura fent servir les
claus públiques dels altres membres de l’anell i la seva clau privada. Aquesta signatura podrà ser després
validada per un receptor, coneixent el missatge original i les claus públiques dels usuaris de l’anell.

L’esquema fa servir quatre primitives criptogràfiques bàsiques:

• L’RSA.
• Un criptosistema de clau simètrica.
• Una funció hash.
• Una funció de combinació.

RSA

Farem servir R = {u1, · · · ,ur} per descriure al conjunt de possibles signants de l’anell, on us ∈R és l’usuari
que generarà la signatura. Cada usuari ui ∈R disposa d’un parell de claus RSA: una de pública PKi = (ni,ei)
que és de domini públic, i una de privada SKi = (ni,di) que només el propi usuari coneix.

Com ja hem vist en el Capítol 6, l’RSA es basa en el fet que la funció fi(x) = xei (mod ni) és computacio-
nalment impossible d’invertir si no es coneix la factorització del mòdul ni (el que permet calcular l’exponent
privat di). Per tant, només els usuaris que són coneixedors de la clau privada SKi, poden calcular f−1

i (y) = ydi

(mod ni).

Criptosistema de clau simètrica i funció hash

El protocol fa servir també un criptosistema de clau simètrica. Denotarem amb Ek(m) la funció de xifrat
del missatge m amb la clau k, i amb E−1

k (y) la funció de desxifrat. Els missatges a xifrar i desxifrar seran
cadenes de b bits, i la mida de la clau del criptosistema simètric serà l.

Addicionalment, el protocol fa servir una funció hash h, que pot rebre entrades de qualsevol mida i retornarà
cadenes d’l bits (que es faran servir com a clau del criptosistema de clau simètrica).

Funció de combinació

Per últim, el protocol fa servir una funció de combinació amb clau, que incorpora totes les primitives anteriors
i que és la base del protocol de signatura d’anell. La funció de combinació rep una clau k d’l bits, un valor
d’inicialització v de b bits, i un número arbitrari d’entrades yi també de b bits, i retorna una cadena de b bits:

Ck,v(y1,y2, · · · ,yr) = Ek(yr⊕Ek(yr−1⊕Ek(yr−2⊕Ek(· · ·⊕Ek(y1⊕ v) · · ·)))) = z
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Figura 10.2: Esquema de la signatura d’anell amb RSA

Tot i que a primer cop d’ull la funció de combinació pugui semblar complexa, fixeu-vos que no fa res més
que calcular, reiteradament, una xor entre dos valor, xifrant-ne després el resultat amb el criptosistema de
clau simètrica.

El punt clau de l’esquema recau en com s’aplica la funció de combinació en la creació de les signatures
d’anell. Doncs bé, d’una banda, la clau k que es fa servir en el criptosistema simètric correspon al hash del
missatge a signar, és a dir, k = h(m). D’altra banda, la funció s’aplica a la seqüència d’entrada (y1,y2, · · · ,yr),
amb yi = fi(xi) per al conjunt de signants de l’anell. Per últim, es força que la sortida z de la funció de
combinació hagi de ser igual al valor d’inicialització v, és a dir:

Ck,v(y1,y2, · · · ,yr) = v

Aquest últim punt fa que sigui necessari conèixer com a mínim una de les funcións f−1
i per tal de poder

calcular tots els yi de la seqüència d’entrada, de manera que podrem assegurar que només els membres de
l’anell poden generar signatures vàlides per a aquell anell.

Addicionalment, aquest punt també és el que dona el nom de signatures d’anell a la construcció que
estem presentant: al forçar que el valor de sortida de la funció de combinació hagi de ser igual al valor
d’inicialització, es crea una estructura de dependències circular entre els valors, que té forma d’anell. La
Figura 10.2 mostra com es combinen les diferents primitives criptogràfiques en la funció de combinació.

El protocol de signatura d’anell basat en RSA

Una vegada presentades les diferents primitives criptogràfiques que intervenen en el protocol de signatura
d’anell basat en RSA, veiem ara com s’executa el protocol.

En primer lloc, descriurem a grans trets en què consisteix la creació i validació d’una signatura amb el
protocol de signatura en anell.

En el procés de realització de la signatura, l’usuari que la genera calcularà els yi corresponents a tots els
altres possibles signants fent servir les seves claus públiques i calculant yi = fi(xi) per a un conjunt xi de
valors aleatoris. Tenint en compte la construcció de la funció de combinació, per a un missatge i valor
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d’inicialització concrets, això determinarà el valor ys corresponent al signant. Coneixent la funció f−1
s , el

signant podrà invertir el valor ys i trobar el valor xs tal que fs(xs) = ys. La signatura serà aleshores el conjunt
de tots els valors xi (incloent el del signant) amb les corresponents claus públiques, i el valor d’inicialització.
Fixeu-vos que, a diferència d’una signatura convencional on no cal incloure la clau pública del signant, en
aquest cas cal incloure totes les claus públiques utilitzades perquè qui posteriorment validi la signatura no té
coneixement ni de qui realment ha realitzat la signatura ni de quines claus ha utilitzat en l’anell.

En el procés de validació, el validador podrà comprovar que la signatura és vàlida, ja que podrà recrear tots
els yi a partir dels xi i les claus públiques, i comprovar després que efectivament l’equació de la funció de
combinació es compleix per al valor v rebut. A més, el verificador no podrà saber quin usuari ha signat
el missatge, ja que per a tots els usuaris de l’anell de possibles signants, en rep exactament la mateixa
informació (el parell xi,yi).

En segon lloc, prosseguim a presentar el detall de l’execució del protocol.

El procés de realització de signatura s’inicia quan l’usuari que vol realitzar la signatura del missatge m,
selecciona un conjunt d’usuaris, dels quals en coneix la clau pública, per formar part de l’anell de possibles
signants R. És a dir, el signant obté r claus públiques {PKi = (ni,ei), i∈ {1, · · ·r}}. Amb aquesta informació
i els seu propi parell de claus (SKs,PKs) (fem servir l’índex s per referir-nos al signant) executa els següents
passos:

1. El signant calcula els següent valors:
• k = h(m)
• b tal que 2b > ni per a 1≤ i≤ r
• v ∈R {0,1}b

• xi ∈R {0,1}b per a 1≤ i≤ r, per i ̸= s
• yi = fi(xi) per a 1≤ i≤ r, per i ̸= s

2. Troba el valor ys que soluciona l’equació: Ck,v(y1,y2, · · · ,yr) = v
3. Calcula: xs = f−1

s (ys)

Per tant, el valor de la signatura del missatge m serà

σ = {PK1, · · · ,PKr,v,x1, · · · ,xr}

Fixeu-vos que al Pas 1, l’usuari signant calcula un conjunt de valors necessaris per a la resolució de l’equació
que descriu la funció de combinació. D’una banda, calcula la clau del criptosistema simètric k a partir del
hash del missatge a signar. També tria un valor b tal que 2b sigui major que tots els mòduls de les claus
públiques dels usuaris de l’anell. Després, selecciona un valor d’inicialització v aleatori de b bits, així com
r−1 valors aleatoris xi (també de b bits). Finalment, per a cada valor xi, calcula l’yi corresponent fent servir
la clau pública de cadascun dels altres usuaris de l’anell de possibles signants.

A continuació, al Pas 2, el signant resol l’equació plantejada per la funció de combinació, fent servir els
valors calculats al pas anterior, per tal de trobar el valor ys.

Una vegada calculat el valor ys, al Pas 3 el signant troba el valor xs tal que fs(xs) = ys. Aquesta operació la
pot fer ja que el signant coneix el valor de la clau privada, SKs i, per tant, pot invertir la funció i calcular
f−1
s (ys) = xs. Noteu que aquest procés només el pot fer per al valor ys, però no per cap altra valor yi (amb

i ̸= s).

Finalment, al Pas 4 el signant genera la signatura σ , que no és res més que el conjunt de tots els valors xi
(un dels quals haurà calculat a partir de la seva clau privada, i els altres correspondran als valors aleatoris
obtinguts al Pas 1), el conjunt de totes les claus públiques dels usuaris de l’anell (entre les quals hi haurà la
del signant, que serà indistingible de les altres), i el valor d’inicialització v.

Per tal de validar la signatura σ , el verificador necessita tant el valor de la signatura σ = {PK1, · · · ,PKr,v,x1, · · · ,xr}
com el missatge m sobre el que s’ha realitzat la signatura. Amb aquestes dades, el verificador realitza els
següents passos:

1. Calcula:
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• yi = fi(xi) per a 1≤ i≤ r
• k = h(m)

2. Verifica que es compleixi la igualtat Ck,v(y1,y2, · · · ,yr) = v

Fixeu-vos que al Pas 1 de la validació, el verificador procedirà a recalcular tots els yi, aplicant les funcions
fi (que coneix ja que ha rebut també les claus públiques dels possibles signants) a cadascun dels valors xi
rebuts. També calcularà la clau k a partir del hash del missatge rebut.

Per acabar la validació, al Pas 2 el verificador comprovarà que el resultat de la funció de combinació per als
valors yi calculats, la clau k corresponent al missatge i el valor d’inicialització v rebut és també el valor v.
Fixeu-vos que, efectivament, el verificador no pot saber quin dels usuaris ha signat el missatge, ja que no pot
distinguir de cap manera l’usuari que ha signat de la resta d’usuaris de l’anell de possibles signants.

Exemple 10.5 Exemple de signatura d’anell basada en RSA

Per tal d’executar el protocol de signatura d’anell basada en RSA, caldrà primer triar una funció hash h
i una funció de xifrat simètric E. Amb l’objectiu de simplificar al màxim l’exemple i centrar-nos en el
càlcul de la signatura d’anell, seleccionem dues funcions senzilles per a aquestes dues primitives, que no
oferiran la seguretat desitjada però que ens permetran exemplificar el protocol. Així, d’una banda, farem
servir la funció identitat com a funció hash, de manera que h(x) = x per a qualsevol valor d’entrada x.
D’altra banda, farem servir una xor entre el missatge i la clau com a funció de xifrat simètric, de manera
que Ek(x) = x⊕ k.

Suposarem també que el conjunt d’usuaris U amb claus públiques RSA conegudes que formaran part de
l’anell serà R = {u1,u2,u3,u4} i les claus de cada un:
PK1 = (28907,18541)
PK2 = (41917,22491)
PK3 = (39407,26077)
PK4 = (32743,17539)
Per a aquest exemple, suposarem que l’usuari que fa la signatura és s = 3. La seva corresponent clau
privada és SK3 = (39407,27013). Suposarem també que el missatge sobre el qual vol realitzar la signatura
és m = 16962.

El procés de signatura tindrà els següents passos:

1. Calcula:
• k = h(16962) = 16962
• b = 16: ja que 216 = 65536 > ni per a 1≤ i≤ 4
• v = 29424 ∈R {0,1}16

• x = {25816,11546, /0,28447} amb xi ∈R {0,1}16

• y1 = f1(25816) = 2581618541 (mod 28907) = 15266
• y2 = f2(11546) = 1154622491 (mod 41917) = 38905
• y4 = f4(28447) = 2844717539 (mod 32743) = 11683

2. Troba el valor y3 que soluciona l’equació: C16962,29424(15266,38905,y3,11683) = 29424 obtenint
com a solució y3 = 33272

3. Calcula: x3 = f−1
3 (33272) = 3327227013 (mod 39407) = 4541

Per tant, el valor de la signatura serà:

σ = {PK1,PK2,PK3,PK4,v,x1,x2,x3,x4}=
= {(28907,18541),(41917,22491),(39407,26077),(32743,17539),29424,25816,

11546,4541,28447}

Al Pas 1, el signant realitza tots els càlculs per obtenir els valors necessaris per plantejar l’equació de la
funció de combinació. Això inclou generar alguns valors aleatòriament (el valor v i també x1, x2 i x4), i
calcular els valors yi corresponents als altres signants (y1, y2 i y4). Noteu com el valor y3, corresponent
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al signant, no s’ha calculat encara en aquest pas, ja que precisament serà la incògnita de l’equació de
la funció de combinació, i es calcularà per tal d’assegurar que el resultat de la funció de combinació és
exactament el valor d’inicialització.

Al Pas 2 el signant calcula el valor y3 resolent l’equació donada per la funció de combinació. En la figura
següent es mostra, gràficament, el procés que pot seguir el signant per fer aquest càlcul. El signant parteix
del valor d’inicialització seleccionat v = 29424 i va calculant tots els valors que se’n deriven reseguint
l’esquema de la figura per dos camins diferents: d’una banda, en sentit horari i, d’altra banda, en sentit
antihorari. Això li permet anar fent tots els càlculs fins a arribar a trobar el valor y3.

Una vegada sap que y3 = 33272, al Pas 4 el signant calcula el valor x3 amb la seva clau privada, i al Pas 4
genera la signatura.

El verificador, per verificar la signatura realitzarà els següents passos:

1. Calcula:
• y1 = f1(25816) = 2581618541 (mod 28907) = 15266
• y2 = f2(11546) = 1154622491 (mod 41917) = 38905
• y3 = f3(4541) = 454126077 (mod 39407) = 33272
• y4 = f4(28447) = 2844717539 (mod 32743) = 11683
• k = h(16962) = 16962

2. Verifica:
C16962,29424(15266,38905,33272,11683) = 29424

Fixeu-vos, que la verificació de la signatura és molt més immediata, i passa per calcular tots els yi a partir
dels xi rebuts, i comprovar que l’equació de la funció de combinació es compleix per als valors yi calculats.
En aquest cas, efectivament es compleix, i el verificador dona per vàlida la signatura.

Detalls sobre la combinació de claus públiques

Per tal de simplificar la presentació del protocol, la secció anterior ha passat per alt un detall pel que fa als
càlculs realitzats en el protocol. En aquesta secció, presentarem doncs una petita modificació en el protocol,
que permetrà que operi correctament.

A l’hora de calcular una signatura, s’utilitzen conjuntament diferents claus RSA que pertanyen a diferents
usuaris, i que habitualment tindran mòduls també diferents. A més, aquestes claus podrien tenir, fins i tot,
mides diferents. Per tal de poder realitzar la signatura considerant les diferències entre els mòduls de les
diferents claus, al Pas 2 del protocol es tria un valor b tal que 2b > ni per a tots els mòduls de les claus de
l’anell, i aleshores es treballa sempre amb valors de b bits.

Si apliquem el protocol tal com s’ha descrit a la secció anterior, cada vegada que s’aplica una funció fi (o f−1
i )
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es genera una sortida menor a ni. Per tant, mai s’obté com a resultat un valor entre ni i 2b. Aquest interval
serà major o menor en funció del mòdul ni, però en tot cas fa que la funció fi no generi una permutació entre
tots els elements de b bits, ja que hi ha elements vàlids com a entrada que mai es generen com a sortida. Per
a evitar-ho, en comptes de fer servir la funció fi, el protocol de signatura en anell basat en RSA fa servir la
funció gi definida de la següent manera:

gi(m) =

{
qini + fi(ri) si (qi +1)ni ≤ 2b

m altrament

on qi i ri són enters no negatius tals que m = qini + ri i 0≤ ri < ni.

Així, per a valors m < ni, la funció gi retornarà el mateix que la funció fi (noteu com aquests casos
corresponen a qi = 0). Per a valors d’m superiors al mòdul, intuïtivament podem dir que la funció gi aplicarà
la funció fi al residu (als bits menys significatius) però mantindrà els bits més significatius. Això evitarà
reduir la mida de la sortida. Finalment, per als casos excepcionals en els quals la primera expressió podria
generar un valor de més de b bits, la funció gi simplement retorna el valor que rep a l’entrada.

Fixeu-vos que amb l’ús de gi, s’aconsegueix generar totes les possibles sortides de b bits i, alhora, es manté
la propietat de l’RSA que es necessita per al protocol, ja que només l’usuari que sap com invertir fi podrà
invertir també gi.

Exemple 10.6 Exemple de càlcul de gi

Suposem un usuari ui ∈R amb una clau pública RSA PKi = (ni,ei) = (49,11). A l’hora de fer la signatura
d’anell, s’ha triat el valor b = 8, que compleix que 28 = 256 > 49.

La imatge següent mostra gràficament els diferents intervals definits per a la funció gi d’aquest usuari.

Els possibles valors d’entrada m de la funció gi es troben a l’interval [0,256) (corresponen als valors
que es poden representar amb b = 8 bits). La zona colorejada en verd correspon a la primera part de la
definició de gi, en la qual (qi +1)ni ≤ 2b; la zona colorejada en vermell correspon a la segona part de la
definió de gi, que denota la resta de possibles valors d’entrada.

• El primer interval de la imatge, mostrat de color verd fosc, correspon als valors d’entrada inferiors
al mòdul (m < 49): el valor qi és 0, i la funció gi retorna exactament el mateix que la funció fi.
Aquests són els valors que hem fet servir a l’exemple de la secció anterior, per tal de poder explicar
el protocol sense haver de definir gi. Així, per exemple, per a m = 34, gi(34) = fi(34) = 41.

• La resta d’intervals mostrats en color verd més clar corresponen a valors d’entrada inferiors a
245. En aquests casos, 0 < qi < 5, i la funció gi aplica fi sobre el residu ri, però manté la mida
de l’entrada. Així, per exemple, per al valor m = 65, qi = 1 i ri = 16. Aleshores, fi(16) = 4, i
gi(65) = 1 · 49+ 4 = 53. Fixeu-vos que, en aquest cas, la funció gi retorna un valor superior al
mòdul.

• Per últim, l’interval mostrat en vermell a la imatge correspon als valors d’entrada per als quals gi
retorna la mateixa entrada, i que corresponen als valors pels quals l’expressió qini + fi(ri) podria
generar una sortida de més de b bits. Així, per exemple, per a m = 254, tindríem que qi = 5 i ri = 9.

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


316 Capítol 10. Protocols criptogràfics

Aleshores, si calculéssim el resultat de l’expressió anterior:

qini + fi(ri) = 5 ·49+ fi(9) = 5 ·49+46 = 291

Però 291≥ 256, de manera que es produiria un overflow. Per a evitar-ho, la funció gi retorna el
valor d’entrada, de manera que gi(254) = 254.
Noteu com aquest aquest interval mostrat en vermell conté valors per als quals l’aplicació de
l’expressió qini + fi(ri) genera un valor de més de b bits, però no necessàriament tots els valors de
l’interval generen aquest overflow. Per exemple, si avaluem l’entrada m = 249:

qini + fi(ri) = 5 ·49+ fi(4) = 5 ·49+2 = 247

veiem que efectivament no sobrepassa el valor màxim de 256. Ara bé, com que l’entrada m = 249
és superior a 245, l’expressió que cal aplicar és: gi(m) = m i per tant gi(249) = 249.

10.6 Proves de coneixement nul

Un dels usos de la criptografia és la gestió de la informació secreta. En ocasions la gestió d’aquesta
informació pot comportar que ens interessi convèncer a algú que coneixem certa informació secreta però
sense revelar aquesta informació. Dit d’una altra manera, ens interessa un mecanisme per poder demostrar
que sabem un secret sense revelar-lo. Aquest concepte, batejat amb el nom de proves de coneixement nul, el
van introduir S. Goldwasser, S. Micali i C. Rackoff l’any 1985.

.

Una prova de coneixement nul (en anglès zero-knowledge proof) és un protocol entre
dos usuaris pel qual l’usuari que actua de provador, P, permet demostrar que coneix un
cert valor secret s davant d’un usuari verificador, V , sense proporcionar el valor s. Al final
del protocol, V estarà convençut que P coneix el valor s i alhora V no haurà obtingut cap
informació sobre aquest valor.

Per tant, una prova de coneixement nul ha de complir les següents propietats:

1. Correcció: Si el provador coneix el valor s ha de poder convèncer al verificador que efectivament el
coneix.

2. Robustesa: La probabilitat que el provador enganyi al verificador ha de ser molt petita. És a dir,
si el provador no coneix el valor secret s, la probabilitat que la prova de coneixement nul s’executi
correctament és molt petita.

3. Coneixement nul: Un cop realitzada la prova de coneixement nul, el verificador no té cap informació
sobre el valor secret s que el provador coneix. En particular, el verificador no pot provar a una tercera
persona, ni per mitjà d’una prova de coneixement nul, que coneix el secret.

Un exemple gràfic per entendre la mecànica de la majoria de les proves de coneixement nul és el que
van proposar J.J. Quisquater i L. Guillou. En aquest exemple tenim una cova, com la que es mostra a la
Figura 10.3. La cova té una entrada amb un únic camí. En un punt de la cova, el camí es bifurca i fa una
volta fins a tornar-se a unir amb l’altra part del camí. Ara bé, el camí està tancat per una porta que s’obre per
mitjà d’una paraula secreta. En Pep (P) coneix aquesta paraula secreta i vol convèncer a en Vicenç (V ) que
la coneix però no vol donar-li aquesta clau. Per fer-ho executen la següent prova de coneixement nul:

1. En Vicenç és queda a l’entrada de la cova (punt A del gràfic) mentre que en Pep entra dins i tria un
dels dos camins fins a arribar a la porta. Per tant, pot estar en el punt C o bé en el punt D depenent de
la tria que hagi fet.

2. Un cop en Pep ha arribat davant de la porta, en Vicenç avança fins a la bifurcació (punt B). Des d’allí
tria un dels dos camins, el de la dreta o el de l’esquerra i li fa un crit a en Pep perquè surti pel camí
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Figura 10.3: Gràfic de la cova de l’exemple

que ha triat.
3. Com que en Pep coneix la clau que obra la porta no tindrà cap problema per sortir pel costat que en

Vicenç li ha demanat.

Comprovem ara si amb aquest exemple es compleixen les tres propietats que hem indicat anteriorment.

1. Si en Pep coneix la clau sempre podrà sortir per costat que en Vicenç li demana i per tant podrà
demostrar que té el coneixement que vol provar.
Si tornéssim a fer l’experiment i el repetíssim tantes vegades com volguéssim, en Pep sortiria sempre
pel costat que en Vicenç li demanés, ja que coneix la clau que obre la porta i per tant no tindria cap
problema.

2. Si en Pep no coneix la clau de la porta no hauria de poder convèncer al Vicenç que sí que la coneix.
Fixeu-vos que si no coneix la clau, al fer la prova el Pep tindria una probabilitat d’1/2 d’encertar el
camí que li demanarà més tard en Vicenç, ja que si en endinsar-se en la cova l’encerta, després podrà
sortir pel mateix costat i no li caldrà utilitzar la clau de la porta que de fet no sap. Ara bé, si el procés
el repetim un altre cop, en Pep només té 1/4 de probabilitat d’enganyar-lo. Ja es veu que si repetim la
prova n vegades la probabilitat que en Pep enganyi al Vicenç és d’1/2n. Així doncs, si en Vicenç vol
estar segur amb probabilitat 0,999023 que en Pep sap la paraula secreta que obre la porta només cal
que realitzin la prova 10 vegades.

3. Un cop en Vicenç ha pogut validar que en Pep coneix la clau, en Vicenç no ha obtingut cap informació
de la clau i tampoc pot utilitzar informació de la prova que ha fet amb en Pep, malgrat l’hagi repetida
10 vegades, per poder demostrar ell davant d’un tercer que coneix la clau.

L’exemple
rebuscat

Com veurem més endavant, aquest exemple il.lustra com funciona una prova de conei-
xement nul, però òbviament, pel nostre propòsit, n’hi hauria prou en fer entrar en Pep
per la dreta i fer-lo sortir per l’esquerra.

En general, les proves de coneixement nul funcionen d’aquesta manera, és a dir, són iteratives de manera que
en cada iteració hi ha una probabilitat del 50% d’encertar. A més, en aquests tipus de protocols utilitzen
la tècnica anomenada challenge & response on el verificador dóna al provador una informació que ell ha
generat aleatòriament per tal que el provador la completi utilitzant el secret que coneix. Aquesta tècnica
també s’anomena sovint cut & choose ja que fa referència al típic protocol de repartir un pastís entre dues
persones, en el que una fa les parts (talla) i l’altre tria.
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10.6.1 Prova del coneixement del logaritme discret

A continuació veurem un exemple concret d’una prova de coneixement nul aplicada al coneixement del
logaritme discret d’un valor, prova que va ser proposada per D. Chaum, J. Evertse i J. Van de Graaf al 1987.
Ja hem comentat anteriorment que el càlcul del logaritme discret té una complexitat elevada, és a dir donats
uns valors y,g i p és difícil trobar per a quin valor x es compleix que y = gx (mod p). Per tant, aquesta
prova de coneixement nul permet al provador demostrar que coneix el valor x que compleix l’equació y = gx

(mod p) sense necessitat de revelar aquest valor.

El protocol funciona de la següent manera. En primer lloc el protocol estableix tres paràmetres públics
(p,g,y), on p és un nombre primer gran, y és un nombre enter tal que y < p i g és un generador del grup
multiplicatiu Zp. El provador ha de demostrar al verificador que coneix el valor x que satisfà l’equació y = gx

(mod p). Per fer-ho el protocol realitza els següents passos:

Pas Provador (P) Verificador (V )
1. Tria r ∈R Zp \{0,1}

Calcula c = gr (mod p) c−→
2. b←− Tria un bit aleatori b ∈R {0,1}
3. Calcula h = r+b · x (mod p−1) h−→
4. Verifica que

c · yb = gh (mod p)

El protocol consisteix en repetir n vegades els 4 passos descrits anteriorment.

Comprovem com es compleixen les propietats d’una prova de coneixement nul.

1. Correcció: en el cas que P conegui el valor x sempre podrà calcular el valor h en el tercer pas del
protocol de manera que la validació que farà V en el pas quatre serà correcta.

2. Robustesa: per vertificar la propietat de robustesa, analitzarem com s’ho faria P per intentar fer
creure a V que coneix x sense realment saber-ho. Per fer-ho, P ha de poder calcular el valor h del pas
3 sense conèixer r. Fixeu-vos que en cas que V li enviï a P el valor b = 0 en el pas 2, P calcularà
h = r+ b · x (mod p− 1) = r (mod p− 1) sense necessitat de saber x i aquest valor serà correcte
i per tant superarà la validació del pas 4. Ara bé, si V tria b = 1 en el pas 2, aleshores P no pot
calcular el valor h correcte (li falta el coneixement de x) de manera que no podrà concloure el protocol
correctament. Fixeu-vos que la probabilitat que això passi és de 1/2, ja que és la probabilitat que té
V en el pas 2 de triar un 0 ó un 1. Per tant, si repetim el protocol n vegades, la probabilitat que P
enganyi a V és d’ 1

2n .
Arribats a aquest punt, podríem pensar que no sembla que tingui sentit que V en el pas 2 enviï un 0, ja
que en aquest cas, P no necessita conèixer x. Per tant, podríem concloure, erròniament, que en el pas
2, V podria enviar sempre un 1, forçant a P a conèixer x. Ara bé, aquesta estratègia no és correcta.
Fixem-nos que si V sempre tria b = 1, P pot generar un valor r en el pas 1, però en comptes d’enviar
c = gr (mod p) a V pot enviar c′ = gr

y (mod p). Aleshores, en el pas 3, P envia r en comptes de

r+ x, però la verificació del pas 4 serà correcta perquè c′ · y = gr

y · y = gr = gh.
Per tant, fixeu-vos que si P no sap si li arribarà un 0 ó un 1 en el pas 2 (i P no coneix el secret) no sap
quina estratègia d’engany ha de seguir en el pas 1, és a dir si ha d’enviar c = gr (mod p) o bé c′ = gr

y
(mod p). Per tant, d’una manera o d’una altra té una probabilitat d’1/2 d’enganyar.

3. Coneixement nul: el protocol també té la propietat de coneixement nul ja que després d’executar-lo,
V només coneix el valor gr rebut en el pas 1, valor que no té cap relació amb el secret x. A més, el
valor h rebut en el pas 3, tan pot correspondre al valor r com al valor r+ x i ambdós es presenten com
a valors aleatoris per a V i per tant no poden proporcionar cap informació d’r.

Exemple 10.7 Exemple de protocol de prova de coneixement nul del logaritme discret Suposem
que els paràmetres del protocol seran p = 89 i g = 3. El provador P coneix el logaritme discret de y = 14
(mod 89) que és x = 9. Suposarem que V tria el valor b = 1 en el pas 2. D’aquesta manera el protocol

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


10.7 Protocol de transferència inconscient 319

tindria els següents valors.

Pas Provador (P) Verificador (V )
1. Tria r = 20 ∈R Z89 \{0,1}

Calcula c = 320 = 73 (mod 89) c=73−−−→
2. b=1←−− Tria un bit aleatori b = 1

3. Calcula h = 20+1 ·9 = 29 (mod 88) h=29−−−→
4. Verifica que

c · yb = 73 ·141 = 43 (mod 89)
gh (mod p) = 329 = 43 (mod 89)

Exercici 10.7 Voleu realitzar una prova de coneixement nul per demostrar que coneixeu el logaritme
discret en base 7 de y = 94 a Z97, és a dir el valor x tal que y = 7x (mod 97). El problema és que realment
no coneixeu el valor x però voleu enganyar a un usuari fent una prova de coneixement nul i que es pugui
convèncer que sí que el coneixeu. Afortunadament per vosaltres, el generador pseudoaleatori que fa
servir el provador té una vulnerabilitat i vosaltres podeu saber el valor dels bits que genera en el pas 2 del
protocol. L’usuari en qüestió vol fer una prova de coneixement nul que li asseguri que coneixeu el valor
amb probabilitat superior a 0,75. Desenvolupeu tot el protocol de prova de coneixement nul assumint que
el generador aleatori de V produeix els següents bits: 010011100.... Doneu el detall de les operacions i
valors que s’intercanvien els usuaris en cada pas del protocol.

10.6.2 Aplicacions de les proves de coneixement nul

Les proves de coneixement nul tenen diferents camps d’aplicació. El primer camp és en els sistemes
d’autenticació. El tradicional mètode de contrasenya comença a ser insuficient per a certes aplicacions ja que
tant si aquesta, de forma incorrecta, es guarda en clar com si es guarda com a imatge d’una funció hash en
algun moment l’usuari ha d’introduir-la en clar i és aleshores quan pot ser interceptada. A més, la utilització
de la mateixa informació per a diferents processos d’autenticació pot donar lloc a atacs de repetició en el que
un atacant utilitza informació d’una autenticació anterior per autenticar-se posteriorment. Utilitzant proves
de coneixement nul, donat que el verificador no pot obtenir cap informació sobre el valor secret que té el
provador, la possibilitat d’atacs de repetició desapareix.

Un altre camp on les proves de coneixement nul són importants és en la verificació de paràmetres en
protocols criptogràfics més complexos. Per exemple, en protocols de votació electrònica, els votants han de
proporcionar certs paràmetres per poder realitzar la votació. Alguns d’aquests paràmetres han de ser secrets,
per preservar l’anonimat del vot, però a la vegada han de tenir certes característiques per tal que el protocol
funcioni de forma correcta. Les proves de coneixement nul s’utilitzen per provar que un usuari coneix un
paràmetre del protocol amb certes característiques sense haver de revelar cap informació del paràmetre en
qüestió.

10.7 Protocol de transferència inconscient

Els protocols de transferència inconscient permeten que un usuari emissor “transmeti” informació a un
altre usuari receptor de manera que al final de la transmissió, l’usuari receptor només obté una part de la
informació “transmesa”. A més, la particularitat d’aquests esquemes és que, d’una banda, l’emissor no sap
quina informació finalment ha rebut el receptor i, d’altra banda, el receptor no obté cap informació de la
informació que no li ha arribat.

0-1 OT Aquest protocol es basa en la dificultat de calcular arrels quadrades modulars i amb la
relació d’aquesta operació i la factorització d’enters.
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El concepte de protocol de transferència inconscient va ser presentat per M. O. Rabin l’any 1981. La proposta
de Rabin era un protocol en el qual l’emissor té un secret i, amb probabilitat 1/2 l’envia al receptor. Al final
del protocol, el receptor pot tenir el secret o no tenir-lo (amb probabilitat 1/2) però l’emissor no pot saber si
l’ha rebut o no. Aquest seria el que es coneix com a protocol de transferència inconscient 0-1. En aquest
apartat, però, ens centrarem en els protocols de transferència inconscient 1-2.

.

En un protocol de transferència inconscient 1-2 (en anglès 1-2 Oblivious Transfer)
l’usuari A té dos secrets s0 i s1. Al final de l’execució del protocol entre A i B, B obté un
dels dos secrets amb igual probabilitat. A més, A no pots saber quin secret ha rebut B i B
no obtindrà cap informació sobre el secret que no ha rebut.

A continuació veurem un exemple concret d’aquest tipus de protocol.

10.7.1 Protocol d’Even, Goldreich i Lempel

Aquest protocol va ser proposat el 1985 pels criptogràfs Shimon Even, Oded Goldreich, i Abraham Lempel.
La proposta utilitza el criptosistema RSA per tal de xifrar els valors secrets que hi intervenen. El protocol
permet l’intercanvi inconscient 1-2 dels secrets s0 i s1 entre l’usuari A que és qui coneix els dos valors i
l’usuari B que és qui en rebrà un dels dos. El funcionament del protocol així com les accions i els missatges
que s’intercanvien en el protocol es mostra gràficament en el següent esquema:

Pas Alice Bob
1. Secrets s0 i s1.

Generació de la clau:
n = p ·q amb p,q primers
e ·d = 1 (mod φ(n))

Genera x0,x1 ∈R Zn
(e,n,x0,x1)−−−−−→

2. Tria un bit aleatori b
Genera k ∈R Zn

v←− Calcula v = xb + ke (mod n)
3. Calcula k0 = (v− x0)

d (mod n)
Calcula k1 = (v− x1)

d (mod n)
Calcula s′0 = s0 + k0 (mod n)

Calcula s′1 = s1 + k1 (mod n)
(s′0,s

′
1)−−−→

4. Coneixent el valor b
calcula sb = s′b− k (mod n)

En el Pas 1, A genera el parell de claus pública-privada i dos valors aleatoris. Envia la clau pública i els valors
aleatoris a B. En el Pas 2, B triarà un dels dos valors aleatoris i l’amagarà utilitzant una clau. Fixeu-vos que
la clau que utilitza per amagar el valor aleatori triat és ke. Com que k ha estat triat aleatòriament, ke també és
un valor aleatori i el resultat v també aparenta un valor aleatori per a A ja que no coneix ni k ni ke. En el
Pas 3, A calcula dues claus k0 i k1 que utilitzarà per amagar els secrets s0 i s1 de la transferència inconscient
obtenint els valors s′0 i s′1. El punt important està en com es calculen aquestes claus k0 i k1. Si ens fixem per
exemple en k0, en el cas que B hagi triat el calor x0 en el Pas 2 tenim que:

k0 = (v− x0)
d = (x0 + ke− x0)

d = (ke)d = k

És a dir que A haurà amagat el valor s0 amb la clau k que B ha triat en el Pas 2. Per tant, B podrà descobrir el
valor s0 en el Pas 3 simplement restant-ne el valor k. En el cas que B hagi triat x1 en comptes de x0 en el Pas
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2, podrà recuperar el secret s1 ja que k1 serà igual a k. Fixeu-vos que en aquest segon cas (B ha triat x1) B no
pot fer res amb el valor s′0 per intentar esbrinar s0 ja que no té cap informació de k0 ja que:

k0 = (v− x0)
d = (x1− k− x0)

d ̸= k

Exemple 10.8 Exemple de protocol de transferència inconscient 1-2 Suposem que Alice vol fer una
transferència inconscient 1-2 a Bob dels secrets s0 = 22 i s1 = 34.

Pas Alice Bob
1. Secrets s0 = 22 i s1 = 34.

Generació de la clau:
n = 19 ·29 = 551
e = 19 i d = 451

Genera:
x0 = 130,x1 = 525 aleatoris.

(e=19,n=551,−−−−−−−−−→
x0=130,x1=525)

2. Tria un bit aleatori b = 0
Genera k = 174
Calcula:

v←− v = 130+17419 = 304 (mod 551)
3. Calcula:

k0 = (304−130)451 = 174 (mod 551)
Calcula:
k1 = (304−525)451 = 26 (mod 551)
Calcula:
s′0 = 22+174 = 196 (mod 551)
Calcula:

s′1 = 34+26 = 60 (mod 551)
(s′0=196,s′1=60)
−−−−−−−−−→

4. Coneixent el valor b = 0 calcula
s0 = 196−174 = 22 (mod 551)

10.7.2 Aplicacions de la transferència inconscient

Com ja hem dit abans aquest protocol per si sol pot no tenir gaire interès però és la base d’altres esquemes
com poden ser la signatura de contractes. Suposem l’escenari en el qual dos usuaris A i B volen signar
digitalment un contracte però cap d’ells vol enviar primer la signatura a l’altre per no estar en desavantatge.
Vegem com es pot aplicar la transferència inconscient 1-2 per solucionar aquesta situació.

L’usuari A descompon la seva signatura en 2n trossos d’m bits cada un, que denotarem per {ai,1≤ i≤ 2n}.
L’usuari B fa el mateix amb la seva signatura i obté els trossos {bi,1≤ i≤ 2n}. Aleshores:

1. A divideix els seus 2n trossos de la seva signatura en n parells, per exemple (a2 j−1,a2 j) per j = 1, · · · ,n
i envia a B un element de cada parell utilitzant una transferència inconscient 1-2, per la qual cosa B
rep a2 j−1 o bé a2 j, per j = 1, · · · ,n, però A no sap quin dels elements ha rebut B (recordem que cada
element del parell té un 50% de probabilitat de ser enviat).

2. Simultàniament al pas 1, B fa exactament el mateix amb els seus 2n trossos de la seva signatura: els
divideix en parells i envia un element de cada parell a A utilitzant una transferència inconscient 1-2.

3. A i B s’envien l’un a l’altre el primer bit de tots els seus trossos ai i bi per i = 1, · · · ,2n, després el
segon bit, i així fins al final. Si A vol enganyar B, només té la probabilitat d’1/2n d’aconseguir-ho ja
que B ja té n dels 2n nombres secrets del pas 1 i A no sap quins són. Simètricament, es pot aplicar el
mateix si B vol enganyar a A.
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Fixeu-vos que d’aquesta manera, A i B poden intercanviar la signatura del contracte i cap d’ells no està mai
en avantatge de més d’un únic bit.

10.8 Protocols de recuperació privada d’informació

Els protocols de recuperació privada d’informació (coneguts també com a PIR per les seves sigles en anglès,
Private Information Retrival) són una versió més laxa dels protocols de transferència inconscient presentats
al capítol anterior. En ambdós tipus de protocols, un emissor envia dades a un receptor, amb la particularitat
que l’emissor no sap quina informació finalment ha rebut el receptor. Els protocols es diferencien doncs en
la informació que rep el receptor: mentre que en els protocols de transferència inconscient el receptor no
obté cap informació de la dada que no li ha arribat, en els protocols de recuperació privada d’informació el
receptor pot rebre informació addicional.

En els protocols de PIR hi intervenen, com a mínim, dues parts: un servidor que emmagatzema una base de
dades i un usuari que vol fer una consulta sobre la base de dades. L’objectiu del protocol de recuperació
privada d’informació és permetre a l’usuari recuperar un ítem de la base de dades sense que el servidor
sàpiga quin ítem s’ha recuperat. Com comentàvem al paràgraf anterior, els protocols accepten que l’usuari
recuperi més informació de la solicitada: l’objectiu del protocol és protegir la privadesa de la consulta de
l’usuari envers del servidor que emmgatzema les dades.

.

Un protocol de recuperació privada d’informació sobre una sola base de dades (en
anglès, single-database Private Information Retrival protocol) és un protocol d’intercanvi
d’informació entre dos usuaris: una base de dades i un client. La base de dades té un
conjunt d’n bits D = b1b2 · · ·bn i l’usuari vol recuperar el bit en la posició i de la base de
dades D sense revel·lar a la base de dades l’índex del bit que s’ha recuperat i.

Així doncs, un exemple de protocol de recuperació privada trivial consistiria en que l’emissor enviés la
totalitat de les dades al receptor cada vegada que aquest fes una consulta. D’aquesta manera, efectivament,
l’usuari rebria el bit d’interès i, alhora, l’emissor no sabria quin bit volia recuperar el receptor. Òbviament,
aquest protocol és molt ineficient (la complexitat de la comunicació és de l’ordre de la mida de la base de
dades), i se’n coneixen d’altres que milloren la complexitat d’aquesta versió trivial.

D’altra banda, hi ha protocols de PIR que es basen en la replicació de la base de dades. En aquests protocols,
es creen k còpies de la base de dades, que s’emmagatzemen en servidors diferents. Aleshores, s’assumeix
que els diferents servidors no poden comunicar-se entre ells (és a dir, no poden col·laborar en la seva tasca
d’intentar esbrinar quina consulta ha fet l’usuari). L’usuari extreu informació parcial de cadascuna de les
còpies, i la combina per tal de recuperar la informació que volia consultar. Els diferents servidors de bases
de dades no aprenen res, individualment, sobre la consulta que ha fet l’usuari.

.

Un protocol de recuperació privada d’informació amb k còpies de la base de dades
(en anglès, k-database Private Information Retrival protocol) és un protocol d’intercanvi
d’informació entre un usuari i k servidors de base de dades. Cada servidor de base de dades
té una còpia completa de la base de dades, un conjunt d’n bits D = b1b2 · · ·bn, i l’usuari
vol recuperar el bit en la posició i de la base de dades D interactuant individualment amb
cadascun dels servidors i sense revel·lar a cap servidor l’índex del bit que vol recuperar i,
assumint que els servidors no poden comunicar-se entre ells i, per tant, no poden compartir
la informació que coneixen de la consulta de l’usuari.

A continuació veurem el protocol de Kushilevitz i Ostrovsky, un exemple de protocol de PIR sobre una única
base de dades i, després, el protocol de Chor et al., un exemple de protocol de PIR basat en la replicació de
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la base de dades.

10.8.1 Protocol de Kushilevitz i Ostrovsky

Notació Direm que a ∈ QR(n) si a ∈ Zn és un residu quadràtic. Per contra, direm que a ∈
QNR(n) si a ∈ Zn no és un residu quadràtic.

Aquest protocol va ser proposat el 1997 per Eyal Kushilevitz i Rafail Ostrovsky. La proposta utilitza el
criptosistema probabilístic de Golwasser i Micali, per a xifrar la consulta que l’usuari realitza, de manera
que la base de dades calcula el resultat sense conèixer els índexs que l’usuari està consultant.

En aquest protocol la base de dades és una matriu de bits, que té s files i t columnes, i que denotarem per
Ms×t = (mi j). Així, el bit que es troba a la fila i columna j correspon al bit mi j, i la base de dades té s× t
bits emmagatzemats. L’usuari farà una consulta per recuperar un bit específic de la base de dades, que
correspondrà al bit que es troba a la fila i′ columna j′, mi′ j′ .

El funcionament del protocol així com les accions i els missatges que s’intercanvien en el protocol es mostra
gràficament a l’esquema següent:

Pas Usuari Base de dades
Índexs del bit a recuperar i′ j′. Matriu de bits Ms×t = (mi j)

1. Generació de la clau:
n = p ·q amb p,q primers aleatoris
a ∈R QNR(n)

2. Calcula:
r j ∈R Zn per tot 1≤ j ≤ t

x j =

{
ar2

j (mod n), j = j′

r2
j (mod n), j ̸= j′

(n,{x1,··· ,xt})−−−−−−−→
3. Calcula:

zi = ∏
t
j=1 yi j ∀ 1≤ i≤ s amb

yi j =

{
x2

j (mod n) si mi j = 0
x j (mod n) si mi j = 1

{z1,··· ,zs}←−−−−−
4. Recupera el bit mi′ j′ comprovant

si z′i és un QR:
Si zi′ ∈ QR(n), llavors mi′ j′ = 0
Si zi′ ∈ QNR(n), llavors mi′ j′ = 1

En el Pas 1, l’usuari que vol consultar la base de dades genera aleatòriament un parell de claus pública i
privada del criptosistema de Goldwasser-Micali. La clau pública correspon als valors (n,a), mentre que la
clau privada són els primers que factoritzen n: (p,q). El valor a es tria aleatòriament entre els valors que no
són residus quadràtics mòdul n, de manera que no existeix cap x tal que x2 = a (mod n).

Una vegada l’usuari ha generat el parell de claus, procedeix a calcular els valors que codifiquen la consulta
que vol fer a la base de dades. Així, en el Pas 2 l’usuari genera t valors aleatoris r j, un per cada columna de
la matriu que conforma la base de dades, i procedeix a calcular els t valors x j, cadascun dels quals fa servir
el corresponent valor aleatori r j. Els valors x j es calculen elevant al quadrat els r j, a excepció de l’x j′ (el
valor que correspon a la columna que conté el bit d’interès), que es calcula elevant el valor aleatòri al quadrat
i multiplicant-lo per a. D’aquesta manera, els valors x j són residus quadràtics a excepció de l’x j′ , que no ho
és. L’usuari envia aleshores els t valors x j i el valor n a la base de dades.
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Xifrat amb
Goldwasser-
Micali

Donada una clau pública (n,a) i un bit en clar m, la funció de xifrat del criptosistema
de Goldwasser-Micali és: E(m) = amr2 (mod n), amb r un valor aleatori de Z∗n.

Fixeu-vos, d’una banda, que el Pas 2 és equivalent a xifrar una tira de t bits amb el criptosistema de
Goldwasser-Micali, on tots els bits són 0 a excepció del que es troba a la columna j′ (que és la columna on
hi ha el bit que l’usuari vol recuperar). D’altra banda, noteu com al rebre els valors x j i el valor del mòdul n,
la base de dades no aprén res sobre els índexs de la consulta que l’usuari està realitzant: com que la base de
dades no coneix la factorització del mòdul n, no pot distingir els x j que són residus quadràtics del que no ho
és i, per tant, desconeix quina és la columna d’interès per a l’usuari.

Al Pas 3 la base de dades procedeix a calcular el resultat de la consulta. Per fer-ho, calcula un valor zi per a
cada fila de la matriu, que correspon al producte dels x j que ha rebut de l’usuari, elevant-los al quadrat si el
bit mi j de la matriu és un 0. Després, la base de dades envia el resultat de la consulta, és a dir, el conjunt d’s
valors zi, a l’usuari.

Finalment, l’usuari recupera el resultat de la consulta a partir de les dades enviades per la base de dades
al Pas 4, comprovant si el valor zi′ (corresponent a la fila d’interès) és o no un residu quadràtic: si ho és,
aleshores el bit recuperat de la base de dades, mi′ j′ , és 0; per contra, si zi′ no és un residu quadràtic, aleshores
el bit recuperat és 1. En efecte, el valor zi′ conté el producte dels x j elevats al quadrat si corresponen a un bit
0 de la matriu i sense elevar al quadrat si corresponen a un bit 1 de la matriu. Si recordem com s’havien
construït els x j, veurem com aquests són residus quadràtics a excepció de l’x j′ , que no ho és. Per tant, el
valor zi′ serà un producte de residus quadràtics si mi′ j′ és 0 (l’únic valor que no ho era s’ha elevat al quadrat
al Pas 3). En canvi, si mi′ j′ és 1, el producte zi′ contindrà un factor que no és un residu quadràtic (precisament
el que es troba en la posició j′), fent que el resultat zi′ no sigui un residu quadràtic.

Fixeu-vos que el procés que permet recuperar els bits de la base de dades consisteix a calcular si un valor
és o no un residu quadràtic mòdul n. Aquest és un problema computacionalment intractable quan n és un
valor compost però, en canvi, és molt simple de calcular si el mòdul és un valor primer, o bé si es coneix la
factorització d’n. Així doncs, l’usuari que fa la consulta coneix els dos primers p i q tals que n = pq, i és
aquest coneixement el que li permetrà calcular si el valor zi′ és o no un residu quadràtic.

És interessant notar que aquest protocol és un protocol de recuperació privada d’informació, ja que com
a resultat de la consulta l’usuari obté més informació de la que ha demanat. Així, mentre que l’usuari
únicament estava interessat a recuperar un únic bit, mi′ j′ , l’usuari rep de la base de dades els zi corresponents
a totes les files. Per tant, l’usuari podria seguir el mateix procediment de recuperació per a tots els zi, i
obtindria així tota la columna j′ de la base de dades, és a dir, tots els mi j′ per a 1≤ i≤ s.

Exemple 10.9 Exemple de protocol Kushilevitz i Ostrovsky (recuperació d’un 1) Suposem que
un usuari vol consultar una base de dades que està formada per una matriu de bits amb tres files i cinc
columnes. L’usuari està interessat a recuperar el valor situat a la segona fila, tercera columna, fent servir el
protocol de Kushilevitz i Ostrovsky.
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Pas Usuari Base de dades
Índexs del bit a recuperar 2,3. Matriu de bits M3×5 = (mi j)

M3×5 =

1 0 0 0 1
0 0 1 0 0
1 0 0 1 1


1. Generació de la clau:

p = 59,q = 19 (aleatòriament)
n = 59 ·19 = 1121
325 ∈R QNR(n)

2. Calcula:
r = {25,711,77,47,779} (aleatoris)
x = {625,1071,1047,1088,380} ja que

x1 = 252 (mod 1121) = 625
x2 = 7112 (mod 1121) = 1071
x3 = 325 ·772 (mod 1121) = 1047
x4 = 472 (mod 1121) = 1088
x5 = 7792 (mod 1121) = 380

(1121,{625,1071,
1047,1088,380})−−−−−−−−−→

3. Calcula:
z = {1083,437,171} ja que

z1 = 625 ·10712 ·10472 ·10882 ·380 =
= 1083 (mod 1121)

z2 = 6252 ·10712 ·1047 ·10882 ·3802 =
= 437 (mod 1121)

z3 = 625 ·10712 ·10472 ·1088 ·380 =
= 171

{1083,437,171}←−−−−−−−−
4. Recupera el bit m23 comprovant

si z2 és un QR:
437 ∈ QNR(n)

Per tant, m23 = 1.

Exemple 10.10 Exemple de protocol Kushilevitz i Ostrovsky (recuperació d’un 0)
Per tal de veure una execució del protocol on es recuperi un bit que sigui 0 en comptes d’1, podem refer
l’exemple anterior suposant que l’usuari volia recuperar el bit en la posició (1,3). En aquest cas, fixeu-vos
que els passos 1, 2 i 3 serien exactament els mateixos que a l’exemple anterior, ja que el bit a recuperar
es troba també en la columna 3, de manera que l’única diferència estaria en l’últim pas. Ara, al Pas 4,
l’usuari recuperaria el bit m13 comprovant si z1 = 1083 és un residu quadràtic: 1083 ∈ QR(n) (ja que
2092 = 1083 (mod 1121)) i, per tant, l’usuari aprendria que m13 = 0.

De manera anàloga, l’usuari podria recuperar també el bit a la posició (3,3), ja que amb la informació
rebuda, pot recuperar qualsevol valor de la tercera columna. Al Pas 4, l’usuari recuperaria el bit m33
comprovant si z3 = 171 és un residu quadràtic: 171 ∈ QR(n) (ja que 762 = 171 (mod 1121)) i, per tant,
l’usuari aprendria que m33 = 0.

Els dos exemples anteriors demostren la propietat diferenciadora dels protocols de recuperació privada
d’informació envers dels protocols de trasferència inconscient: tot i que l’usuari només volia recuperar el
bit a la posició (2,3) de la base de dades (que corresponia a la consulta del primer exemple), l’usuari ha
pogut recuperar informació addicional de la resposta de la base de dades. En efecte, l’usuari ha pogut obtenir
també el bit en la posició (1,3), sense necessitat de realitzar cap nova consulta a la base de dades, a partir de
la informació obtinguda a la primera execució del protocol.
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10.8.2 Protocol de Chor et al.

Aquest protocol va ser proposat el 1998 per Chor, Goldreich, Kushilevitz i Sudan, i es basa en replicar la
base de dades entre diversos servidors incomunicats entre ells per assegurar que la consulta de l’usuari no es
revela a cap dels servidors individuals. L’usuari interactuarà amb cadascun dels servidors, i reconstruirà el
resultat de la consulta a partir de la informació parcial que li arriba de cadascuna de les còpies de la base de
dades.

En aquest protocol la base de dades és una matriu de bits quadrada, que té s files i s columnes, i que denotarem
per Ms×s = (mi j). Com al protocol anterior, l’usuari farà una consulta per recuperar un bit específic de la
base de dades, que correspondrà al bit que es troba a la fila i′ columna j′, mi′ j′ .

Per tal de descriure el protocol, definirem la funció de canviar bits (bit flipping), f (x, i), com una funció que
rep una seqüència x d’n bits i un enter i≤ n, i retorna una seqüència també d’n bits que resulta de canviar el
bit en la posició i de la seqüència x (deixant la resta de bits iguals).

Exemple de bit
flipping

Per a la seqüència de bits x = 01010, f (x,1) = 11010 i f (x,3) = 01110.

El funcionament del protocol així com les accions i els missatges que s’intercanvien en el protocol es mostra
gràficament a l’esquema següent, per a una execució on la base de dades es troba replicada en quatre servidors
diferents, que denotarem per DBuv amb u,v ∈ {0,1} (és a dir, DB00, DB01, DB10 i DB11):

Pas Usuari Base de dades
Índexs del bit a recuperar i′ j′. Matriu de bits Ms×s = (mi j)

1. Calcula:
x0 = {xi ∈R {0,1}} per tot 1≤ i≤ s
y0 = {y j ∈R {0,1}} per tot 1≤ j ≤ s
x1 = f (x0, i′)
y1 = f (y0, j′)

x0,y0
−−−→ DB00

x0,y1
−−−→ DB01

x1,y0
−−−→ DB10

x1,y1
−−−→ DB11

2. Cada BDuv calcula:
zuv =⊕∀i|xu

i =1
∀ j|yv

j=1
mi j

z00
←− DB00

z01
←− DB01

z10
←− DB10

z11
←− DB11

3. Recupera el bit mi′ j′ calculant:
mi′ j′ = z00⊕ z01⊕ z10⊕ z11

En el Pas 1, l’usuari que vol consultar la base de dades genera dues seqüències d’s bits aleatòries (x0 i y0).
Després, genera dues seqüències addicionals (x1 i y1), també d’s bits, que correspondran a una còpia de les
seqüències aleatòries generades en les quals s’ha modificat únicament un bit. Així, la seqüència x1 serà
una còpia d’x0 amb el bit i′ canviat (és a dir, x1 = f (x0, i′)); i la seqüència y1 serà una còpia d’y0 amb el
bit j′ canviat (és a dir, y1 = f (y0, j′)). L’usuari enviarà ara a cada base de dades dues de les seqüències
calculades (una de les que codifiquen l’índex i′ i una de les que codifiquen l’índex j′). Així, l’usuari enviarà
a DB00 les seqüències x0, y0; a DB01 les seqüències x0, y1; a DB10 les seqüències x1, y0; i finalment a DB11

les seqüències x1, y1. Fixeu-vos que cada base de dades rep un parell de seqüències diferent, i que cada
seqüència individual és enviada a dues bases de dades.
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Al Pas 2, cada servidor de bases de dades calcularà la seva resposta. Per fer-ho, calcularà una xor de tots els
bits de la matriu de la base de dades mi j indicats per les dues seqüències de bits que ha rebut, xu i yv. En
concret, calcularà la xor de tots els bits mi j per a tots els índex i tals que xu

i és un 1; i per a tots els índex j
tals que yv

j és un 1. Així, per exemple, la base de dades BD01 calcularà el valor z01 resultant de la xor entre
els valors de la matriu mi j amb els i tals que x0

i és 1 i els j tals que y1
j és 1. Cadascuna de les bases de dades

retornarà el bit zuv calculat a l’usuari.

Finalment, al Pas 3, l’usuari recupera el bit mi′ j′ calculant una xor dels quatre bits individuals que ha rebut
(un de cada base de dades). Noteu com aquesta operació permet recuperar el valor del bit mi′ j′ : degut a la
construcció de les seqüències de bits, tots els bits que es tenen en compte a les xors que fa cada base de
dades ho fan un número parell de vegades, a excepció del bit seleccionat, que només es té en compte una
vegada. Així, quan l’usuari fa una xor de tots els bits zuv rebuts, els que han aparegut un número parell de
vegades es cancel·len, i el resultat és per tant el bit consultat mi′ j′ .

Exemple 10.11 Exemple d’execució del protocol de Chor et al. Suposem que un usuari vol consultar
una base de dades que està formada per una matriu de bits amb quatre files i quatre columnes. L’usuari
està interessat a recuperar el valor situat a la segona fila, tercera columna, fent servir el protocol de Chor
et al.

Pas Usuari Base de dades
Índexs del bit a recuperar 2,3. Matriu de bits M4×4 = (mi j)

M4×4 =


1 0 0 1
0 0 0 1
1 1 0 0
0 1 1 0


1. Calcula:

x0 = {0,0,1,0} (aleatòriament)
y0 = {0,1,0,0} (aleatòriament)
x1 = f ({0,0,1,0},2) = {0,1,1,0}
y1 = f ({0,1,0,0},3) = {0,1,1,0}

x0,y0

−−−→ DB00

x0,y1

−−−→ DB01

x1,y0

−−−→ DB10

x1,y1

−−−→ DB11

2. BD00 calcula:
z00 =⊕∀i|x0

i =1
∀ j|y0

j=1

mi j =

= m32 = 1
BD01 calcula:

z01 =⊕∀i|x0
i =1

∀ j|y1
j=1

mi j =

= m32⊕m33 = 1⊕0 = 1
BD10 calcula:

z10 =⊕∀i|x1
i =1

∀ j|y0
j=1

mi j =

= m22⊕m32 = 0⊕1 = 1
BD11 calcula:

z11 =⊕∀i|x1
i =1

∀ j|y1
j=1

mi j =

z00=1←−−− DB00 = m22⊕m23⊕m32⊕m33 =
z01=1←−−− DB01 = 0⊕0⊕1⊕0 = 1
z10=1←−−− DB10

z11=1←−−− DB11

3. Recupera el bit m23 calculant:
m23 = 1⊕1⊕1⊕1 = 0
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Fixeu-vos en els càlculs que realitzen els diferents servidors de base de dades al Pas 2.

BD00 rep x0 = {0,0,1,0} i y0 = {0,1,0,0}, de manera que calcula la xor dels bits de la matriu que
es troben a la fila i ∈ {3} (ja que el bit a la posició 3 d’x0 és l’únic bit que és 1) i a la columna
j ∈ {2} (ja que el bit a la posició 2 d’y0 és l’únic bit que és un 1 d’y0). Per tant, z00 = m32.

•• BD01 rep x0 = {0,0,1,0} i y1 = {0,1,1,0}, de manera que calcula la xor dels bits de la matriu que
es troben a la fila i ∈ {3} (ja que el bit a la posició 3 d’x0 és l’únic bit que és 1) i a la columna
j ∈ {2,3} (ja que els bits a les posicions 2 i 3 d’y1 són els bits que tenen com a valor 1). Per tant,
z01 = m32⊕m33.

• BD10 rep x1 = {0,1,1,0} i y0 = {0,1,0,0}, de manera que calcula la xor dels bits de la matriu que
es troben a les files i ∈ {2,3} i a la columna j ∈ {2}. Per tant, z01 = m22⊕m32.

• BD11 rep x1 = {0,1,1,0} i y1 = {0,1,1,0}, de manera que calcula la xor dels bits de la matriu que
es troben a les files i ∈ {2,3} i a les columnes j ∈ {2,3}. Per tant, z11 = m22⊕m23⊕m32⊕m33.

D’altra banda, noteu perquè l’usuari pot recuperar el valor m23 quan fa una xor dels valors rebuts de les
quatre bases de dades:

m23 = z00⊕ z01⊕ z10⊕ z11 =

= (m32)⊕ (m32⊕m33)⊕ (m22⊕m32)⊕ (m22⊕m23⊕m32⊕m33) =

= m22⊕m22⊕m23⊕m32⊕m32⊕m32⊕m32⊕m33⊕m33 =

= m23

Efectivament, m23 és l’únic bit que no apareix un número parell de vegades, de manera que és l’únic bit
que no s’anul·la, fent que el resultat de l’operació resulti en el bit de la base de dades que l’usuari volia
recuperar.

Finalment, és interessant destacar per què és necessari que els servidors de base de dades no col·laborin
entre ells per intentar revel·lar la consulta que l’usuari realitza. Per exemple, si els servidors BD00 i BD11

col·laboressin i compartissin la informació que tenen de la consulta, podrien calcular:

x1 = f (x0, i′);{0,1,1,0}= f ({0,0,1,0}, i′)⇒ i′ = 2

y1 = f (y0, j′);{0,1,1,0}= f ({0,1,0,0}, j′)⇒ j′ = 3

recuperant així els índexs de la consulta de l’usuari, (2,3). En canvi, cada base de dades individual, només
coneix un xu i un yv, que són seqüències aleatòries de bits que no aporten cap mena d’informació sobre la
consulta que fa l’usuari.

10.9 Protocol multipart segur

En algunes aplicacions ens pot interessar que un conjunt d’usuaris realitzi un cert càlcul de forma que, tot i
que cada usuari aporta una entrada per a la realització del càcul, al final del procés cada usuari només podrà
obtenir el resultat del càlcul però no podrà obtenir els valors d’entrada d’altres usuaris. Aquests tipus de
protocols es coneixen com a protocols multipart segurs.

.

En un protocol multipart segur (en anglès multiparty computation) un conjunt d’n
participants cooperen per a avaluar el valor d’una funció f sobre un conjunt de valors
(v1, · · · ,vn) aportats pels participants. Com a sortida del protocol, cada usuari ui obté
l’avaluació de la funció f (v1, · · · ,vn) però no obté cap informació sobre el contingut dels
valors v j per a j ∈ [1,n] i j ̸= i.

Com en la majoria de protocols criptogràfics, una solució simple en aquest escenari és la utilització d’una
tercera part de confiança en la qual tothom confia. Aquesta tercera part és la que pot realitzar l’avaluació de
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la funció f i, com que tothom hi confia, tothom està segur que un cop cada usuari li ha lliurat el seu tros
d’informació, no el mostrarà a cap altra part.

Justament, el que proporcionen els protocols multipart segurs és un mecanisme per poder prescindir de la
tercera part de confiança. En els següents apartats veurem dos exemples concrets de protocol multipart segur.

10.9.1 El problema del milionari

Un exemple d’un protocol de càlcul segur a múltiples bandes, en aquest cas a dues bandes, és el protocol
proposat per C. Yao l’any 1982, conegut com el problema del milionari. En aquest escenari, dos milionaris A
i B volen saber qui és el més ric però no volen revelar el valor de la seva fortuna. És a dir, la funció que volem
avaluar de forma segura és una comparació de la mida de dos valors en que cada un dels dos participants
aporta un valor.

Per tal de simplificar una mica el problema (de fet, seria equivalent a fitar la fortuna que tenen els participants)
transformarem aquest problema en un problema equivalent que consistirà en que l’Alice i en Bob volen saber
qui és més gran sense dir quina edat té cada un. Suposarem que tots dos són honestos i que utilitzen les seves
edats reals.

Suposarem que l’Alice té x anys, en Bob y i cap dels dos no en té més de 100, és a dir 1≤ x,y≤ 100. Per a
realitzar aquest protocol utilitzarem un criptosistema de clau pública. Així, tant A com B tindran cada un
d’ells un parell de claus pública i privada que seran (EA,DA) i (EB,DB) respectivament. D’altra banda també
assumirem que ambdós usuaris coneixen la clau pública de l’altre participant. A més, A i B també es posen
d’acord en la mida màxima que tindran dos dels valors utilitzats en el protocol, ta i tb. Així poden assegurar
que els valors pa i pb triats en el pas 6 són més petits que aquests dos valors.

El protocol funciona tal i com es descriu en l’esquema de la Taula 10.5.

Taula 10.5: Protocol del milionari
Pas Alice Bob
1. Tria ta ∈R Z Tria tb ∈R Z
2. Calcula Calcula

ka = EB(ta) kb = EA(tb)
Ka = ka− x Kb = kb− y

3. Ka−→
4.

Kb←−
5. Calcula: Calcula:

fi = DA(Kb + i) per 1≤ i≤ 100 f ′i = DB(Ka + i) per 1≤ i≤ 100
6. Tria pa < tb Tria pb < ta

Calcula: Calcula:
gi = fi (mod pa) per 1≤ i≤ 100 g′i = f ′i (mod pb) per 1≤ i≤ 100
assegurant que |gi−g j| ≥ 2 assegurant que |g′i−g′j| ≥ 2
per a i ̸= j,1≤ i, j ≤ 100 per a i ̸= j,1≤ i, j ≤ 100

Crea la seqüència: Crea la seqüència:
G = {g1, · · · ,gx,gx+1 +1,gx+2 +1, · · · G′ = {g′1, · · · ,g′y,g′y+1 +1,g′y+2 +1, · · · ,

g100 +1, pa} g′100 +1, pb}
7. G−→
8. G′←−
9. Comprova: Comprova:

Si G′x = ta (mod pb), aleshores y≥ x Si Gy = tb (mod pa), aleshores x≥ y
sinó y < x sinó x < y

Com es pot veure en el protocol, la idea és que tant A com B creen una seqüència de valors, en aquest cas
100 que és el màxim de l’edat dels participants. La particularitat d’aquestes seqüències és que, per exemple,
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prenent la seqüència G que genera l’usuari A, per a índex inferiors o iguals a l’índex que determina l’edat de
l’usuari A, el valors són congruents amb el valor aleatori que ha triat B, si l’edat d’A és major que la d’B.

Les conclusions sobre qui té més edat que cada usuari obté en el pas 9 són correctes. Per exemple, el
raonament respecte a la comprovació de l’usuari B seria la següent: Si A té més edat que B, és a dir
x ≥ y aleshores el valor de la posició y de la seqüència que A envia a B en el pas 7 és Gy = gy. Per tant,
Gy = fy (mod pa). Com que fy = DA(Kb + y) = DA(kb− y+ y) = DA(kb) i kb = EA(tb) ens queda que
fy = DA(EA(tb)) = tb i per tant Gy = tb (mod pa).

D’altra banda, si x < y aleshores el valor Gy verifica que:

Gy = gy +1 ̸= gy = fy = tb (mod pa)

Exercici 10.8 L’Alice i el Bob han estat de sort i els ha tocat la loteria, que reparteix com a màxim
5 milions. L’Alice ha tingut més sort que en Bob i li han tocat 4 milions, mentre que al Bob n’hi han
tocat 2. Com que cap d’ells vol dir quina quantitat li ha tocat, decideixen saber qui és més ric utilitzant el
protocol del milionari. Desenvolupeu el protocol per tal que els dos puguin saber qui ha guanyat més
diners sense saber quants diners li han tocat a l’altre. Suposarem que utilitzem com a sistema de clau
pública l’RSA i el parell de claus pública-privada d’A val [(eA = 2573,nA5911),(dA = 197,nA = 5911)],
mentre que el parell de B val [(e = 3109,nB = 5191),(dB = 1795,nB = 5191)].

10.9.2 El problema del milionari socialista

En aquest segon protocol, A i B tenen cada un la seva fortuna, representada pels valors x i y respectivament,
però en comptes de saber qui és més ric el que volen saber és si la seva fortuna és igual o no. L’execució
d’aquest protocol és més elaborada que la de l’exercici anterior ja que el nombre de missatges que s’inter-
canvien és més elevat, a causa que el protocol utilitza com a subprotocol, en diverses etapes, el protocol
d’intercanvi de claus de Diffie i Hellman.

El protocol defineix dos paràmetres generals: un nombre primer p i un valor h ∈ Zp tal que h ̸= 1. El valor
de p ha de ser més gran que la fortuna tant d’Alice com del Bob, és a dir x < p i y < p.

El funcionament del protocol es mostra en l’esquema de la Taula 10.6.

Com es pot veure en el protocol, els primers 6 passos corresponen a un intercanvi de claus de Diffie-Hellman
que permeten que A i B comparteixin dos valors f i g. Donat que la verificació final podria ser errònia en cas
que els valors a1,a2,b1,b2 fossin 0, per aquest motiu es realitza la validació del pas 5.

Al final del protocol, en cas que la darrera comprovació del valor sigui correcta, tant A com B poden estar
convençuts que els dos tenen la mateixa fortuna, ja que:

PaP−1
b = f r( f s)−1 = f r−s = ha2b2(r−s) (mod p)

però d’altra banda,

c = ((QaQ−1
b )b2)a2

= ((hxgx)(hsgs)−1)a2b2

= (h(r−s)g(x−y))a2b2

= (h(r−s)(ha1b1)(x−y))a2b2

= ha2b2(r−s)ha1b1a2b2(x−y)

= PaP−1
b (ha1b1a2b2(x−y)) (mod p)

i com que els valors a1,a2,b1,b2 han estat triats aleatòriament per A i B, l’única possibilitat que c = PaP−1
b

(mod p) és en el cas que x = y, és a dir, que A i B tinguin la mateixa fortuna.
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Taula 10.6: Protocol del milionari socialista
Pas Alice Bob
1. Tria a1,a2 ∈R Zp Tria b1,b2 ∈R Zp
2. Calcula Calcula

ha1 (mod p) hb1 (mod p)
ha2 (mod p) hb2 (mod p)

3
(ha1 ,ha2 )−−−−−→

4.
(hb1 ,hb2 )←−−−−−

5. Verifica que: Verifica que:
hb1 ̸= 1 (mod p) ha1 ̸= 1 (mod p)
hb2 ̸= 1 (mod p) ha2 ̸= 1 (mod p)

6. Calcula: Calcula:
g = (hb1)a1 (mod p) g = (ha1)b1 (mod p)
f = (hb2)a2 (mod p) f = (ha2)b2 (mod p)

7. Tria r ∈R Zp Tria s ∈R Zp
8. Calcula: Calcula:

Pa = f r (mod p) Pb = f s (mod p)
Qa = hrgx (mod p) Qb = hsgy (mod p)

9
(Pa,Qa)−−−−→

10.
(Pb,Qb)←−−−−

11. Comprova que: Comprova que:
Pa ̸= Pb (mod p) Pa ̸= Pb (mod p)
Qa ̸= Qb (mod p) Qa ̸= Qb (mod p)

12. Calcula: (QaQ−1
b )a2 Calcula: (QaQ−1

b )b2

13.
(QaQ−1

b )a2
−−−−−−→

14.
(QaQ−1

b )b2
←−−−−−−

15. Calcula: Calcula:
c = ((QaQ−1

b )b2)a2 (mod p) c = ((QaQ−1
b )a2)b2 (mod p)

16. Comprova que: Comprova que::
c = PaP−1

b (mod p) c = PaP−1
b (mod p)

En cas que la comprovació no sigui correcta voldrà dir que les fortunes no són iguals però cap dels dos sabrà
qui té una fortuna més gran.
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10.10 Resum

En aquest capítol hem estudiant diferents protocols criptogràfics que permeten assolir diferents objectius,
tots ells relacionats amb la seguretat de la informació. En primer lloc, hem vist com dos usuaris es poden
intercanviar un missatge de forma secreta sense haver intercanviat prèviament cap clau, utilitzant el protocol
de tres passos de Shamir. També hem vist com funcionen els esquemes de compartició de secrets, que
permeten que un secret es descompongui en diferents fragments de manera que amb la unió d’un nombre
fixat de fragments es pot recuperar el secret però amb menys sigui impossible.

D’altra banda, hem estudiat també altres protocols en que la seva aplicació directa pot no ser del tot òbvia.
Un exemple són les signatures cegues, on el signatari no coneix el missatge que està signant i aquest fet es pot
aprofitar per a protocols d’autenticació anònima. Un altre exemple estudiat són les proves de coneixement
nul on un usuari pot demostrar davant d’un altre que coneix un secret sense revelar-ne cap informació del
mateix. També hem vist com funciona un protocol de transferència inconscient on la comunicació entre dos
usuaris es fa de forma probabilística de manera que l’emissor envia dos missatges i el receptor només en rep
un. Ara bé, ni l’emissor sap quin missatge ha rebut el receptor ni el receptor pot triar quin dels dos rebre ja
que té una probabilitat del 50 % de rebre’n un dels dos.

Finalment, hem analitzat dos exemples de protocols multipart segurs. En els protocols multipart segurs, n
usuaris volen obtenir l’avaluació d’una funció f (x1,x2, · · · ,xn) proporcionant cada un d’ells una entrada de
la funció xi. El punt clau del protocol és que tots els usuaris han d’obtenir el resultat de l’avaluació de la
funció però no poden obtenir cap informació sobre les entrades que han proporcionat la resta d’usuaris. Els
exemples estudiats han mostrat protocols en els que hi intervenien dos usuaris, un d’ells permet avaluar la
funció “menor o igual” i l’altre permet avaluar la funció d’igualtat.
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10.11 Solucions dels exercicis

Exercici 10.1:

Amb aquests paràmetres, l’usuari A enviarà de forma secreta el missatge m = 20 a B amb el protocol de la
Taula 10.7:

Taula 10.7: Exercici 1
Pas Alice Bob

1. c1 = 2019 (mod 101) = 30 30−→
2. 77←− c2 = (30)13 mod 101 = 77

3. c3 = (77)79 mod 101 = 9 9−→
4. m = (9)77 mod 101 = 20

Exercici 10.2:

El polinomi per generar els fragments estarà compost pel terme independent 11, tindrà com a grau m−1 =
3−1 = 2 i com a coeficients podem triar aleatòriament, per exemple, els nombres x1 = 8 i x2 = 7. D’aquesta
manera el polinomi ens queda determinat per a(x) = 7x2 +8x+11 mod 13
Per generar els fragments prenem 5 valors qualssevol menors que p i calculem les seves imatges pel polinomi
a(x). Prenent com a valors {1,2,3,4,5} tindrem:

a(1) = 7+8+11 = 0 (mod 13)
a(2) = 28+16+11 = 3 (mod 13)
a(3) = 63+24+11 = 7 (mod 13)
a(4) = 112+32+11 = 12 (mod 13)
a(5) = 175+40+11 = 5 (mod 13)

Per tant els fragments dels participants són: (1,0),(2,3),(3,7),(4,12),(5,5).

Exercici 10.3:

Donat que tenim un sistema de compartició llindar amb m = 3 podem triar, d’entre els diferents fragments,
(58,137),(11,48),(50,99),(80,50),(104,33),(39,114), qualsevol conjunt de 3 punts per recuperar el secret.
Per exemple, si triem (50,99),(80,50),(39,114) podem plantejar el següent sistema d’equacions:

S+a1 ·50+a2 ·502 = 99 (mod 149)
S+a1 ·80+a2 ·802 = 50 (mod 149)
S+a1 ·39+a2 ·392 = 114 (mod 149)

Com que només ens interessa resoldre el sistema per la variable S, que és el secret, podem aplicar el mètode
de Cramer i obtenim: ∣∣∣∣∣∣

99 50 116
50 80 142
114 39 31

∣∣∣∣∣∣∣∣∣∣∣∣
1 50 116
1 80 142
1 39 31

∣∣∣∣∣∣
=

36
120

= 36 ·113 = 45 (mod 149)
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Exercici 10.4:

El gestor ha utilitzat el polinomi a(x) = S+a1x+a2x2, on S és la clau del sistema.

Quan els tres usuaris es reuneixen poden escriure el següent sistema:

f1 +2 = S+a1 +a2

f2 + x = S+2a1 +4a2

f3 +2 = S+3a1 +9a2

on f1, f2, f3 són els fragments respectius d’A, B i C i x és la trampa que ha fet l’usuari B.

La solució per la incògnita S en aquest sistema és la mateixa que pel sistema en el que cap participant fa
trampa, ja que l’enunciat indica que han recuperat el mateix secret, per tant:

f1 = S+a1 +a2

f2 = S+2a1 +4a2

f3 = S+3a1 +9a2

Així doncs podem plantejar la següent igualtat:

∣∣∣∣∣∣
f1 +2 1 1
f2 + x 2 4
f3 +2 3 9

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1
1 2 4
1 3 9

∣∣∣∣∣∣
=

∣∣∣∣∣∣
j 1 1

m 2 4
s 3 9

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1
1 2 4
1 3 9

∣∣∣∣∣∣
i si realitzem les operacions dels determinants ens queda que 6x = 3 i finalment x = 3 · 6−1 = 7, sempre
treballant a Z13. Per tant, la trampa que ha fet l’usuari B ha estat sumar 7 al seu fragment.

Exercici 10.5:

Per comprovar que efectivament, amb els valors m1 = 29 i r1 = 90 es pot obrir el compromís de Pedersen
C(m1) = 24, cal calcular el valor del compromís com 2729 · 9490 (mod 113) = 2729 · 9490 (mod 113) =
66 ·62 (mod 113) = 4092 (mod 113) = 24 que efectivament coincideix amb C(m1).

Si el compromís de m2 és C(m2) = 91 i el compromís de m1 val C(m1) = 24 podem calcular C(m1 +m2)
com C(m1) ·C(m2), és a dir 24 ·91 (mod 113) = 37. Tot i poder-lo calcular, aquest compromís de la suma
no es pot obrir perquè per fer-ho necessitaríem el valor r2 que permet obrir C(m2).

Exercici 10.6:

La solució de l’exercici es mostra en la Taula 10.8.

Exercici 10.7:

Com que A vol fer creure a B que coneix el logaritme discret amb un probabilitat de 0,75 això vol dir que
caldrà executar de forma satisfactòria 3 vegades del protocol. Com que A coneix el generador pseudoaleatori
sap que en la primera execució del protocol, al Pas 2, V triarà b = 0, en la segona execució del protocol triarà
b = 1 i en la tercera execució triarà b = 0. Per tant, per tal d’enredar a V :

• En el primer protocol, en el pas 1 triarem qualsevol valor aleatori, per exemple r = 45 que serà el
mateix valor que retornarem en el pas 3, h = 45. La validació del pas 4 feta per V serà correcta.

https://www.criptografia.cat v0.2.1 04/02/2026

https://criptografia.cat


10.11 Solucions dels exercicis 335

Pas Alice Bob
1. Genera 5 claus públiques:

(3,8,10,11,14)
Prepara els 5 missatges per signar:
m1 = (3||5) = (35),m2 = (85)
m3 = (105),m4 = (115),m5 = (145)
Genera els 5 valors per tapar-los:
(5,8,15,23,4)
t1 = 519 = 718 (mod 899)
t2 = 819 = 872 (mod 899)
t3 = 1519 = 773 (mod 899)
t4 = 2319 = 895 (mod 899)
t5 = 419 = 473 (mod 899)
Tapa els 5 missatges:
m1

t1−→ m′1 = 35 ·718 = 857 (mod 899)
m2

t2−→ m′2 = 85 ·872 = 402 (mod 899)
m3

t3−→ m′3 = 105 ·773 = 255 (mod 899)
m4

t4−→ m′4 = 115 ·895 = 439 (mod 899)

m5
t5−→ m′5 = 145 ·473 = 261 (mod 899)

(m′1,m
′
2,m
′
3,m
′
4,m
′
5)−−−−−−−−−−→

2. i=2←−− Tria i = 2 ∈R Z5
3. Envia els valors t j

menys el t2 seleccionat.
(t1,t3,t4,t5)−−−−−−→

4. Destapa els valors i comprova que
el servei sigui S = 5 (últim dígit)
m′1

t1−→ m1 = 35
m′3

t3−→ m3 = 105
m′4

t4−→ m4 = 115
m′5

t5−→ m5 = 145
Signa el valor no destapat:

s′2=371
←−−−− s′2 = 402619 = 371 (mod 899)

5. Destapa el valor per obtenir la
signatura de m2

s′2
t2−→ s2 =

371
8 = 833

que veiem que coincideix
85619 = 833 (mod 899)

Taula 10.8: Solució de l’Exercici 10.6

• En la segona execució del protocol, en el pas 1 triarem, per exemple, r = 5. Però enviarem a V el
valor c = gr

y mod p = 75

94 mod 97 = 56. Aleshores en el pas 3 enviarem h = r = 5 i la validació que
farà V en el pas 4 també serà correcta ja que c · yb = 56 ·941 = 26 mod 97 i gh = 75 = 26 mod 97.

• En la tercera execució, aplicarà la mateixa estratègia que en la primera.

Exercici 10.8:

La solució d’aquest exercici es mostra en la Taula 10.9.
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Taula 10.9: Exercici 7
Pas Alice (x = 4) Bob (y = 2)
1. Tria ta = 1349 ∈R Z Tria tb = 1547 ∈R Z
2. Calcula Calcula

ka = EB(ta) = 1465 kb = EA(tb) = 2212
Ka = ka− x = 1461 Kb = kb− y = 2210

3. Ka=1461−−−−−→
4.

Kb=2210←−−−−−
5. Calcula: Calcula:

f1 = DA(Kb +1) = 4217 f ′1 = DB(Ka +1) = 1177
f2 = DA(Kb +2 = 1547) f ′2 = DB(Ka +2) = 573
f3 = DA(Kb +3) = 3556 f ′3 = DB(Ka +3) = 4426
f4 = DA(Kb +4) = 3569 f ′4 = DB(Ka +4) = 69
f5 = DA(Kb +5) = 884 f ′5 = DB(Ka +5) = 674

6. Tria pa = 239 < tb Tria pb = 739 < ta
Calcula: Calcula:

g1 = f1 (mod pa) = 154 g′1 = f ′1 (mod pb) = 438
g2 = f2 (mod pa) = 113 g′2 = f ′2 (mod pb) = 573
g3 = f3 (mod pa) = 210 g′3 = f ′3 (mod pb) = 731
g4 = f4 (mod pa) = 223 g′4 = f ′4 (mod pb) = 69
g5 = f5 (mod pa) = 167 g′5 = f ′5 (mod pb) = 674

Crea la seqüència: Crea la seqüència:
G = {154,113,210,223,168,239} G′ = {438,573,732,70,675,739}

7. G−→
8. G′←−
9. Com que Com que:

G′4 = 70 ̸= 1349 = ta (mod 739), G2 = 113 = 1547 = tb (mod 239),
aleshores y < x i per tant A té aleshores x≥ y i per tant A té
més diners que B. tants o més diners que B.
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